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ABSTRACT 
 

A fluid dynamic traffic flow model with a linear velocity-density closure relation is considered. 
The model reads as a quasi-linear first order hyperbolic partial differential equation (PDE) and in 
order to incorporate initial and boundary data the PDE is treated as an initial boundary value 
problem (IBVP). The derivation of a first order explicit finite difference scheme of the IBVP for 
two-point boundary condition is presented which is analogous to the well known Lax-Friedrichs 
scheme. The Lax-Friedrichs scheme for our model is not straight-forward to implement and one 
needs to employ a simultaneous physical constraint and stability condition. Therefore, a 
mathematical analysis is presented in order to establish the physical constraint and stability 
condition of the scheme. The finite difference scheme is implemented and the graphical 
presentation of numerical features of error estimation and rate of convergence is produced. 
Numerical simulation results verify some well understood qualitative behavior of traffic flow. 

 
1. Introduction 
The problem of computer simulation techniques of the traffic flow models has become an 
important area in the field of numerical solution methods. Many research groups are 
involved in dealing with the problem with different kinds of traffic models (like fluid-
dynamic models, kinetic models, microscopic models etc.) for several decades. E.g. In 
[1], the author shows that if the kinematics wave model of freeway traffic flow in its 
general form is approximated by a particular type of finite difference equation, the finite 
difference results converge to the kinematics wave solution despite the existence of 
shocks in the latter. Errors are shown to be approximately proportional to the mesh 
spacing with a coefficient of proportionality that depends on the wave speed, on its rate of 
change with density, and on the slope and curvature of the initial density profile. The 
asymptotic errors are smaller than those of Lax's first-order, centered difference method 
which is also convergent. In [2], the author develops a finite difference scheme for a 
previously reported non-equilibrium traffic flow model. This scheme is an extension of 
Godunov's scheme to systems. It utilizes the solutions of a series of Riemann problems at 
cell boundaries to construct approximate solutions of the non-equilibrium traffic flow 
model under general initial conditions. Moreover, the Riemann solutions at both left 
(upstream) and right (downstream) boundaries of a highway allow the specification of 
correct boundary conditions using state variables (e.g., density and/or speed) rather than 
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fluxes. Preliminary numerical results indicate that the finite difference scheme correctly 
computes entropy-satisfying weak solutions of the original model. 

In [3], the authors consider a mathematical model for fluid dynamic flows on networks 
which is based on conservation laws. The approximation of scalar conservation laws 
along arcs is carried out by using conservative methods, such as the classical Godunov 
scheme and the more recent discrete velocities kinetic schemes with the use of suitable 
boundary conditions at junctions. Riemann problems are solved by means of a simulation 
algorithm which processes each junction. 

The above discussion gives us the motivation to study and investigate efficient finite 
difference scheme for the traffic flow simulation. With this ends, in this article, in section 
2, we consider a fluid-dynamic traffic flow model which has been developed first by 
Lighthill and Whitham (1955) and Richard (1956) shortly called LWR model and present 
the basic features of the model based on Habermann (1977) in [4], Klar in [5]. The model 
describes traffic phenomena resulting from interaction of many vehicles by discussing the 
fundamental traffic variables like density, velocity and flow. In particular, a linear 
velocity-density closure relation yields a quadratic flux-density relation leads to formulate 
a first order non- linear partial differential equation. The exact solution of the non-linear 
PDE as a Cauchy problem is presented. However, in order to incorporate initial and 
boundary data, the non-linear first order partial differential is appended by initial and 
boundary value and formulates an initial boundary value problem (IBVP). Certainly, a 
numerical method is needed for the numerical implementation of the IBVP in practical 
situation and it is completely unavoidable to use numerical method to solve real traffic 
flow problem.  
Therefore, based on the study of general finite difference method for first order non-linear 
PDE from Leveque 1992 [6], we present a first order explicit finite difference scheme, 
which is analogous to the well-known Lax-Friedrich scheme, for our considered traffic 
flow model as an IBVP with two-sided boundary condition. The scheme is not straight 
forward to implement and one needs to employ a simultaneous physical constraint and 
stability condition. Thus, in section 4, we perform mathematical analysis and establish the 
physical constraints and stability condition. We develop necessary computer 
programming code for the implementation of the numerical scheme and perform 
numerical simulations in order to verify some qualitative traffic flow behavior for various 
traffic parameters. In section 5, we present the numerical features of error estimation and 
rate of convergence. We also present numerical simulations results in order to verify 
some well-understood qualitative traffic flow behavior.  
 
2. A Traffic Model based on a linear velocity-density function  
The fluid-dynamic traffic flow model is used to study traffic flow by collective variables 
such as traffic flow rate (flux)  , traffic speed ( txq , ) ( )txv ,  and traffic density ( tx, )ρ  , all 
of which are functions of space, Rx∈  and time, . The well-known LWR model 
([4], [5], [7]) based on the principle of mass conservation reads as 

+∈ Rt
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Inserting a linear velocity-density closure relationship  
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and (1) leads to formulate a nonlinear first order hyperbolic partial differential equation 
(PDE) of the form 
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The graph of the non-linear flux function given by equation (3) is known as Fundamental 
Diagram as sketched below. 
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                                           Figure 1: Fundamental Diagram of Traffic Flow  
 
3. Exact solution of the non-linear PDE by the method of characteristics 
The nonlinear PDE (4) can be solved if we know the traffic density at a given initial time, 
i.e., if we know the traffic density at a given initial time  we can predict the traffic 
density for all future time , in principle. Then we have to solve an initial value 
problem (IVP) of the form 

0t

0tt ≥
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The exact solution of the IVP (5) is given by                                                      
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However, in reality it is very complicated to approximate the initial density )(0 xρ  of the 
Cauchy problem as a function of t  from given initial data. Therefore, there is a demand 
of some efficient numerical methods for solving the IVP (5). Nevertheless, considering a 
simple form of initial value, the analytic solution (6) can be used to perform an error 
estimation of the numerical scheme. 
 
4. Lax-Friedrichs scheme for the numerical solution of the IBVP 
In this section we present the derivation of the finite difference scheme for our model 
with linear density-velocity relation appended with initial and two point boundary 
condition. The first order scheme is analogous to the well-known Lax-Friedrichs scheme 
[6].  We establish the physical constraints and stability condition for our version of Lax-
Friedrichs scheme. For this, we consider the traffic model (4) as an IBVP with two-point 
boundaries as below. 
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where, by equation (3), ( ) ⎟⎟
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As we consider that the cars are running only in the positive x-direction, so the speed 

must be positive, i.e. in the range of ρ ,       0)21()(
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Discretizing the time derivative 
t∂

∂ρ
 in the IBVP (7) at any discrete point  for 

; by the forward difference  formula 
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Inserting (9) and (10) in (7), the discrete version of the non-linear PDE formulates the 
first  order finite difference scheme of the form 
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In the finite difference scheme, the initial data  for all0
iρ Mi ,,1L= ; is the discrete 

versions of the given initial value )(0 xρ   and the boundary data  and   for 
all  are the discrete versions of the given boundary values 
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Unfortunately, despite the quite natural derivation of the scheme (11), it suffers from 
severe stability problems and is useless in practice. But if we replaces  by n
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sufficiently small, as it will be proved in the next section’s proposition. Then (11) takes 
the form 
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This difference equation is known as Lax-Friedrichs scheme. Now we study the stability 
condition of this scheme for our model in which,  
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5. Stability and Physical Constraints conditions 
The implementation of Lax-Friedrichs scheme is not straight forward. Since the car is 

moving in one direction, so the characteristic speed 
dt
dq

 must be positive.  
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Proposition: The stability and physical constraint condition of the Lax-Friedrichs scheme 
(13) is guaranteed by the simultaneous conditions respectively   

                           1max ≤
∆
∆
x

tv
 and 2 ),(max 0max ≥= kxk ii

ρρ . 

Proof: Rewriting the non-linear PDE in (7) as  0)( =
∂
∂′+

∂
∂

x
q

t
ρρρ

, the Lax-Friedrichs 

scheme (13) takes the form 

                 [ ]n
i

n
i

n
i

n
i

n
i

n
i x

tq 1111
1 )(

2
1)(

2
1

−++−
+ −

∆
∆′−+= ρρρρρρ           

                          )(
2
1

1!11
n
i

n
i

n
i

n
i +−+− +−+= λρλρρρ                                                            (16) 

where
x
tq n

i ∆
∆′= )(: ρλ             

                          ])1()1[(
2
1

11
1 n

i
n
i

n
i +−
+ −++=⇒ ρλρλρ ;                                              (17) 

which is weighted arithmetic mean or simply weighted mean  of  and  forn
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The equation (16) implies that if ,1≤λ the new solution is a convex combination of the 
two previous solutions.  That the solution at new time-step )1( +n at a spatial-node i, is 
an average of the solutions at the previous time-step at the spatial-nodes  and . 
This means that the extreme value of the new solution is the average of the extreme 
values of the previous two solutions at the two consecutive nodes. Therefore, the new 
solution continuously dependent of the initial value ,
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Then by the condition (15), the stability condition (18) can be guaranteed by  
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Thus whenever one employs the stability condition (19), the physical constraints 
condition (14) can be guaranteed immediately by choosing 
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6. Numerical results and discussion  
We implement the Lax-Friedrichs scheme by developing a computer programming code 
and perform numerical simulation as described below. 

Error Estimation of the Numerical Scheme 

In order to perform error estimation, we consider the exact solution (6) with initial 
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We prescribe the corresponding two-sided boundary values by the equations  
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For the above initial and boundary conditions with = 0.167 (0.1km/sec) =60.12 
km/hour, satisfying the physical constraint condition (20) 
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in the spatial  domain [5 km, 10 km], we perform the numerical experiment for 4 minutes 
in 0.1 time steps for a highway of 5 km  in 101 spatial  grid points with step size 

 100 meters = 0.25 which guarantees the stability condition (19)
=∆t

=∆x 0668.0=γ < 1. 
We compute the relative error in -norm defined by:    1L
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for all time where eρ is the exact solution (6) and hρ is the numerical solution computed 
by the Lax-Friedrichs scheme. 

Figure 2 shows the relative errors for Lax-Friedrichs scheme, the relative errors remain 
below 0.00004 which is quite acceptable. It is obseved that the error is decreasing with 
respect to the smaller descretization parameters t∆  and x∆ , which shows a very good 
feature of convergence of the Lax- Friedrichs scheme. 
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Figure 2: Convergence of Lax-Friedrichs Scheme 

Now we consider the initial density using sine function and perform numerical 
computation in the spatial domain [0, 10] in km. Figure 3(a) shows the initial density and 
the density after six minutes. 3(b) shows the propagating traffic waves at two min, four 
min and six min for the Lax-Friedrichs Scheme. 
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             Figure 3(a): Initial Density Profile                    Figure 3(b): Time evolution of density profile 

Figure 4(a) and 4(b) shows the density profiles and velocity profiles for 
three different times and one can read from the two figures that the density and velocity 
are maintaining the negative relation, as given by equation (2), throughout the 
computational process as expected.  
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              Figure 4(a): Density profiles                                      Figure 4(b): Velocity profiles 
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 Figure 5(a): Traffic velocity as a function of density        Figure 5(b): Traffic Flux as a function of density 

Finally, Figure 5(a) presents the computed car velocity as a function of density and Figure 
5(b) shows the computed flux (traffic flow) as a function of density. Figure 5(b) verifies 
qualitative behavior, the well-known Fundamental diagram as Figure 1.  
                                                                  
Conclusion 
From the numerical results we observed that our version of Lax-Friedrichs scheme for the 
considered traffic flow model is adequate for traffic flow simulation.  The time-step in the 
established stability condition and physical constraints condition is not stiff and this 
resulted computational efficiency of the scheme. The computational results showed the 
accuracy up to five decimal places and a good rate of convergence. The numerical 
simulation results verified some well-known qualitative traffic flow behavior. The 
scheme can be extended for multi-lane traffic flow simulations which we left for future 
work. 
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