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ABSTRACT

In this paper, numerical technique for solving the one-dimensional (1D) unsteady, incompressible

Navier-Stokes equation (NSE) is presented. The governing time dependent non-linear partial

equation is reduced to non-linear partial differential equation named as viscous Burgers’ equation

by introducing Orlowski and Sobczyk transformation (OST). An explicit exponential finite

difference scheme (Expo FDS) has been used for solving reduced 1D NSE. The accuracy of the

method has been illustrated by taking two numerical examples. Results are compared with the

analytical solutions and those obtained based on the numerical results of reduced 1D NSE as

Burgers’ equation. The accuracy and numerical feature of convergence of the Expo FDS is
presented by estimating their error norms. Excellent numerical results indicate that the proposed

numerical technique is efficient admissible with efficient accuracy for the numerical solutions of

the NSE.
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1. Introduction

The NSEs are one of the most important, beautiful, potentially lucrative governing equations in

fluid dynamics which describe the motion of fluid substances. These equations arise from applying

Newton’s second law to fluid motion. Solutions and smoothness of full NSEs remain one of the

open millennium dollar challenge in Mathematical Physics. Renowned Physicist and

Mathematician like Stephen Montogomery-Smith,a mathematician at the University of Missouri in

Columbia, who has been tackling the equation since 1995 and Otelbaev- a member of the Kazakh

Academy of Sciences who has been working on the problem for 30 years. In order to understand

the non-linear phenomenon of NSE, one needs to study 1D NSE as a simplification of full NSEs.

Since 1D NSE includes pressure-gradient term, advection and diffusion terms, it incorporates all

main mathematical features of the full NSEs. It is thus an important governing equation in the

research arena of computational fluid dynamics. Applying OST we have reduced 1D NSE to

viscous Burgers’ equation and we have to solve viscous Burgers’ equation numerically. So a
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number of analytical and numerical studies on 1D NSE as well as 1D viscous Burgers’ equation
have been conducted to solve the governing equation analytically and numerically. Rusli et al. [1]

solved 2D NSEs numerically using a finite difference based method which essentially took

advantage of the best features of two well-established numerical formulations. Azad and Andallah

[2] presented analytical solution of one dimensional Navier-Stokes Equations for a time dependent

exponentially decreasing pressure gradient term using Orlowski and Sobczyk transformation and

Cole-Hopf transformation. Azad andAndallah [3] studied on numerical solutions of one-

dimensional Navier-Stokes equation using explicit finite difference scheme. Young and

McDonough [4] presented exact solutions of onedimensional Burgers’ equation which is
analogous to one-dimensional Navier-Stokes equation. Orlowski and Sobczyk [5] discovered a

transformation by which one can transform 1D NSE to 1D Burgers’ equation. The explicit
exponential finite difference method has originally developed by Bhattacharya [6] for the solution

of heat equation. Bhattacharya [7] used explicit exponential finite difference method for the

solution of Burgers’ equation. Bahadir [8] solved the KdV equation by using the exponential finite
difference technique. Implicit exponential finite difference method and fully implicit exponential

finite difference method was applied to Burgers’ equation by Inan and Bahadir [9]. Kutlay and
Bahadir [10] also proposed finite difference solution of the finite difference approximations based

on the standard explicit method to the one-dimensional Burgers’ equation.

 In this paper, we study Expo FDS to get the numerical solutions of reduced 1D NSE. We solve the

governing equation numerically with the help of solutions of reduced 1D NSE and applying back

substitution from OST. We find error norms to determine the accuracy of the numerical scheme.

Finally, we will compare our numerical solutions with other available results to verify the

effectiveness of our numerical techniques.

2. Governing Equation

Using the dimensionless variable quantities as mentioned in Rusli et al. [1], Azad and Andallah

[2],

We consider the1D NSE in non-dimension form Azad & Andallah [2], [3], Yang and McDonough

[4] as

(1)

Where ,

With  denotes velocity, subscripts denote partial differentiation. We consider pressure

gradient as a function of t of the form

As a result equation  can be reads as
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Where

In order to determine analytical solution of equation  first we reduce the equation to Burgers’
equation by using OST discovered by Orlowski and Sobczyk [5]. Then solving Burgers’ equation
analytically we obtain analytical solution of 1D NSE    by using inverse OST.

The OST is defined as

, ,

Now

Problem 1

 We solve reduced 1D NSE  and the initial condition

With the boundary conditions

0

 And the exact solution given by

With



82 Azad and Andallah

Problem 2

The initial condition for the current problem is

  And the boundary conditions

0

And the exact solution given by

With

3. Explicit Exponential Finite Difference Scheme (Expo FDS)

We assume that  denote to any continuous differential function. Multiplying equation  by

the derivative of H lead to the following equation:

And

Where

Using the usual forward difference replacement to  we obtain the finite-difference

representation of equation  as
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Where  are spatial and time step sizes respectively.

As a result Expo FDS takes the form

By using OST we obtain numerical solution by using Expo FDS and OST as

If we take  then Expo FDS yields

4. Numerical Results and Discussions

In order to show how good the numerical solutions for problem 1exhibit the correct physical

characteristic we only give the graphs in figures 1-5 which show the numerical solutions at

different times for Re =10 taking

Figure 1: Comparisons of numerical and analytical
solutions at 0.4.

Figure 2:Comparisons of numerical and analytical
solutions at
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Figure 3: Comparisons of numerical and analytical
solutions at

Figure 4: Comparisons of numerical and analytical
solutions at
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Figure 5:Comparisons of numerical and analytical solutions at

For problem 1, numerical solutions by Expo FD Sand analytical solutions obtained to 1D NSE for

Re = 10 are displaying at different times in figures 1-5. It is clearly seen that the numerical

solutions obtained by Expo FDS and analytical solutions are well-suited. From graphical

representation we observe that it is almost impossible to distinguish due to the closeness of our

numerical solutions to analytical solutions.

Table 1: Comparison of the numerical values of ´ taking 0.0125, 0.001, 10, 3.0
and 1.0.

Numerical
values of

By Expo

FDS

Numerical
values of

By Kutlay
et al. [10]

Exact
values of

Numerical
values of

By Expo

FDS

Numerical
values of

Based on Kutlay
et al. [10]

Analytical
values of

0.25

0.50

0.4

0.6

0.8

1.0

3.0

0.4

0.6

0.8

1.0

3.0

0.30885

0.24072

0.19570

0.16262

0.02727

0.56984

0.44744

0.35951

0.29221

0.04030

0.30891

0.24075

0.19568

0.16257

0.02720

0.56964

0.44721

0.35924

0.29192

0.04021

0.30889

0.24074

0.19568

0.16256

0.02720

0.56963

0.44721

0.35924

0.29192

0.04021

0.27

0.52

0.4

0.6

0.8

1.0

3.0

0.4

0.6

0.8

1.0

3.0

0.31388

0.24712

0.20301

0.17054

0.03640

0.57488

0.45384

0.36682

0.30013

0.04944

0.31395

0.24715

0.20299

0.17049

0.03634

0.57469

0.45361

0.36655

0.29984

0.04935

0.31393

0.24713

0.20297

0.17048

0.03634

0.57467

0.45385

0.36652

0.29985

0.04934
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0.75 0.4

0.6

0.8

1.0

3.0

0.62667

0.48835

0.37486

0.28820

0.02985

0.62542

0.48721

0.37392

0.28748

0.02977

0.62544

0.48721

0.37392

0.28747

0.02977

0.77 0.4

0.6

0.8

1.0

3.0

0.63170

0.49475

0.38216

0.29612

0.03898

0.63046

0.49361

0.38123

0.29540

0.03891

0.63041

0.49360

0.38123

0.29539

0.03890

Table 1 depicts comparisons among the numerical values of  for our present study and

numerical values obtained by by Kutlay et al. [10] and analytical solutions taking different nodes,

At & we see up to three places

agreement. In other nodes we also observe a nice agreement among our numerical solutions with

numerical solutions obtained based on Kutlay et al. [10] and analytical solutions for .

Table 2 : Comparison of the numerical values of u´ with available published works at different times

taking 10, 0.0125, , 2 and  4.

x´ t´ RHC By
Gülsu&Öziş

[11]

RPA By
Gülsu[12]

I-EFDM
By Inan

Bilge [15]

FI-EFDM
By Inan

Bilge [13]

Present
Work By

Expo FDS

Analytical

0.25 0.4
0.6
0.8
1.0

0.317062
0.248472
0.202953
0.169527

0.308776
0.240654
0.195579
0.162513

0.308936
0.240775
0.195709
0.162599

0.308962
0.240795
0.195725
0.162612

0.308902
0.240750
0.195691
0.162585

0.308894
0.240739
0.195676
0.162565

0.5 0.4
0.6
0.8
1.0

0.583408
0.461714
0.373800
0.306184

0.569527
0.447117
0.359161
0.291843

0.569727
0.447307
0.359343
0.292026

0.569762
0.447337
0.359368
0.292046

0.569695
0.447275
0.359313
0.291996

0.569632
0.447206
0.359236
0.291916

0.75 0.4
0.6
0.8
1.0

0.638847
0.506429
0.393565
0.305862

0.625341
0.487089
0.373827
0.029726

0.625659
0.487495
0.374187
0.287700

0.625676
0.487513
0.374203
0.287714

0.625695
0.487480
0.374150
0.287658

0.625438
0.487215
0.373922
0.287447

RHC- Restrictive Hopf-Cole method, RPA- Restrictive Pade Approximation

Table 3 : Comparison of the numerical values of u with available published works at different times

taking 10,  , , 2,  4.

Based on RHC
By Gülsu&Öziş

[11])

Based on
RPA By

Gülsu[12]

Based on I-
EFDM By
Inan Bilge

[13]

Based on
FI-EFDM
By Inan

Bilge [13]

Present
Work By

Expo FDS

Analytical

0.2511
0.2523
0.2537
0.2552

0.4
0.6
0.8
1.0

0.322104
0.254872
0.210262
0.177445

0.313819
0.247054
0.202888
0.170431

0.313979
0.247175
0.203018
0.170517

0.314005
0.247195
0.203034
0.170530

0.313944
0.247149
0.202999
0.170502

0.313937
0.247139
0.202985
0.170483

0.5011
0.5023

0.4
0.6

0.588451
0.468114

0.574570
0.453517

0.574770
0.453707

0.574805
0.453737

0.574737
0.453674

0.574675
0.453606
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0.5037
0.5052

0.8
1.0

0.381109
0.314102

0.366470
0.299761

0.366652
0.299944

0.366677
0.299964

0.366621
0.299914

0.366545
0.299834

0.7511
0.7523
0.7537
0.7552

0.4
0.6
0.8
1.0

0.643890
0.512829
0.400874
0.313780

0.630384
0.493489
0.381136
0.305178

0.630702
0.493895
0.381496
0.295618

0.630719
0.493913
0.381512
0.295632

0.630738
0.493879
0.381459
0.287658

0.630481
0.493615
0.381231
0.295392

Table 2 and 3 demonstrate that the obtained solutions by our present numerical techniques (using

Expo FDS and OST) achieve suitable accuracy with analytical solutions and numerical results

obtained based on other methods like RHC implemented by GülsuandÖziş[11], RPA by

Gülsu[12], I-EFD Mand FI-EFDM implemented by InanandBahadir[13]and OST.

Table 4 : Comparison of the numerical solutions with analytical solutions at different times for
1.0, 0.025, 0.0001, 2 and 4 for problem 2.

Numerical solution of

reduced NSE

Numerical solution of

NSE

Expo FDS Analytical Expo FDS Analytical

0.25 0.01
0.05
0.10
0.15
0.25

0.66009
0.42637
0.26159
0.16159
0.06116

0.66006
0.42629
0.26148
0.16148
0.06109

0.25000
0.25002
0.25009
0.25019
0.25049

0.01
0.05
0.10
0.15
0.25

0.6603
0.42724
0.26325
0.16396
0.06477

0.66024
0.42716

0.263140
0.16385
0.06469

0.5 0.01
0.05
0.10
0.15
0.25

0.91976
0.62825
0.38362
0.23424
0.08735

0.91972
0.62808
0.38342
0.23406
0.08723

0.50000
0.50002
0.50009
0.50019
0.50049

0.01
0.05
0.10
0.15
0.25

0.91994
0.62912
0.38528
0.23661
0.09095

0.91990
0.62895
0.38508
0.23643
0.09083

0.75 0.01
0.05
0.10
0.15
0.25

0.68370
0.46542
0.28175
0.16988
0.06237

0.68364
0.46525
0.28157
0.16974
0.06229

0.75000
0.75002
0.75009
0.75019
0.75049

0.01
0.05
0.10
0.15
0.25

0.68388
0.46629
0.28340
0.17226
0.06597

0.68382
0.46612
0.28323
0.17211
0.06589

Table 5 : Comparison of the numerical solutions with analytical solutions at different times for 3.0,
100, 0.0125, 0.001, 2 and 4 for problem 2.

Numerical solution of

reduced NSE

Numerical solution of

NSE

Expo FDS Analytical Expo FDS Analytical

0.25 0.4
0.6
0.8
1.0
3.0

0.36211
0.28190
0.23034
0.19460
0.07611

0.36226
0.28204
0.23045
0.19469
0.07613

0.25114
0.25229
0.25367
0.25520
0.27291

0.4
0.6
0.8
1.0
3.0

0.36714
0.28830
0.23764
0.20251
0.08524

0.36730
0.28844
0.23776
0.20261
0.08527

0.5 0.4
0.6

0.68367
0.54818

0.68368
0.54832

0.50114
0.50229

0.4
0.6

0.68870
0.55458

0.68872
0.55472
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0.8
1.0
3.0

0.45356
0.38553
0.15213

0.45371
0.38568
0.15218

0.50367
0.50520
0.52291

0.8
1.0
3.0

0.46086
0.39344
0.16127

0.46102
0.39360
0.16132

0.75 0.4
0.6
0.8
1.0
3.0

0.92123
0.78317
0.66267
0.56919
0.22770

0.92050
0.78299
0.66272
0.56932
0.2277

0.75114
0.75229
0.75367
0.75520
0.77291

0.4
0.6
0.8
1.0
3.0

0.92626
0.78957
0.66998
0.57711
0.23683

0.92554
0.78939
0.67003
0.57724
0.23688

Table 4 and 5 display numerical solutions implemented by Expo FDS to problem 2. It is clearly

observed that both numerical predictions are reasonably in good agreement with analytical

solutions. In order to show how the numerical solutions of problem 2 obtained with Expo FDS, we

give the graph in figure 6.
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Figure 6: Solutions at for Re =100taking

5. Error Estimation for Numerical Technique

The accuracy of the scheme is measured in terms of the error norm defined by

Where  and  represent exact and computed solutions respectively.
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Figure 7: Error estimation for Expo FDS taking 1, 3, 10.

From figure 7 it is observed that at 0.5 relative errors lie between 1.07×10-3 and 2.17×10-2

which show a 95.09 % decrease. At 1 relative error are 96.80% less which can be investigated

since at this stage relative errors fall from 2.62×10-2 to 8.36×10-4. At 1.5 relative errors lie

between 8.00×10-4 and 2.68×10-2 and at this stage we investigate a 97.02% decrease in relative

errors. At 2 relative errors fall down from 2.81×10-2 to 9.00×10-4 which demonstrate a

96.79% go down. At 2.5 relative errors lie between 1.03×10-3 and 2.92×10-2 which show a

96.50% decrease.  Finally, at 3.0 relative errors go down by 96.20% from 2.97×10-2 to

1.13×10-3 which are quite acceptable.

After computing relative errors we observe from figure 7 that our relative errors are quite

acceptable and decreasing with respect to the smaller discretization parameters which show the

convergence of the exponential explicit finite difference scheme. So, our explicit exponential finite

difference scheme is consistent as well as stable.

Srivastava et al. [14] defined the rate of convergence of the scheme, computed using

Where  and  are the errors with the grid size h and  respectively, is also shown in table 6

for Expo FDS.

Table 6 : Errors and rate of convergence at .

Expo FDS

No. of Spatial steps(m) u-component error Rate

5 0.149638346899101 -
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10 0.033172483790659 2.173420990078319

20 0.008016092653041 2.049015949043148

40 0.001925644117421 2.057558083714238

80 4.141848130038464e-04 2.216994540074510

From table 6, we observe that the Expo FDS used to evaluate numerical solutions for 1D NSE is

second order accurate in space. From this table it can be seen that errors approach to zero as the

mesh refines, which shows that the scheme is consistent.

6. Conclusions

In this paper, we have presented numerical solutions of 1D NSE with pressure gradient by using

explicit exponential finite difference scheme for the reduced 1D NSE and Inverse OST. All the

numerical results obtained by our method show reasonably good agreement with our analytical

solutions and numerical solutions obtained based on CNS,E-EFDM, I-EFDM, FI-EFDM, RHC,

and RPA. The numerical technique exhibits higher accuracy than RHC, RPA with which those are

compared with the analytical solutions. Expo FDS is convergent and second order accurate in

space. Therefore, it is concluded that the Expo FDS can be used to produce reasonably accurate

numerical solutions of the governing equation at small times. The method is presented as an

alternative method for solving a wide range of engineering problem.
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Nomenclature

Symbols Entities Symbols Entities

Cartesian co-ordinate Reynolds number

Time 1st order time derivative (Unsteady term)

Characteristic length 1st order spatial derivative

Dimensionless horizontal velocity Nonlinear convection term

Velocity along horizontal direction Diffusion term

Pressure Number of spatial steps

Pressure gradient in -direction Number of time steps

Constant density Discrete approximation of  at

the grid point

Dynamic viscosity of the fluid  Constants

Kinematic viscosity of the fluid Spatial and time step size


