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ABSTRACT

A second order fluid dynamical traffic flow model is considered which is a parabolic type second
order partial differential equation appended with initial and boundary conditions reads as an initial
boundary value problem (IBVP). For a linear velocity-density relation the paper presents the
analytical solution of the model by using Cole-Hopf transformation. For the numerical solution of
the IBVP, we investigate explicit central difference scheme and implement the numerical scheme
by developing computer programming code. Error estimation is produced which shows the
numerical solution is accurate up to eight decimal places and this result is much better than the
work presented in [6]. The numerical feature of rate of convergence observed by graphical
presentation is aso found better than the previous work. The computed numerical simulation
results are seen in a good qualitative agreement with the well known traffic flow behavior for
various parameters.

Keywords: Fluid dynamical traffic flow model, Finite difference method, Numerical
Simulation

1. Introduction

The fast growing number of vehicles on networks of roads, either highways or urban
streets, and the related economical and socia implications, constantly motivates an
intense research activity in the field of traffic flow modeling. Both applied
mathematicians and engineers are involved and several interesting results have been
obtained despite the great complexity of the above system, which appears to be rather
difficult to be constrained into a mathematical framework. Due to the high complexity of
the problems, analytical approaches are infeasible. Current approaches are simulation
based (Leveque [3]) which is driven by necessity, but largely enhanced by the widespread
availability of computing power nowadays.

In densely populated areas, there is only limited space available for extension of the
transport system; and we face increasing pollution and growing accident frequencies as
the downsides of mobility. One of the basic goals of studying traffic flow isto understand
traffic congestion and look for ways to provide efficient movement of traffic which
minimize congestion problems.

Zhang [7] developed afinite difference scheme for a previously reported non-equilibrium
traffic flow model. This scheme is an extension of Godunov’s scheme (see Leveque [3])
to systems. It utilizes the solutions of a series of Riemann problems at cell boundaries to
construct approximate solutions of the non-equilibrium traffic flow model under general
initial conditions. Moreover, the Riemann solutions at both left (upstream) and right
(downstream) boundaries of a highway allow the specification of correct boundary
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conditions using state variables (e.g., density and/or speed) rather than fluxes. Preliminary
numerical results indicate that the finite difference scheme correctly computes entropy-
satisfying weak solutions of the original model.

In order to investigate efficient numerical scheme for the Lighthill-Whitham-Richards
(LWR) traffic flow model, Gani et al. [6] studied a finite difference scheme for the LWR
model appended with a linear velocity density relation. This paper performs stability
analysis and establishes a physical constraint condition for the implementation of the first
order LWR model.

The first order traffic flow model doesn’t describe the physical tendency of traffic
diffusivity. Therefore, in order the study the effect of traffic diffusivity behavior in the
numerical scheme, in [9], authors consider a second order traffic flow model with
diffusion term, first introduced by Payne [8]; Kuhne [4] added a diffusive term. The
model describes traffic phenomena resulting from interaction of many vehicles by
discussing the fundamental traffic variables like density, velocity and flow. In particular,
alinear velocity-density relationship which yields a quadratic flux-density relation forms
the traffic model as a second order convection-diffusion type partial differential equation.
The analytical solution of the second order traffic flow model is developed by using Cole-
Hopf transformation. A study of finite difference scheme with stability analysis is also
performed in [9].

In the present work, we develop computer programming code for the implementation of
the numerical schemes that has been developed in [9]. Error estimation is produced and
numerical feature of rate of convergence is observed by graphical presentation of error
profiles for consistently varied discretization parameters. We present numerical
simulation results in order to verify some quditative traffic flow behavior for various
traffic parameters.

2. Fluid Dynamical Modelsfor Traffic Flow

The fluid-dynamical traffic flow mode is used to study traffic flow by collective
variables such as traffic flow rate (flux) y(t, x), traffic speed v(t, x) and traffic density
p(t, x), al of which are funciotns of space, x € R and time, t € R*. The well known first
order LWR traffic flow model [2] based on the principle of mass conservation reads as

0 + 0 _ 0 ERL>0 2.1

a "o o *EW @1
Lighthill, Whitham and Richards considered that traffic is an inviscid but compressible
fluid (fluid-dynamic model). Densities, speed values and flows were defined as
continuous variables in each point in time and space (continuum, macroscopic model).
Instead, in 1971, Payne replaced the assumption of instantaneous adaption in the
Lighthill-Whitham theory by an equation for inertia, which is similar to a Navier-Stokes
equation [8]. Kuhne added a viscosity term in 1984 and initiated using the methods of
nonlinear dynamics for analyzing the equation [4], which yields

d
6_+6_(q —DVp)=0 (2.2)
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The term —DVp known as Fickian term is introduced to account for external noise, i.e.,
the resultant of all random fluctuations in road conditions, drivers’ response to stimuli,
changes in wind, engine power, braking variability, etc. Considering these dissipations the
LWR traffic flow model (2.1) can be developed using the equation (2.2), which can be
written as
J + 0 _ D o°p 2.3
a a ac¢ (23)

Thisisasecond order PDE and is called the second order traffic flow model.

The second order traffic flow model (2.3) is parabolic while first order LWR traffic flow
model (2.1) is hyperbolic. One major difference is that (2.3) always has smooth solutions
for t > 0 even if the initial data pg(x) is discontinuous. We can view (2.1) as an
approximation to (2.3) valid for D very small, but we may need to consider the effect of
D in order to properly interpret discontinuous solution of (2.1).

The solution of (2.3) is again non-dispersive wave with phase and group velocity g'. The
difference is that D introduces dissipation (damping) of the wave. The amplitude decays
as e~U%° where k is the wave number. This reflects the intuitively reasonable effect that
traffic jams should tend to dissolve under homogeneous and stationary conditions.

For a further development ¢(p) has to be specified. Inserting a linear velocity-density
closure relationship [2]

(P
v = v (1 - ) (2.4)
the flux takes the form
2z
4 =p (1) =t (p—p‘“ ) (2.5)

Using (2.5) second order traffic flow model (2.3) leads to formulate a linear second order
partial differential equation of the form

d 0 p* 4p
a—+a— VUm ,(J—,(J ZDF (26)
m

Thelinear velocity-density relation (2.4) satisfies the qualitative physical properties
v(p=0) = v
d
1 =0 } 2.7
v(p = pm )=0)
The corresponding flux-density function (2.5) is parabolic concave up and satisfies the
qualitative properties
q(p=0)=0 }
2.8
o(pm ) =0 = 4(pm ) =pm vl ) =0 28)
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The maximum traffic flow rate under these assumptions occurs at the mid-point of the
P

fundamental diagram, for p = = and the maximum flow is
1
Um = Z»Um Um

3. Analytical Solution of the Second Order Traffic Flow Model

The second order traffic flow model (2.6) can be linearly mapped onto convection
diffusion equation (CDE) under certain conditions. Then obtained equation can be solved
if we know the traffic density at a given initial time, i.e., if we know the traffic density at
agiven initial time t; = 0 we can predict the traffic density for all futuretime t > tg, in
principle. In [9] authors present the analytic solution of the second order traffic flow
model as an initial value problem (IVP) in the form

p(t,x) = D%Ji(m lﬁ%fme (_ (m ;;x—z)z _;n;! J;]Zpﬂ(x') dxyjd D (3.1)

where g, (x) = p(0, x) istheinitial condition.

However, in redlity it is very complicated to approximate the initial density pq(x) of the
Cauchy problem as a function of x from given initial data, e.g. it may cause a huge error.
Moreover, the analytical solution given by equation (3.1) depends on the initial value
function under a complex double integral and it is quite difficult to evaluate the value of
the double integral of the solution.

Therefore, there is demand of efficient numerical methods for solving the second order
traffic flow model.
4. Finite Difference Method for Second Order Traffic Flow M odel

As we have aready seen in the previous section that the analytic solution of the second
order traffic flow problem is in a complex form, one need to employ numerical method
for the model.

We consider our second order traffic flow model with two sided boundary condition as an
initial boundary value problem (IBVP):

a a(p)_ 9% )
st s Py
with I.C. p(ty,x) =py(x); a<x<bh (4.1)
and B.C. p(t,a) = p,(t) ; tgst<T|
pt,B)=pp®) ; tg<t< T)
where  q(p) =p =pvm (1—L) (4.2)
Fm

4.1. Explicit Backward-Centered (FTBSCS) Difference Scheme

We study finite difference method for the parabolic type PDE [3]. For our model as IBVP
we discretize i— by the first order forward difference formula in time, g— by the first
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order backward difference formula in space and f by the second order central
difference formula in space at any point (t", x:) for i=1,.... M—-1, n=
01,.... ,N — 1, considering p(t", x;) = p;', we have
aoum n+l _ n
;I JUI AI pI (4.3)
a (" my — g(p
a(:Ul ) -~ q(pt) A;(P: 1 (4.4)
8°p _ P =20+
97 Ax? (45)
Using (4.3), (4.4) and (4.5) the numerical discretization of (4.1) reads as
DAt DAt At
pitt = (1 2@) P+ g 0l o) — (q(p;) a(piLy)) (4.6)

which is known as FTBSCS difference scheme for the IBVP (4.1).

However the scheme is not straight forward to implement. To ensure the convergence of
the scheme, one needs to satisfy stability condition for the scheme. For our traffic flow
model we perform stability conditions and determine the stability conditions as follows.

4.2. Explicit Centered-Centered (FTCSCS) Difference Scheme

For the FTCSCS Difference scheme we discretize ;— by the first order forward

differencein time by the first order central difference in space and by the second
order central difference in space at any point (t" x;) fori= 1 ...... M—-1, n=
0,.... ,N—1.

3 pn+1 p'i_’f

ER I At t .1

ad =gl

a_ —~ quZquI 1 (48)

0°p _ pita — 200" + ity

R T “
Using (4.7), (4.8) and (4.9) the discretization of (4.1) is

DAt .
pitt = (1 2—)»an (P:+1 pi 1)_—(‘h+1 dits (4.10)

which is known as FTCSCS Difference scheme for IBVP (4.1).

The stability condition and physical constraints condition for the above two schemes is
established in [9] asfollows:
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Lemma 4.1: Stability of the FTBSCS difference scheme (4.6) is given by the conditions

q (pl) At DAt 1
=s——=<1 S—=<=
0 A and O Xt

Lemma 4.2: Physical constraints condition and the stability condition0 < % =1
are assured by the simultaneous conditions

Um

t
<1 and pp =amaxy; az2

Theorem 4.1: The stability of the FTBSCS difference scheme (4.6) and physical
constraint condition ¢'(p) = 0 can be guaranteed by the simultaneous conditions

Um At

<1 and pp, Zam?xpf; ngvm Ax, u=2, =1

5. Numerical Simulation

In this section we implement the finite difference scheme of the second order traffic flow
model by computer programming and perform numerical simulation for some specific
cases.

For the spatial domain [0 10] in kilometer we choose the maximum velocity of cars is
v, = 60km/hours and the maximum density p,, = 500carsKm. We perform the
numerical experiment for 3 minutes in 361 time steps (with temporal grid sizes 0.5 sec)
and 201 spatial grid points (with spatial grid size .05km) for the highway.

Now we consider the initial density as shown in Figure 5.1 at ¢t =0 and boundary
condition is obtain by the analytical solution describe in section 3. Figure 5.1 shows the
propagating traffic waves at first minutes, second minutes and third minutes for value of
diffusion constant D = 0.1Km*/Min.
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Fig. 5.1 Density Profile (Explicit backward-centered (FTCSCS) difference scheme)
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Figure 5.2 and 5.3 shows the corresponding velocity v(t, x) and flux g (t, x) profiles.
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Fig. 5.2 Velocity Profile(Explicit backward-centered (FTCSCS) difference scheme)
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Fig. 5.3 Flux Profile (Explicit backward-centered (FTCSCS) difference scheme)

For the different diffusion constants the effects of propagating traffic density is shows in
figure 5.4(a) and 5.4(b) at time 3 minutes and 6 minutes respectively.
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Fig. 5.4(a): Density at t=3minitues Fig. 5.4(b): Density at t=6minitues

Error Estimation

To estimate the error of our numerical schemes, we choose diffusivity constant D =
0 km?Z/min. Then the traffic flow model that we considered becomes
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a . af 3 p ~0o

o o \™ \"Tem )"
Using method of characteristics the analytical solution of this model with the initial
condition p(ty, x) = py(x) ispresented in [6] as

p(t,x) = p(0,x0) = po(xe) = po (x —Un (1 - ;Tﬂ) f)

To evaluate the accuracy of our numerical schemes we consider the initial condition
po(x) = ix then we have

p(t, x) Zé(x—vm (1—;7’9) t)

Fm (I—Um f.)
2(pm  —vm 1)

= p(t,x) =

We prescribe the corresponding two-sided boundary values by the equations

_ Pm (xu_vm )
pult) = 2(bm —vm )

Pm (Xp— Uy D)
2(bm  —vm 1)

and  pp(2) =

For the above initial and boundary conditions with maximum velocity v, =
60 km/hour and maximum density p,,, = 500 cars/km in the spatial domain [5, 15] in
kilometer with 101 spatial grids points with step size Ax = 0.1km = 100 meter, we
perform the numerical experiment of a highway of 10km for 3minutes. We compute the
relative error in L,-norm defined by:

lpe = pnlly

llell, =
17 gyl

for al time where g, is the exact solution and pjyis the numerical solution computed by
our numerical schemes.

Figure 5.5 and 5.6 shows the relative errors for explicit FTBSCS difference scheme and
the relative error for explicit FTCSCS difference scheme respectively. In both cases the
relative error remains below 8 x 10~ which is quite acceptable. It is obseved that the
error is decreasing with respect to the smaller descretization parameters At and Ax, which
shows a very good feature of convergence of our schemes.
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Fig. 5.5 Convergence of explicit FTBSCS difference scheme
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Fig. 5.6 Convergence of explicit FTCSCS difference scheme

Though both schemes shows a very good feature of convergence, the relative error of
explicit FTCSCS difference scheme decrease more quickly than explicit FTBSCS
difference scheme for smaller time step At. Hence the accuracy of explicit FTCSCS
difference scheme is better than explicit FTBSCS difference scheme.

6. Conclusion

In this work, analytic solution for simplified initial condition is used for error estimation
of numerical method for the model and the rate of convergence is observed by graphical
presentation of error profiles for consistently varied discretization parameters. These
features are found quite satisfactory for performing traffic flow simulation. Therefore, we
perform numerical computation of the second order model by the finite difference scheme
and the computed density, velocity and flux profiles for various flow parameters are
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observed in a good agreement with well known qualitative behavior of the traffic flow.
Thiswork can be extended for the traffic flow model with inflow-outflow effect.

REFERENCES

[1] Klar, A., Kuhne, R. and Wegener, R., Mathematical Models for Vehicular Traffic, Surv. Math. Ind., 6,
215-239, 1996.

[2] Richard Haberman, Mathematical models, Prentice-Hall, 1977.

[3] Randal, J. Leveque, Numerical Methods for Conservation Law, Lectures in Mathematics, ETH-Zurich,
Birkhauser-Verlag, Basel, Second Edition, (1992).

[4 R.Kuhne, Macroscopic freeway model for dense traffic stop-start waves and incident detection, 9 Int.
symp. Transpn. Traffic Theory, VNU Science Press, 1984.

[5] E.Hopf, The partia differential equation u; + wu, = u, , PureAppl. Math. 3, (1950), 201,

[6] M. O. Gani, M. M. Hossain and L. S. Andallah, A Finite Difference Scheme for a Fluid Dynamic
Traffic Flow Model Appended with Two Point Boundary Condition, GANIT J. Bangladesh Math. Soc.
31(2011) 43-52

[71 Zhang, H. M., A finite difference approximation of a non-equilibrium traffic flow model,
Transportation Research Part B: Methodologicial Vol. 35, Issue 4 (2001), 337-365.

[8] H.J. Payne, Models of freeway traffic and control, Mathematical Models of Public Systems, Vol.1,
Simulation Council, La Jolla, CA, (1971), p. 51.

[9] Tauhedul Azam, S. Ali and L. S. Andallah, An Analytical Method and A Numerical Scheme for the
Solution of Second Order Traffic Flow Model, J. J. Math. and Math. Sci. 26(2011), 71-80.



