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ABSTRACT 

This study deals with transmission dynamics of novel influenza A (H1N1) virus to understand the 

evolution of its epidemic in Bangladesh. For this purpose an SEIR model has been employed to study the 

dynamics of A (H1N1) virus relating to data of Bangladesh. To find threshold conditions, the equilibria 

and stability of the equilibria of the model have been determined and also analyzed. Basic Reproductive 

Number (R0) is determined relating to data of Bangladesh by which Herd Immunity Threshold has been 

estimated. Our numerical result suggests that vaccinating 12.69% population of Bangladesh can control 

spread of the pandemic novel A (H1N1) virus when outbreak occurs.  

 

Keywords: Basic Reproduction Number, SEIR Model, Herd Immunity Threshold, Stability, Next 

Generation Matrix. 

 

1. Introduction 

Influenza A (H1N1) virus is highly contagious and pathogenic fatal disease. A novel virus named 

influenza A (H1N1) virus was identified in Mexico and USA on April 2009 and the world health 

organization (WHO) declared it as a pandemic on June 11, 2009 [17 and 19]. In Bangladesh first 

confirmed case of pandemic influenza A (H1N1) virus was recorded on June 18, 2009 in a traveler 

who had returned from USA and 23 more cases were identified within four weeks [12]. Following 

the WHO declaration of pandemic level 6 with this novel strain, the Ministry of Health and Family 

Welfare (MOHFW) of Bangladesh launched a case-based surveillance for influenza A (H1N1) 

virus infection. In addition to the existing sentinel surveillance system for seasonal influenza, 

MOHFW imposed screening on travelers at all the ports of entry from 28 April 2009 [12]. For a 

new infectious disease, working out epidemiological parameters can help in decision making. A 

key parameter for a novel infectious disease is the Basic Reproduction Number (R0), defined as the 

average number of secondary cases generated by single primary case during its entire period of 

infectiousness in a completely susceptible population [3]. R0 directly determines the growth rate of 

an epidemic and the final number of infected people and it is a predominant factor to be considered 

in optimal policy making. Stability of epidemiological model can be analyzed with the help of the 
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value R0 [14]. The estimation of R0 is problematic and has gained much attention. There are few 

methods available to estimate R0. For determination of R0, one of the best approaches is the Next 

Generation Matrix method [4 and 8]. This method is provided from the well-known SEIR 

compartmental model.  

People infected with A (H1N1) passes through an incubation period where they are not infectious 

and do not show any symptoms. The period of incubation for A (H1N1) virus is 1 to 4 days and the 

infectious period case is defined as 1 day prior to the onset of symptoms to 7 days after onset [7].The 

symptoms of influenza A (H1N1) virus are cough, nausea, diarrhoea, fever, chills, headache, sore 

throat, muscle aches, runny nose, shortness of breath, joint pain etc. [5]. The novel A (H1N1) virus 

poses public health and developmental challenges similar to challenges posed by communicable and 

chronic diseases. This has made the decision makers to face considerable uncertainties. Although 

vaccines are available for many infectious diseases these diseases still cause great suffering and 

mortality in Bangladesh. In this backdrop, further research is indispensable to ascertain the control of 

the wide spread of the pandemic influenza A (H1N1) virus.  

The first mathematical model that can be used to describe an influenza epidemic was developed 

early in the 20th century by Kermack and McKendrick [15] and is known as Susceptible-

Infectious-Recovered (SIR) model. Later Anderson and May [1] added a fourth compartment 

(latency stage) to SIR model.  This extension is called the SEIR model [1]. Several authors 

considered this well-known SEIR or its extensions model to describe the flow (transition) of 

people through different compartments which represent the stages of disease, in the entire 

population over time [2]. 

In this study, this well-known SEIR model is considered to find the flow (transition) of people 

through different compartments regarding influenza A (H1N1) virus in perspective of Bangladesh. 

By using next generation matrix method, the Basic Reproduction Number (R0) for pandemic 

influenza A (H1N1) virus is determined regarding the data of pandemic influenza A (H1N1) virus 

of Bangladesh [12, 13 and 11]. By the help of this R0, the decision making parameter Herd 

Immunity Threshold (HT) is determined in perspective of Bangladesh.  Moreover the disease free 

and endemic equilibrium of SEIR model is studied extensively according to the data considered. 

The system of Ordinary Differential Equations (ODEs) of SEIR model is solved numerically 

regarding data of Bangladesh and others simulated data. According to the numerical solutions, the 

trends of various aspects of the susceptible, exposed, infectious and recovered of the population 

regarding Bangladesh are discussed.  

 

2.1 Mathematical Model 

In analyzing the spread and control of infectious diseases, mathematical models have become 

important tools. For studying the transmission dynamics of the pandemic novel influenza A 

(H1N1) virus, the model considered here is the Susceptible (S (t))-Exposed (E (t))-Infectious (I 

(t))-Recovered (R (t)) compartment model or in brief SEIR model [1], Figure (1). 
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2.2   Equilibrium State  

We know that Disease Free Equilibrium (DFE) or Endemic Equilibrium (EE) occurs in population 

according to the value of R0. Independently, one can show this in the form of biological 

meaningful initial conditions: 

If N}RIES0,R0,I0,E0,S,N][0, R)I,  E,{(S, R(0))I(0),   E(0),(S(0), 4   

then 1R0   implies  




R(t))I(t),E(t),(S(t),Lim
t

DFE.   

And 0I(0)1,R0   implies  




R(t))I(t),E(t),(S(t),Lim
t

EE.    

Now set S, E, I, R as a proportion of the population (N), i.e.   

N

S(t)
s(t)  ,

N

E(t)
e(t)  ,

N

I(t)
i(t)  ,

N

R(t)
r(t)  and i(t)e(t)s(t)1r(t)  , then  above four ODEs 

(Equation. (1)) is reduced to three ODEs as follows:           

           





















μ)i(γαe
dt

di

α)e(μβsi
dt

de

βi)s(μμ
dt

ds

                                                                                                    (3) 

It is known that for the steady state Equilibrium 

 ie,s,K0,
dt

dK
 .  

Then the above ODEs become as follows: 

0βi)s(μμ                                                                                                               (4) 

0α)e(μβsi                                                                                                               (5) 

0μ)i(γαe                                                                                                                (6)  

If i =0, then from  (4) we get s = 1 and from equation (5), we get e = 0. Hence the Disease 

Free Equilibrium is as follows: 

  (1,0,0)i)e,(s,  .                                                                                                                                      

Now we have to find the Endemic equilibrium. From equation (6) we have  
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           i
α

μγ
e


 .  

Substituting the value of e in equation (5) we get,  

βα

μ)α)(γ(μ
s


 .  

Putting the value of s in equation (4) we get,  

α
μ





μ)α)(γ(μ

μα
i . 

Therefore Endemic equilibrium is as follows: 


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
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μ
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,

α

μ

μ)α)(γ(μ
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α

μ)(γ
,

βα

μ)α)(γ(μ
)i,e,(s ***               (7) 

 

2.3   Parameter Estimation for Influenza A (H1N1) Virus 

It is stated earlier that the Basic Reproduction Number 0R , for our compartmental SEIR model, is 

estimated by Next Generation Matrix method. In the Next Generation Matrix (Operator) method, 

0R  is defined as the spectral radius of Next Generation Matrix (Operator) FV-1 where F be the 

matrix formed by new infection individuals in the compartments and V be the matrix formed by 

the net infected individuals in the compartments. In our SEIR model, the numbers of infected 

compartments are two namely Exposed compartment and Infected compartment. So from the SEIR 

model (as we have two types of compartments – infected and non-infected), we get 

)x(F1 =βIS, 0)x(F2  ,  α)E(μ)x(V1  , αEα)I(μ)x(V2   

Hence 
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Then 















00
γμ

β

α)γ)(μ(μ

βα
V 1F  

Therefore the spectral radius of FV-1 is
α)γ)(μ(μ

βα


. Hence the Basic Reproduction Number is as 

follows:  

α)γ)(μ(μ

βα
R 0 

 .                                                                                                   (8)                                       

It is known that the expected duration of infectious is the inverse of the removal rate [9 and 20]. 

According to the definition [see 9 and 10], the removal rate (γ), Exposed rate (α) and transmission 

rate (β) are given as follows: 
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periodinfectiousmean

1
γ                                                                                          (9) 

periodlatancymean

1
α                                                                                           (10) 

β
contacttotal

contacteffective
                                                                                                (11) 

2.4   Stability Analysis 

The local stability of the DFE and EE steady states are calculated by simplifying the system of 

ODEs (3). From the system of ODEs (3), we have the Jacobian matrix as follow:  























γ)(μα0

βsα)(μβi

βs0βi)(μ

J                                                                         (12) 

So the Jacobian at the Disease Free Equilibrium i.e at (1,0,0)i)e,(s,   is  























γ)(μα0

βα)(μ0

β0μ

JDFE  

Now the characteristic equation of DFEJ  is  

λI)(J DEE  32
2

1
3 bλbλbλ   

where α)γ(3μb1   

           α))]γμ(2μβαα)γ)(μ[(μb2    

           βα]α)γ)(μμ[(μb3   

If 0bbband0b0,b 32131   are true, then by Routh-Hurwitz criterion, all the roots of the 

characteristic equation have negative real part which means stable equilibrium [16]. Using 0R

(from equation (8)) in 2b  and 3b , we get α)γμ(2μ1)
R

1
βα(b

0
2   and 1)

R

1
μβα(b

0
3  . 

Therefore  

}βααβγ1)(2μ)(
R

1
(bbb 2

0
321   α)γα)(3μγμ(2μ  . 

Here 0b1  is always true. Now 0bbband0b 3213   will be true only iff 1R0  . So Disease 

Free Equilibrium is stable iff 1R0   otherwise it is unstable. 

By the help of equation (8) we rewrite the Endemic Equilibrium equation (7) as follow: 
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

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α)(μR

1)μ(R
,

R

1
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0

0

0

***                                                               (13)                                       

By using the value of )i,e,(s *** in equation (12), we have the Jacobian at endemic equilibrium 

point as follow: 
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

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Therefore the characteristic equation of EEJ  is  

λI)(J EE  32
2

1
3 pλpλpλ  , 

where  )μR(2γαp 01   

             )γαμ(2μRp 02   

             αγ]γ)μ(α1)[μμ(Rp 2
03   

Again if the coefficients of characteristic equation 0p0,p 31   and 0ppp 321   are true, then 

by Routh-Hurwitz criterion, all the roots of the characteristic equation have negative real parts 

which means a stable equilibrium [8]. It is notified that if 10 R then both 1p and 3p  become 

positive quantities. Now for the third condition 0ppp 321  , we have   

αγ]γ)μ(αμ}γ)2R(3μγ)αγ)(α{(3μμ[Rppp 22
0

2
0321  , 

which is  greater than zero for all parameters value along with 1R0  . Therefore by Routh-

Hurwitz criterion when 1R0   the endemic steady state is stable. 

2.5 Herd Immunity Threshold  

To control transmission of the disease, the population has to be immunized. The percentage of the 

population that needs to be immunized for controlling the transmission is the Herd Immunity 

Threshold (HIT) [6]. We have proposed the HIT (HT) as the sole immunization strategy. It protects 

directly the immunized individuals from infection and also provides protection of being 

susceptible individuals. To evaluate HIT, we use the equation, given in [3], as follows: 

0

1
1

R
HT                                                                                                               (14) 

2.6 Model Analysis  

In order to evaluate the Herd Immunity Threshold as well as numerical analysis of the SEIR 

models, we have considered the information about influenza A (H1N1) virus as defined in [7] and 

real numerical data in perspective of Bangladesh [12, 13 and 11]. The latency period of A (H1N1) 
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virus is 1 to 4 days and infectious period is one day prior to on set of symptoms to 7 days after 

symptom onset [7]. So the mean latency period of A (H1N1) virus is 2 days and mean infectious 

period is 3.5 days. Therefore by using equations (9) and (10), we have 0.2857 , 0.5α  . 

According to [12], from 18 June 2009 to 20 July 2009, 84 individuals had been tested and among 

them 24 individuals were found influenza A (H1N1) virus positive. Again for month July 2015, 

258 individuals have been tested and among them 100 individuals were found influenza A (H1N1) 

virus positive [13]. Therefore, we have 

84

24
β1  , 

258

100
β2   and 0.3374

2

ββ
β 21 


 . 

We have the death rate of population of Bangladesh is 00564.0 and the total population of 

Bangladesh is N= 166280712 [11]. Using the value of β, α, γ and μ in (8) we get 1.14530 R . So 

Disease Free Equilibrium i)e,(s, (1,0,0) is unstable as 1 )1453.1(R0  . By substituting the 

above value in equation (13), we have Endemic Equilibrium     

  










 






β

1)0μ(R
,

α)(μ0R

1)0μ(R
,

0R

1
)*i,*e,*(s 0.002428)0.001415, (0.8731,   

which is stable as 1 )1453.1(R0  .  Moreover by Equation (14), the Herd Immunity Threshold is 

calculated as follows: 

12690
R

1
1

0

.HT  .               

Now the sensitivity will be analyzed for both Disease Free Equilibrium and Endemic Equilibrium 

points of the SIER model in perspective of Bangladesh. For these experiments the death rate as 

well as the expose rate is considered to be fixed. On the other hand the transmission rate as well as 

the recovery rate is changed as shown in the Tables I. At first, the value of recovery rate (0.2857) 

is kept unchanged whereas the corresponding values of transmission rate are changed. Secondly 

keeping the value of transmission rate (0.3374) unchanged, we have varied the values of recovery 

rate. Finally we have calculated the 0R values for each changed values of (γ). The experimental 

results are displayed in the Table I. It is observed in the Table I that when the transmission rate () 

decreases (0.33740.25) with unchanged values of other parameters, then the Disease Free 

Equilibrium approaches unstable to stable and Endemic Equilibrium becomes  stable from unstable 

as the value of 0R decrease from 1.1453 to less than one. Again keeping unchanged the values of 

all parameters except the value of recovery rate, we have observed that for the increasing of the 

value of recovery rate (0.28570.5), the Disease Free Equilibrium again approaches from 

unstable to stable as well as Endemic Equilibrium becomes  unstable from stable as the value of 

0R  decreases to less than one. That is if transmission rate will decrease or recovery rate will 

increase then the Disease Free Equilibrium becomes stable as well as Endemic Equilibrium 

approaches to unstable in perspective of Bangladesh. This implies that the disease will not spread 

out. What happen if we will consider the reverse strategy? From the experimental results, given in 
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the Table I, we observe that   when the transmission rate (β ) increased or recovery rate ( γ ) 

decreased then R0 becomes greater than one and consequently the Disease Free Equilibrium is 

found unstable as well as Endemic Equilibrium becomes  stable from unstable as well. Which 

implies disease will spread out. 

 
Table I. Sensitivity analysis of the Disease Free Equilibrium state and Endemic Equilibrium state. 
 
μ  β  α γ  

0R  Nature of DFE state Nature of EE state 

0.00564 0.35 0.5 0.2857 1.1879 Unstable Stable 

0.00564 0.3374 0.5 0.2857 1.1453 Unstable Stable 

0.00564 0.30 0.5 0.2857 1.0824 Unstable Stable 

0.00564 0.294626 0.5 0.2857 1.00 Critical value Critical value 

0.00564 0.27 0.5 0.2857 0.9164 Stable Unstable 

0.00564 0.25 0.5 0.2857 0.8485 Stable Unstable 

0.00564 0.3374 0.5 0.3 1.09156 Unstable Stable 

0.00564 0.3374 0.5 0.32799 1.00 Critical value Critical value 

0.00564 0.3374 0.5 0.35 0.9238 Stable Unstable 

0.00564 0.3374 0.5 0.5 0.1668 Stable Unstable 

0.00564 0.3374 0.5 0.125 2.5539 Unstable Stable 

In perspective of Bangladesh, now we will find the critical value of Transmission rate and the 

critical value of recovery rate by keeping constant the values of other parameters (µ, α, γ ) and (µ, 

α, β) respectively. To find the critical value of Transmission rate (β*) we set R0= 1(by keeping fix 

other parameters), in equation (8) we have β*= 0.294626. Now to find the critical value of 

Recovery rate (γ*), we again set R0= 1(by keeping fix other parameters), in equation (8) we have 

γ*= 0.32799. The experimental results regarding β* and γ* are also displayed in the Table I. 

Therefore, if all the parameters are unchanged except the transmission rate, the disease will be 

spread out or controlled according to the values of transmission rate is greater or less than the 

critical value of β*= 0.294626. Similarly, if all the parameters are unchanged but only the values 

of recovery rate are varied, then disease is  spread out or controlled  according to the values of 

recovery rate is  less or greater than the critical value of γ*= 0.32799. 

Here 1R0  revealed that the state of disease free equilibrium is unstable and the state of endemic 

equilibrium is stable. In the case of unstable state of disease free equilibrium as well as in the case 

of stable state of endemic equilibrium, diseases spread out. To control the spread out of the 

disease, we need to calculate Herd Immunity Threshold.  In perspective of Bangladesh, we have 

calculated the Herd Immunity Threshold, which is 0.1269.  
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Herd Immunity Threshold is 0.1269, by using SEIR model. This means that vaccinating 12.69% 

population of Bangladesh can control spreading of the pandemic novel A (H1N1) virus when 

outbreak occurs.  
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