
GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 37 (2017) 15-27 

HOMOGENEOUS AND INHOMOGENEOUS MAXWELL’S 
EQUATIONS IN TERMS OF HODGE STAR OPERATOR 

 
Zakir Hossine1,* and Md. Showkat Ali2 

1Department of Mathematics, Bangladesh University of Engineering and Technology, 
Dhaka-1000, Bangladesh 

2Department of Applied Mathematics, University of Dhaka, Dhaka 1000, Bangladesh 
*Corresponding author: zakirhossainmath@gmail.com 

 
Received 04.05.2016               Accepted 25.05.2017 

 
 

ABSTRACT 

The main purpose of this work is to provide application of differential forms in physics. For this 

purpose, we describe differential forms, exterior algebra in details and then we express Maxwell’s 

equations by using differential forms. In the theory of pseudo-Riemannian manifolds there will be 

an important operator, called Hodge Star Operator. Hodge Star Operator arises in the coordinate 

free formulation of Maxwell’s equation in flat space-time. This operator is an important ingredient 

in the formulation of Stoke’stheorem. 
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1. Introduction  

In mathematical field of differential geometry and tensor calculus, differential forms are an 

approach to multivariable calculus that is independent of co-ordinates. Differential forms[5] 

provide a unified approach in defining integrands over curves, surfaces, volumes and higher 

dimensional manifolds. The modern notion of differential forms as well as the idea of the 

differential form being the wedge product of the exterior derivative, forming an exterior algebra, 

was pioneered by ElieCartan[3]. 

 

2. Differential Forms 

A differential ݇-form ߮ is a sum of terms of the forms ݔ)ܣଵ, ,ଶݔ … ,  .ೖݔ݀⋀…⋀మݔ݀⋀భݔ݀(ݔ

Addition of forms and multiplication of forms by functions, is defined in the usual way. 

Multiplication of forms is defined by “concatenation”; i.e., (݀ݔభ⋀݀ݔమ⋀…⋀݀ݔೖ)⋀(݀ݔ௦భ⋀݀ݔ௦మ⋀…⋀݀ݔ௦ೖ) = ௦ೖݔ݀⋀…⋀௦మݔ݀⋀௦భݔ݀⋀ೖݔ݀⋀…⋀మݔ݀⋀భݔ݀  

subject to the conditions                  ݀ݔ⋀݀ݔ = ݔ݀ ݔ݀⋀ݔ݀− ∧ ݔ݀ = 0 

where݅ and ݆	are between 1 and ݊. 
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3. Exterior Differentiation 

Definition: Exterior differentiation݀ is the operation taking a ܥ	݇-form	߮ (forݎ ≥ 1) to a ܥିଵ(݇ + 1)-form ݀߮ defined by the following properties: 

1) (Linearity) For constants ܿଵ and ܿଶ and forms ߮ଵ and ߮ଶ 

            ݀(ܿଵ߮ଵ + ܿଶ߮ଶ) = ܿଵ݀(߮ଵ) + ܿଶ݀(߮ଶ) 
2) For a 0-form i.e., a function ߮ = ,ଵݔ)ܣ ,ଶݔ … , ߮݀ (ݔ =  ܣ݀

 = ,ଵݔ)௫భܣ ,ଶݔ … , ଵݔ݀(ݔ + ⋯+ ,ଵݔ)௫ܣ …,ଶݔ ,  ݔ݀(ݔ

3) For a ݇-form i.e., a function ߮ = ,ଵݔ)ܣ ,ଶݔ … , భݔ݀(ݔ ∧ మݔ݀ ∧ …∧ ߮݀ .ೖݔ݀ = (ܣ݀) ∧ భݔ݀) ∧ మݔ݀ ∧ …∧  (ೖݔ݀
 

4. The Hodge Star Operator 

The binomial coefficient which represents the dimension of the space of -forms Ω(ܯ) is the 

number of ways of selecting (unordered) objects from a collection of ݊ objects. It is evident that  ቀ݊ቁ = ቀ ݊݊ −  ቁ

which means that there are as many -forms as (݊ −  forms. In other words, there should be a-(

way of converting -forms to (݊ −  forms, for instance, 3-forms on 4-dimension can be-(

converted to 1-forms and vice versa. The operator that does this conversion is called the Hodge 

Star Operator [9]. 

Definition 4.1: The Hodge Star Operatoris the unique linear map on a semi-Riemannian manifold 

from -forms to (݊ − :∗ forms defined by-( Ω(ܯ) → Ω(ି)(ܯ) 
such that for all ߦ, ߟ ∈ Ω(ܯ), ∧∗ ߟ = ,ߦ〉  ܸ݀〈ߟ

This is an isomorphism between -forms and (݊ − ∗ ,forms-( ܸ݀ and ߟ is called the dual of ߟ = ଵݔ݀ ∧ …∧ …,ଵݔ݀  is the volume forms. Suppose thatݔ݀ ,   are positively orientedݔ݀

orthonormal basis of 1-forms on some chart (ܷఈ, ߶ఈ) on a manifold ܯ. In particular ܸ݀ = ଵݔ݀ ∧…∧  .ݔ݀

Let 1 ≤ ݅ଵ < ⋯ < ݅ ≤ ݊ be an ordered distinct increasing indices and let ݆ଵ < ⋯ < ݆ି be their 

complement in the set {1,2, … , ݊}, then, ݀ݔభ ∧ …∧ ݔ݀ ∧ భݔ݀ ∧ …∧ షݔ݀ = ଵݔ݀(ܫ)݃݊ݏ ∧ …∧  ݔ݀
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Where (ܫ)݃݊ݏ is the sign of the permutation ݅ଵ <,… ,< ݅ in {1,2, … , ݊}. In other words, the 

wedge products of -forms and (݊ − ∗ forms yields the volume form up to a sign. We claim that-( ൫݀ݔభ ∧ …∧ ൯ݔ݀ = భߝ(ܫ)݊݃ݏ … భݔ݀ߝ ∧ …∧  ష  (4.11)ݔ݀

Where ߝ(ܫ)݊݃ݏభ … ߝ = ±1 

Therefore, we have ∗∗ ൫݀ݔభ ∧ …∧ ൯ݔ݀ = భߝ(ܫ)݊݃ݏ	 … భߝ(ܬ)݊݃ݏߝ … భݔష݀ߝ ∧ …∧  ݔ݀

= ߝෑ(ܬ)݊݃ݏ(ܫ)݊݃ݏ
ୀଵ భݔ݀ ∧ …∧  ݔ݀

⇒∗ଶ= (−1)(ି)ା௦ 
where∏ ୀଵߝ = (−1)௦ and ݏ is the signature of the metric. 

The signature of the metric ݏ = 0 for Riemannian manifold and ݏ = 1 for Lorentzian manifold, 

thus, ∗ଶ= ቊ (−1)(ି)for	Riemannian	manifold(−1)(ି)ାଵfor	Lorentzian	manifold  (4.12) 

We could rewrite (4.11) by introducing the totally anti-symmetric Levi-Civita permutation symbol 

defined by 

߳భ,…, = ቐ+1							݂݅	൫݅ଵ, … , ݅൯is	an	even	permutation	of	(1,2, … , ݊)−1								݂݅	൫݅ଵ, … , ݅൯is	an	odd	permutation	of	(1,2, … , ݊)0													otherwise.  (4.13) 

The Levi-Civita symbol [5] of all the indices up is equal to the permutation with all the indices 

down on Riemannian manifold,  ߳భ,…, = ߳భ,…, 

Since the Riemannian metric [5] which is positive definite is used to raise or lower indices. 

However, this is not the case in Minkowski (Lorentzian manifold) 4-dimensional space-time, 

where index raising lowering is done with Minkowskimetric ߟఓఔ. Thus, in Minkowski 4-

dimensional space-time  ߳బభమయ = −߳బభమయ, (߳ଵଶଷ = 1), 
Since ߟ = −1. The indices ݅, ݅ଵ, ݅ଶ, ݅ଷ are any of the integers 0,1,2,3. The important thing to note 

is that raising or lowering the index 0 introduces a negative sign. Using (4.13) we obtain ∗ ൫݀ݔభ ∧ …∧ ൯ݔ݀ = ଵ(ି)! ߳భ,…,భ,…,ష݀ݔభ ∧ …∧  ష       (4.14)ݔ݀

Example 4.1 Suppose ݀ݔଵ, ,ଶݔ݀ ,ଷ are a basis of 1-forms on some chart (ܷఈݔ݀ ߶ఈ) on 3-

dimensional Riemannian manifold [9]. Then using (4.13) and (4.14) we obtain 
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∗ ଵݔ݀ = 12! ߳భమଵ భݔ݀ ∧ మݔ݀ = 12 (߳ଶଷଵ ଶݔ݀ ∧ ଷݔ݀ + ߳ଷଶଵ ଷݔ݀ ∧ (ଶݔ݀ = ߳ଵଶଷ݀ݔଶ ∧ ଷݔ݀ = ଶݔ݀ ∧  ଷݔ݀

∗ ଶݔ݀ = 12! ߳భమଶ భݔ݀ ∧ మݔ݀ = 12 (߳ଵଷଶ ଵݔ݀ ∧ ଷݔ݀ + ߳ଷଵଶ ଷݔ݀ ∧ (ଵݔ݀ = −߳ଵଶଷ݀ݔଵ ∧ =ଷݔ݀ ଵݔ݀− ∧  ଷݔ݀

∗ ଷݔ݀ = 12! ߳భమଷ భݔ݀ ∧ మݔ݀ = 12 (߳ଵଶଷ ଵݔ݀ ∧ ଶݔ݀ + ߳ଶଵଷ ଶݔ݀ ∧ (ଵݔ݀ = ߳ଵଶଷ݀ݔଵ ∧ ଶݔ݀ = ଵݔ݀ ∧  ଶݔ݀

Conversely, ∗ ଶݔ݀) ∧ (ଷݔ݀ = ଵଵ! ߳ଵଶଷ݀ݔଵ = ∗ଵݔ݀ ଵݔ݀−) ∧ (ଷݔ݀ = ଵଵ! ߳ଶଵଷ݀ݔଶ = ∗ଶݔ݀ ଵݔ݀) ∧ (ଶݔ݀ = ଵଵ! ߳ଷଵଶ݀ݔଷ = ଷݔ݀ ۙۘۖ
ۖۗ

        (4.15) 

Suppose ݀ݔ, ,ଵݔ݀ ,ଶݔ݀ ,ଷ are a basis of 1-forms on some chart (ܷఈݔ݀ ߶ఈ) on 3-dimensional 
Minkowski space-time [6]. Then,  

∗ ଵݔ݀) ∧ (ݔ݀ = ଵଶ! ߳భమଵ భݔ݀ ∧ మݔ݀ = ߳ଵଶଷ݀ݔଶ ∧ ଷݔ݀ = ଶݔ݀ ∧ ∗ଷݔ݀ ଶݔ݀) ∧ (ݔ݀ = ଵଶ! ߳భమଶ భݔ݀ ∧ మݔ݀ = ߳ଵଶଷ݀ݔଷ ∧ ଵݔ݀ = ଷݔ݀ ∧ ∗ଵݔ݀ ଷݔ݀) ∧ (ݔ݀ = ଵଶ! ߳భమଷ భݔ݀ ∧ మݔ݀ = ߳ଵଶଷ݀ݔଵ ∧ ଶݔ݀ = ଵݔ݀ ∧ ଶۙۘۖݔ݀
ۖۗ

  (4.16) 

Conversely, ∗ ଶݔ݀) ∧ (ଷݔ݀ = ଵଶ! ߳భమଶଷ భݔ݀ ∧ మݔ݀ = −߳ଵଶଷ݀ݔଵ ∧ ଷݔ݀ = ଵݔ݀− ∧ ∗ଷݔ݀ ଷݔ݀) ∧ (ଵݔ݀ = ଵଶ! ߳భమଷଵ భݔ݀ ∧ మݔ݀ = ߳ଷଵଶ݀ݔଶ ∧ ݔ݀ = ଶݔ݀− ∧ ∗ݔ݀ ଵݔ݀) ∧ (ଶݔ݀ = ଵଶ! ߳భమଵଶ భݔ݀ ∧ మݔ݀ = ߳ଵଶଷ݀ݔଷ ∧ ݔ݀ = ଷݔ݀− ∧ ݔ݀ ۙۘۖ
ۖۗ

   (4.17) 

Notice something interesting in the above example, in 4-dimensional Minkowski space-time, the 

dual (Hodge Star Operator) of a 2-form is also a 2-form that is, ∗: Ωଶ(ܯ) → Ωଶ(ܯ) ,   with     ∗ଶ= −1  (4.18) 

The dual of a 3-form in 4-dimensional Minkowski space-time is given by ∗ ଵݔ݀) ∧ ଶݔ݀ ∧ (ଷݔ݀ = ߳ଵଶଷ݀ݔ = ߳ଵଶଷ݀ݔ = ∗ݔ݀− ݔ݀) ∧ ଵݔ݀ ∧ (ଷݔ݀ = ߳ଶଵଷ݀ݔଶ = −߳ଵଷଶ݀ݔଶ = ∗ଶݔ݀ ݔ݀) ∧ ଶݔ݀ ∧ (ଷݔ݀ = ߳ଵଶଷ݀ݔଵ = −߳ଶଷଵ݀ݔଵ = ∗ଵݔ݀− ݔ݀) ∧ ଵݔ݀ ∧ (ଶݔ݀ = ߳ଷଵଶ݀ݔଷ = −߳ଵଶଷ݀ݔଷ = ଷۙۘۖݔ݀−
ۖۗ

    (4.19) 

Conversely, ∗ ݔ݀ = ଵଷ! ߳భమయ భݔ݀ ∧ మݔ݀ ∧ యݔ݀ = −߳ଵଶଷ݀ݔଵ ∧ ଶݔ݀ ∧ ଷݔ݀ = ଵݔ݀− ∧ ଶݔ݀ ∧ ∗ଷݔ݀ ଵݔ݀ = ଵଷ! ߳భమయଵ భݔ݀ ∧ మݔ݀ ∧ యݔ݀ = ߳ଵଶଷ݀ݔ ∧ ଶݔ݀ ∧ ଷݔ݀ = ݔ݀− ∧ ଶݔ݀ ∧ ∗ଷݔ݀ ଶݔ݀ = ଵଷ! ߳భమయଶ భݔ݀ ∧ మݔ݀ ∧ యݔ݀ = ߳ଶଵଷ݀ݔ ∧ ଵݔ݀ ∧ ଷݔ݀ = ݔ݀ ∧ ଵݔ݀ ∧ ∗ଷݔ݀ ଷݔ݀ = ଵଷ! ߳భమయଷ భݔ݀ ∧ మݔ݀ ∧ యݔ݀ = ߳ଷଵଶ݀ݔ ∧ ଵݔ݀ ∧ ଶݔ݀ = ݔ݀− ∧ ଵݔ݀ ∧ ଶݔ݀ ۙۘۖ
ۖۗ

 (4.20) 
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The exterior derivative [4] and Hodge Star Operator on ℝଷ yield the known classical operators 

curl, divergence and gradient of vectors as we show now 

Suppose ݂ is a 0-form on ℝଷ. Then  ݂݀ = ଵ߲݂݀ݔଵ + ߲ଶ݂݀ݔଶ + ߲ଷ݂݀ݔଷ     (4.21) 

If the coordinates are Cartesian, then the components are the components of the gradient of ݂. 

Thus,  ݂݀ = ∇݂.  ࢞݀

Let ܣ = ଵݔଵ݀ܣ + ଶݔଶ݀ܣ + ܣ݀  ଷ be a 1-form on ℝଷ. Thenݔଷ݀ܣ = ߲ଶܣଵ݀ݔଶ ∧ ଵݔ݀ + ߲ଷܣଵ݀ݔଷ ∧ ଵݔ݀ + ଵ߲ܣଶ݀ݔଵ ∧ ଶݔ݀ + ߲ଷܣଶ݀ݔଷ ∧ + ଶݔ݀ ଵ߲ܣଷ݀ݔଵ ∧ ଷݔ݀ + ߲ଶܣଷ݀ݔଶ
∧ ଷݔ݀ ܣ݀ = ߲ଶܣଵ݀ݔଶ ∧ ଵݔ݀ + ߲ଷܣଵ݀ݔଷ ∧ ଵݔ݀ + ଵ߲ܣଶ݀ݔଵ ∧ ଶݔ݀ + ߲ଷܣଶ݀ݔଷ ∧ +ଶݔ݀ ଵ߲ܣଷ݀ݔଵ ∧ ଷݔ݀ + ߲ଶܣଷ݀ݔଶ ∧ =ଷݔ݀ (߲ଵܣଶ − ߲ଶܣଵ)݀ݔଵ ∧ ଶݔ݀ + (߲ଵܣଷ − ߲ଷܣଵ)݀ݔଵ ∧ ଷݔ݀ + (߲ଶܣଷ − ߲ଷܣଶ)݀ݔଶ ∧ ∗ଷݔ݀ ܣ݀ = (߲ଶܣଷ − ߲ଷܣଶ)݀ݔଵ − ( ଵ߲ܣଷ − ߲ଷܣଵ)݀ݔଶ + ( ଵ߲ܣଶ − ߲ଶܣଵ)݀ݔଷ ۙۘۖ

ۖۗ
 

If the components are Cartesian, then the components are that of the curl a vector A. That is,  ∗ ܣ݀ = (∇ × .(  ࢞ࢊ

Notice that, ∗ ܣ = ଶݔଵ݀ܣ ∧ ଷݔ݀ + ଷݔଶ݀ܣ ∧ ଵݔ݀ + ଵݔଷ݀ܣ ∧ ଶ݀ݔ݀ ∗ ܣ = ( ଵ߲ܣଵ + ߲ଶܣଶ + ߲ଷܣଷ)݀ݔଵ ∧ ଶݔ݀ ∧ ∗ଷݔ݀ ݀ ∗ ܣ = ( ଵ߲ܣଵ + ߲ଶܣଶ + ߲ଷܣଷ) = ∇.  coordinates.ቑ	Cartesian	in	

4.1 Equations of Electromagnetics  

The equations that relate the electromagnetics quantities will now be presented. Their proper 

introduction, in a textbook manner, should start with a description of the basic experiments 

(Coulomb, Ampere, Faraday, etc.): leading step by step to the final result using differential forms 

all along. This article does not allow enough space to do this properly. Therefore, we shall state the 

equations without other justification than their internal consistency and their agreement with the 

familiar vector calculus expressions.  

The equations of electromagnetics are displayed in Tables I, II. All quantities are represented by 

form of various degrees, and they are designated by the letters conventionally used in the vector 

representation. The vector corresponding to a one-form is obtained by means of the over bar 

operator (e.g., ܧ ሬሬԦࡱ	→ 	=  ത),while a vector corresponding to a two-form results from the starܧ	

operator composed with the over bar  

(e.g., ܬ	 → ∗	=	Ԧܬ ଔതതത). Note that vectors corresponding to one-forms and two-forms are sometimes 

called polar and axial, respectively. This indicates different behavior under reflection which are 

obvious for differential forms submitted to a pullback under this operation. 
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4.2. Stokes’ Theorem in ℝଷ 

Let ܵ	 ⊂ 	ℝଷ be a smooth open surface bounded by a closed curve C.  If ܨ	ሬሬሬԦ(ݔ, ,ݕ  be a continuous (ݖ

vector function which has continuous first partial derivatives in  ܵ	 ⊂ 	ℝଷ , then ∮ ሬሬሬԦ.ܨ Ԧݎ݀ = ∬ ൫∇ × .ሬሬሬԦ൯	ܨ ݊	ෝ݀ݏௌ                                                (4.2.11) 

where݊	ෝ is the outward drawn unit normal vector to ܵ	 ⊂ 	ℝଷ. 

Using the differential form the above Stoke’s theorem can be put in compact form as, ∬ ݀߱ = ∫ ߱డ௦ௌ                                               (4.2.12) 

where ܵ, represents a surface in ℝଷ and ߲ܵrepresents its boundary ( a closed curve in  ℝଷ ). 

4.3 Generalized Stoke’s Theorem 

Let ܸ ⊂  . Let ߱ିଵܯ  be a compact oriented submanifold with boundary ߲ܸ in a manifoldܯ

be a continuously differentiable ( − 1)-form on ܯ. Then ∫݀߱ିଵ = ∫డ߱ିଵ 

 

5. Covariant Form of Maxwell’s Equations 

Maxwell’s equation [9] can be cast into covariant form. As Einstein expressed it “The general laws 

of nature are to be expressed by equations, which hold good for all systems of coordinates, that is, 

are covariant with respect to any substitution whatever. 

Maxwell’s theory of electromagnetism is, alongside with Einstein’s theory of gravitation, one of 

the most beautiful of classical field theories. Having chosen units in which ߤ =	∈= ܿ = 1, 

Maxwell’s equations then take the form : ∇. ܧ = ∇ (5.11)     ߩ × ܤ − డாడ௧ = .∇ (5.12)    ܬ ܤ = 0    (5.13) ∇ × ܧ + డడ௧ = 0   (5.14) 

where, ܧ and ܤ are the electric and magnetic fields, ߩ and ܬ are the charge and current densities. 

Taking the divergence of equation (5.11) and substituting equation (5.12) into the resulting 

equation, we obtain the continuity equation ∇. ܬ + డఘడ௧ = 0   (5.15) 

Note that, we have used the fact that for any vector H and scalar S ∇. (∇ × (ܪ = 0 ∇ × (∇ܵ) = 0 
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Also, since equation (5.13) always holds, this means that ܤ must be a curl of a vector function, 

namely the vector potential ܤ ,ܣ = ∇ ×  (5.16)        ܣ

Substituting equation (5.16) into equation (5.14), we obtain ∇ × ቀܧ + డడ௧ቁ = 0                             (5.17) 

Which means that the quantity with vanishing curl in equation (5.17) can be written as the gradient 

of a scalar function, namely the scalar potential Φ, ܧ = −∇Φ − డడ௧                             (5.18) 

The minus sign attached to the gradient is for technical convenience. Thus, Maxwell’s equation [6] 

can be written in covariant form by introducing the four vector potential ܣఈ and the electric current 

four-vector potential ܬఈ defined by ܣఈ = (Φ, ,ଵܣ ,ଶܣ (ଷܣ = ,ܣ) ,ଵܣ ,ଶܣ ఈܬ (ଷܣ = ,ߩ) ,ଵܬ ,ଶܬ (ଷܬ = ,ܬ) ,ଵܬ ,ଶܬ  (ଷܬ
Equation (5.16) and (5.18) can then be written out explicitly in component form, for example ܤଶ = ଷݔଵ߲ܣ߲ − ଵݔଷ߲ܣ߲ = ଷݔଵ߲ܣ߲ − ଵݔଷ߲ܣ߲ = ߲ଷܣଵ − ߲ଵܣଷ 

ଵܧ = ଵݔ߲ܣ߲− − ݔଵ߲ܣ߲ = ݔଵ߲ܣ߲ − ଵݔ߲ܣ߲ = ߲ܣଵ − ߲ଵܣ 

It is evident that the ܧ and ܤ fields are element of the second-rank, anti-symmetric, contravariant 

field-strength tensor ܨఓఔ defined by ܨఈఉ = ߲ఈܣఉ − ߲ఉܣఈ  (5.19) 

Explicitly, the field-strength is 

ఈఉܨ = ൮ ଷܧ−ଶܧ−ଵܧ−0
ଶܤଷܤ−ଵ0ܧ

ଵܤ−ଷ0ܤଶܧ
ଵ0ܤଶܤ−ଷܧ ൲   (5.20) 

whereߙ corresponds to the rows and ߚ corresponds to the columns. The components of the fields 

in equations (5.16) and (5.18) can be easily identified as ܧ = ܤ ܨ = 12 ߳ܨ,								݅, ݆, ݇ = 1,2,3 

where the Levi-Civita symbol 

߳ = ൝+1							݂݅	(݅, ݆, ݇) = (1,2,3), (3,1,2), (2,3,1),−1								݂݅	(݅, ݆, ݇) = (1,3,2), (3,2,1), (2,1,3),0													otherwise.  
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It is very easy to show that the covariant field tensor defined by ܨఈఉ = ߲ఈܣఉ − ఉ߲ܣఈ                            (5.21) 

has components 

ఈఉܨ = ఊఒܨఉఒߟఈఊߟ = ൮ ଷܧଶܧଵܧ0
ଶܤଷܤ−ଵ0ܧ−

ଵܤ−ଷ0ܤଶܧ−
ଵ0ܤଶܤ−ଷܧ− ൲                            (5.22) 

The Homogeneous Maxwell’s equations (5.13) and (5.14) correspond to the Jacobi identities ߲ఊܨఈఉ + ߲ఈܨఉఊ + ߲ఉܨఊఈ = 0 (5.23) 

whereߙ, ,ߚ ߛ are any of the integers 0,1,2,3. For instance, if ߛ = 1, ߙ = 2, ߚ = 3 we have from 

equations (5.20) and (5.23) ߲ଵܨଷଶ + ߲ଶܨଵଷ + ߲ଷܨଶଵ = −(߲ଵܤଵ + ߲ଶܤଶ + ߲ଷܤଷ) = −( ଵ߲ܤଵ + ߲ଶܤଶ + ߲ଷܤଷ) = 0 

which indeed agrees with equation (5.13). 

The Inhomogeneous Maxwell’s equations [9] (5.11) and (5.12) can be written as  

ఉ߲ܨఈఉ =  ఈ                            (5.24)ܬ

For instance,if  ߙ = 0, we have from (5.20) and (5.24) ߲ܨ + ଵ߲ܨଵ + ߲ଶܨଶ + ߲ଷܨଷ = ଵ߲ܧଵ + ߲ଶܧଶ + ߲ଷܧଷ =  (5.25)                     ߩ

which indeed agrees with equation (5.12). 

Notice that, the four Maxwell’s equations have been reduced to a set of two equations (5.23) and 

(5.24). The continuity equation (5.15) was obtained from the inhomogeneous equations (5.11) and 

(5.12), similarly, the continuity equation in covariant form can be obtained from (5.24) by 

operating ఓ߲ on both sides of equation (5.24). Thus, ߲ఈܬఈ = ߲ఈ ఉ߲ܨఈఉ = 0                            (5.26) 

Since ߲ఈ߲ఈ is symmetric in ߙ and ߚ while ܨఈఉ is antisymmetric in ߙand ߚ. The expression (5.26) 

is the conservation of electric charge whose underlying symmetry is gauge invariance. 

 

6. The Homogeneous Maxwell’s Equation 

Having developed the mathematical language of differential forms [1], we hereby apply it to 

Maxwell’s equations. First, consider the Homogeneous Maxwell’s equations [9] (5.13) and (5.14), 

notice that in the language of differential forms, the divergence of a vector has been shown to be 

the exterior derivative of a 2-form on ℝଷ. The curl of a vector has also been shown to be the 

exterior derivative of 1-form on ℝଷ. Thus, instead of treating the magnetic field as a vector ܤ = ,ଵܤ) ,ଶܤ ܤ ଷ) we will treat it as a 2-formܤ = ଶݔଵ݀ܤ ∧ ଷݔ݀ + ଷݔଶ݀ܤ ∧ ଵݔ݀ + ଵݔଷ݀ܤ ∧  ଶ                         (6.11)ݔ݀
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Similarly, instead of treating the electric field as a vector ܧ = ,ଵܧ) ,ଶܧ -ଷ), we will treat it as a 1ܧ

form,  ܧ = ଵݔଵ݀ܧ + ଶݔଶ݀ܧ +  ଷ                            (6.12)ݔଷ݀ܧ

Next, we shall consider the electric and magnetic fields as the inhabitants of space-time and 

assume that the manifold ܯ to be a semi-Riemannian manifold [2] equipped with the Minkowski 

metric, in other words, as a 4-dimensional Lorenzian manifold or space-time. Furthermore, we 

shall assume that the space-time ܯ can be split into a 3-dimensional manifold ܵ, space with a 

Riemannian metric and another space ℝ for time. Then  ܯ = ℝ× ܵ 

Let ݔ(݅ = 1,2,3) denote local coordinates on an open subset ܷ ⊆ ܵ, and let ݔ denote the 

coordinate on ℝ, then the local coordinates on ℝ × ܷ ⊆ ఈݔ will be those given by ܯ ,ݔ)= ,ଵݔ ,ଶݔ (ଷݔ = ,ݐ)  with the metric defined by  (࢞

ఈఉߟ = ቌ−1000
0100

0010
0001ቍ                           (6.13) 

which is called flat metric tensor or flat Minkowski metric tensor [6], ߙ, ߚ = 0,1,2,3. We can now 

combine the electric and magnetic fields into a unified electromagnetic field ܨ, which is a 2-form 

on ℝ × ܷ ⊆ ܨ defined by ܯ = ܤ + ܧ ∧   (6.14)ݔ݀

In component form, we have ܨ = ଵଶ ఈݔఈఉ݀ܨ ∧  ఉ                            (6.15)ݔ݀

Where ܨఈఉ is given by (5.22). 

Explicitly, we have  ܨ = ଵݔଵ݀ܧ ∧ ݔ݀ + ଶݔଶ݀ܧ ∧ ݔ݀ + ଷݔଷ݀ܧ ∧ ݔ݀ ଶݔଵ݀ܤ + ∧ ଷݔ݀ + ଷݔଶ݀ܤ ∧ ଵݔ݀ + ଵݔଷ݀ܤ ∧  ଶ                            (6.16)ݔ݀

Taking the exterior derivative of (6.14) we obtain ݀ܨ = ܤ)݀ + ܧ ∧ (ݔ݀ = ܤ݀ + ܧ݀ ∧                              (6.17)ݔ݀

In general, for any differential form ߟ on space-time, we have ߟ =  ூ                            (6.18)ݔூ݀ߟ

whereܫ ranges over ݅ଵ, ݅ଶ, … , ݅ and ߟூ is a function of spacetime. Taking the exterior derivative [3] 

of (6.18), we obtain ݀ߟ = ଵ߲ߟூ݀ݔଵ ∧ ூݔ݀ + ߲ଶߟூ݀ݔଶ ∧ ூݔ݀ + ߲ଷߟூ݀ݔଷ ∧ ூݔ݀ + ߲ߟூ݀ݔ ∧  ூݔ݀
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						= ߲ߟூ݀ݔ ∧ ூݔ݀ + ߲ߟூ݀ݔ ∧ ݅                           ,ூݔ݀ = 1,2,3 

     = ݀௦ߟ + ݔ݀ ∧ ߲ߟ 

where݀௦ is the exterior forms on a space-time, we shall split the exterior derivative into space-like 

part and time-like part. Using the identity above, we obtain the following from (6.17) ݀ܨ = ݀௦ܤ + ݔ݀ ∧ ߲ܤ + (݀௦ܧ + ݔ݀ ∧ ߲ܧ) ∧  ݔ݀

     = ݀௦ܤ + ݔ݀ ∧ ߲ܤ + ݀௦ܧ ∧ ݔ݀ + ݔ݀ ∧ ߲ܧ ∧  ݔ݀

     = ݀௦ܤ + (݀௦ܧ + ߲ܤ) ∧  ݔ݀

Now ݀ܨ = 0 is the same as ݀௦ܤ = 0                            (6.19) ݀௦ܧ + ߲ܤ = 0                            (6.20) 

The equation (6.19) and (6.20) are exactly the same as (5.13) and (5.14). 

In order to be fully convinced that this is true [9], let’s do the calculation explicitly in component 

form. Taking the exterior derivative of ܨ in (6.16), we obtain  ݀ܨ = ( ଵ߲ܤଵ + ߲ଶܤଶ + ߲ଷܤଷ)݀ݔଵ ∧ ଶݔ݀ ∧ ଷݔ݀ + (߲ଶܧଷ − ߲ଷܧଶ + ߲ܤଵ)݀ݔ ∧ ଶݔ݀ ∧ ଵܧଷ +(߲ଷݔ݀ − ߲ଵܧଷ + ߲ܤଶ)݀ݔ ∧ ଷݔ݀ ∧ ଵݔ݀ + (߲ଵܧଶ − ߲ଶܧଵ + ߲ܤଷ)݀ݔ ∧ ଵݔ݀ ∧  ଶݔ݀

Note that ݀ܨ = 0 is the same as 

ଵ߲ܤଵ + ߲ଶܤଶ + ߲ଷܤଷ = 0 ߲ଶܧଷ − ߲ଷܧଶ + ߲ܤଵ = 0 ߲ଷܧଵ − ଵ߲ܧଷ + ߲ܤଶ = 0 

ଵ߲ܧଶ − ߲ଶܧଵ + ߲ܤଷ = 0 

The above four equations are exactly the same as (5.13) and (5.14). Hence, the Homogenous 

Maxwell’s equations correspond to the closed form ݀ܨ = 0. 

 

7. The Inhomogeneous Maxwell’s Equations 

In the old fashioned formulation of Maxwell’s equations (see (5.12)-(5.14)), the Homogenous and 

the Inhomogeneous [9] versions are somehow related by reversing the role of ܧand ܤ. In the 

language of differential forms, this reversal relationship will lead to treating ܧ as a 2-form and ܤ 

as a1-form. Interestingly, the Hodge Star Operator does this work efficiently since one can easily 

convert a 1-form in 3-dimensional space to a 2-form and vice versa. Starting form (6.16) and using 

the results established in (4.16) and (4.17), we obtain ∗ ܨ = ଵݔଵ݀ܤ− ∧ ݔ݀ − ଶݔଶ݀ܤ ∧ ݔ݀ − ଷݔଷ݀ܤ ∧ ݔ݀ + 
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ଶݔଵ݀ܧ ∧ ଷݔ݀ + ଷݔଶ݀ܧ ∧ ଵݔ݀ + ଵݔଷ݀ܧ ∧  ଶ                            (7.11)ݔ݀

or∗ ܨ = ଵଶ (∗ ఈݔఈఉ݀(ܨ ∧  ఉ                            (7.12)ݔ݀

where 

(∗ ఈఉ(ܨ = ൮ ଷܤ−ଶܤ−ଵܤ−0
ଶܧଷܧ−ଵ0ܤ

ଵܧ−ଷ0ܧଶܤ
ଵ0ܧଶܧ−ଷܤ ൲                            (7.13) 

A close look at (6.16) and (7.11) shows that the effect of the dual operator on ܨ amounts to the 

exchange  ܧ ⟼ ܤ  andܤ− ↦ ݅,ܧ = 1,2,3     in (5.22). 

This is the main difference between the Homogeneous and the Inhomogeneous Maxwell’s 

equations. Another difference is that the Inhomogeneous version contains ߩ and ܬ. In the language 

of differential forms, we shall use the fact that the metric allows us to convert a vector field into a 

1-form. Combing the charge density and current density ܬ into a unified vector field on Minkowski 

space-time, we obtain ܬ = ఈ߲ఈܬ = ߲ߩ + ଵܬ ଵ߲ + ଶ߲ଶܬ +  ଷ߲ଷ                            (7.14)ܬ

withMinkowski metric (6.13), we obtain the 1-form ܬ = ఉݔఉ݀ܬ = ଵݔଵ݀ܬ + ଶݔଶ݀ܬ + ଷݔଷ݀ܬ −                              (7.15)ݔ݀ߩ

where ܬఉ =  ఈ                            (7.16)ܬఈఉߟ

Let ∗௦ denote the Hodge Star Operator on space, using (4.15) we can easily see that (7.11) is the 

same as ∗ ܨ =∗௦ ܧ −∗௦ ܤ ∧        (7.17)ݔ݀

which amounts to the exchange ܧ ↦ − ∗௦ ܤandܤ ⟼∗௦  ܧ

In (6.14), taking the exterior derivative of (7.17), we obtain ݀ ∗ ܨ = ݀௦ ∗௦ ܧ + ߲ ∗௦ ܧ ∧ ݔ݀ − ݀௦ ∗௦ ܤ ∧                              (7.18)ݔ݀

Applying Hodge Star Operator [5], we obtain ∗ ݀ ∗ ܨ = − ∗௦ ݀௦ ∗௦ ܧ ∧ ݔ݀ − ߲ܧ +∗௦ ݀௦ ∗௦  (7.19)                            ܤ

If we set ∗ ݀ ∗ ܨ = and equate components, we obtain ∗௦ ܬ ݀௦ ∗௦ ܧ = ܧ߲− (7.20)                       ߩ +∗௦ ݀௦ ∗௦ ܤ = ݅ݔ݀ܬ = 1,2,3                            (7.21) 

which is exactly the Inhomogeneous Maxwell’s equation as can be shown explicitly by taking the 

exterior derivative of (7.11). 
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݀ ∗ ܨ = ( ଵ߲ܧଵ + ߲ଶܧଶ + ߲ଷܧଷ)݀ݔଵ ∧ ଶݔ݀ ∧ ଷݔ݀ + (߲ଷܤଶ − ߲ଶܤଷ + ߲ܧଵ)݀ݔ ∧ ଶݔ݀ ∧ ଵܤଷ +(߲ଷݔ݀ − ଵ߲ܤଷ − ߲ܧଶ)݀ݔ ∧ ଵݔ݀ ∧ ଷݔ݀ + (߲ଶܤଵ − ଵ߲ܤଶ + ߲ܧଷ)݀ݔ ∧ ଵݔ݀ ∧  ଶ     (7.22)ݔ݀

Now ∗ ݀ ∗ ܨ = ଵܧcorresponds to ߲ଵ ܬ + ߲ଶܧଶ + ߲ଷܧଷ = ଷܤଶ߲ ߩ − ߲ଷܤଶ − ߲ܧଵ = ଵܤଵ ߲ଷܬ − ߲ଵܤଷ − ߲ܧଶ =  ଶܬ

ଵ߲ܤଶ − ߲ଶܤଵ − ߲ܧଷ =  ଷܬ

Notice that, the above four equations are exactly the same as (5.11) and (5.12) and also ∗ ݀ ∗ ܨ =  ܬ
is similar to (5.24). Thus, the Maxwell’s equations correspond to ݀ܨ = 0 ,   ∗ ݀ ∗ ܨ =  .ܬ
 

8. Conclusion 

We know there are four classical Maxwell’s equations. In our treatment we have been able to 

express them by two equations. We may expect that these will be useful in further research of 

Maxwell’s equations. 
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