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ABSTRACT

This study deals with transmission dynamics of novel influenza A (HIN1) virus to understand the
evolution of its epidemic in Bangladesh. For this purpose an SEIR model has been employed to study the
dynamics of A (HIN1) virus relating to data of Bangladesh. To find threshold conditions, the equilibria
and stability of the equilibria of the model have been determined and also analyzed. Basic Reproductive
Number (Ry) is determined relating to data of Bangladesh by which Herd Immunity Threshold has been
estimated. Our numerical result suggests that vaccinating 12.69% population of Bangladesh can control

spread of the pandemic novel A (HIN1) virus when outbreak occurs.

Keywords: Basic Reproduction Number, SEIR Model, Herd Immunity Threshold, Stability, Next

Generation Matrix.

1. Introduction

Influenza A (HINT1) virus is highly contagious and pathogenic fatal disease. A novel virus named
influenza A (HIN1) virus was identified in Mexico and USA on April 2009 and the world health
organization (WHO) declared it as a pandemic on June 11, 2009 [17 and 19]. In Bangladesh first
confirmed case of pandemic influenza A (HIN1) virus was recorded on June 18, 2009 in a traveler
who had returned from USA and 23 more cases were identified within four weeks [12]. Following
the WHO declaration of pandemic level 6 with this novel strain, the Ministry of Health and Family
Welfare (MOHFW) of Bangladesh launched a case-based surveillance for influenza A (HIN1)
virus infection. In addition to the existing sentinel surveillance system for seasonal influenza,
MOHFW imposed screening on travelers at all the ports of entry from 28 April 2009 [12]. For a
new infectious disease, working out epidemiological parameters can help in decision making. A
key parameter for a novel infectious disease is the Basic Reproduction Number (R), defined as the
average number of secondary cases generated by single primary case during its entire period of
infectiousness in a completely susceptible population [3]. Ry directly determines the growth rate of
an epidemic and the final number of infected people and it is a predominant factor to be considered
in optimal policy making. Stability of epidemiological model can be analyzed with the help of the
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value Ry [14]. The estimation of Ry is problematic and has gained much attention. There are few
methods available to estimate R,. For determination of Ry, one of the best approaches is the Next
Generation Matrix method [4 and 8]. This method is provided from the well-known SEIR

compartmental model.

People infected with A (HIN1) passes through an incubation period where they are not infectious
and do not show any symptoms. The period of incubation for A (HIN1) virus is 1 to 4 days and the
infectious period case is defined as 1 day prior to the onset of symptoms to 7 days after onset [7].The
symptoms of influenza A (HIN1) virus are cough, nausea, diarrhoea, fever, chills, headache, sore
throat, muscle aches, runny nose, shortness of breath, joint pain etc. [5]. The novel A (HIN1) virus
poses public health and developmental challenges similar to challenges posed by communicable and
chronic diseases. This has made the decision makers to face considerable uncertainties. Although
vaccines are available for many infectious diseases these diseases still cause great suffering and
mortality in Bangladesh. In this backdrop, further research is indispensable to ascertain the control of
the wide spread of the pandemic influenza A (HIN1) virus.

The first mathematical model that can be used to describe an influenza epidemic was developed
early in the 20th century by Kermack and McKendrick [15] and is known as Susceptible-
Infectious-Recovered (SIR) model. Later Anderson and May [1] added a fourth compartment
(latency stage) to SIR model. This extension is called the SEIR model [1]. Several authors
considered this well-known SEIR or its extensions model to describe the flow (transition) of
people through different compartments which represent the stages of disease, in the entire
population over time [2].

In this study, this well-known SEIR model is considered to find the flow (transition) of people
through different compartments regarding influenza A (HIN1) virus in perspective of Bangladesh.
By using next generation matrix method, the Basic Reproduction Number (R,) for pandemic
influenza A (HIN1) virus is determined regarding the data of pandemic influenza A (HIN1) virus
of Bangladesh [12, 13 and 11]. By the help of this Ry, the decision making parameter Herd
Immunity Threshold (Hy) is determined in perspective of Bangladesh. Moreover the disease free
and endemic equilibrium of SEIR model is studied extensively according to the data considered.
The system of Ordinary Differential Equations (ODEs) of SEIR model is solved numerically
regarding data of Bangladesh and others simulated data. According to the numerical solutions, the
trends of various aspects of the susceptible, exposed, infectious and recovered of the population
regarding Bangladesh are discussed.

2.1 Mathematical M odel

In analyzing the spread and control of infectious diseases, mathematical models have become
important tools. For studying the transmission dynamics of the pandemic novel influenza A
(HINT) virus, the model considered here is the Susceptible (S (t))-Exposed (E (t))-Infectious (I
(t))-Recovered (R (t)) compartment model or in brief SEIR model [1], Figure (1).
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Figure 1: Flow chart of the transmission of SEIR epidemic model.

The Susceptible (S (t)) population contains the individuals who are at risk of becoming infected by
influenza A (HIN1) virus. The Exposed (E (t)) class is individuals who have been infected by
influenza A (HIN1) virus but yet not infectious (which show no symptoms and are not able to
infect others). The Infective (I (t)) class is individuals who have been infected by influenza A
(HINT) virus and able to transmit into the susceptible individuals. Finally Removed (R (t)) class is
individuals who have been recovered or removed from A (HIN1) virus infection [18]. For
comprehensive analysis of the model, we assume birth rates and death rates occur at equal rates
and the all new born are susceptible (no inherited immunity). We use symbol p to represent
average death rates as well as average birth rates (as equal). Therefore individuals are born into the
susceptible class with rate uN (N denotes total number of population). It is assumed that the
population mix homogeneously with no restriction of age, mobility or other social factors. It is
known that influenza A (HIN1) virus infected individuals will be in exposed- stage to the
environment before becoming infectious. The rate at which susceptible enters into the exposed
class without been infectious is 4SI (where B be the transmission coefficient) and the rate at which
exposed becomes infected is aE (where o be the exposed coefficient). The rate at which infected
individuals may recover and will remain until death is yI (where y be the recovery coefficient). The
following system of Ordinary Differential Equations (ODESs) is used to represent this SEIR model.

a8 _ ﬂN—ﬂS—/ﬂs1

dt
d—Ez LIS — (u + a) E
dt |
dl (1
—=aE - + )1
pr (n+79)
dR
— =yl - uR
dr 7 U J
Which satisfy the following ODE
dS+dE+dI+dR:0 )

e odi A di
where >0,a>0,y>0pu>0, S+E+I1+R=Nand >0 be the time .
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2.2 Equilibrium State

We know that Disease Free Equilibrium (DFE) or Endemic Equilibrium (EE) occurs in population
according to the value of Ry. Independently, one can show this in the form of biological
meaningful initial conditions:

If (S(0), E(0),1(0),R(0)) e {(S,E,I,R) € [0,N]4,S >0,E>0,I1>0,R>0,S+E+I+R =N}
then R, <1 implies

Lim(S(t), E(t), [(t),R(t)) = DFE.

And R, >1,1(0) >0 implies

Lim(S(t), E(0), [(t), R(t)) = EE.

Now set S, E, I, R as a proportion of the population (N), i.e.

S(t) E(t) 1(t) R(t)

s(t) = N e(t) = N i(t) = N r(t) = ~ and r(t)=1-s(t)—e(t)—i(t), then above four ODEs

(Equation. (1)) is reduced to three ODEs as follows:

ds .
—=pu—(pu+
il (n+Bi)s
de

E =Bsi—(u+a)e (3)

di .
—=0e— + 1
at Y+

It is known that for the steady state Equilibrium

g:o,aKe{s, eif.
dt

Then the above ODEs become as follows:

p—(n+pi)s=0 4
Bsi—(u+a)e=0 %)
ae—(y+p)i=0 6)

If i =0, then from (4) we get s = 1 and from equation (5), we get e = 0. Hence the Disease
Free Equilibrium is as follows:

(s,e,1)=(1,0,0).

Now we have to find the Endemic equilibrium. From equation (6) we have
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Substituting the value of e in equation (5) we get,

(n+a)(y+p)
o '

Putting the value of s in equation (4) we get,

I

R+a)y+p) a

Therefore Endemic equilibrium is as follows:

(s*,e*,i*):{(””)(“”),(“”)( ot _5} por _5} e
Ba o \(U+oy+p o) (p+o)(y+p o

2.3 Parameter Estimation for Influenza A (H1IN1) Virus

It is stated earlier that the Basic Reproduction Number R, for our compartmental SEIR model, is
estimated by Next Generation Matrix method. In the Next Generation Matrix (Operator) method,
R, is defined as the spectral radius of Next Generation Matrix (Operator) FV™' where F be the
matrix formed by new infection individuals in the compartments and V be the matrix formed by
the net infected individuals in the compartments. In our SEIR model, the numbers of infected
compartments are two namely Exposed compartment and Infected compartment. So from the SEIR
model (as we have two types of compartments — infected and non-infected), we get

F,® =PIS, E® =0, V) =u+0E,V,& = (+a)l-oE

Hence F = [M} = {0 B} and V = [_avi (xo)J _ {(H +a) 0 }

0X; 00 OX; —a  (u+y)

pa p
-1
Then FV=| (w+y)(u+a) p+y
0 0

Therefore the spectral radius of FV™'is _ Po . Hence the Basic Reproduction Number is as
(H+7)(u+0)
follows:
a
Rg=— P2 @®)
(L+y)(p+a)

It is known that the expected duration of infectious is the inverse of the removal rate [9 and 20].
According to the definition [see 9 and 10], the removal rate (y), Exposed rate (o) and transmission
rate () are given as follows:
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v= : ©)

mean infectious period

o= L (10)
mean latancy period

_ effective contact aan

total contact
2.4 Stability Analysis

The local stability of the DFE and EE steady states are calculated by simplifying the system of
ODEs (3). From the system of ODEs (3), we have the Jacobian matrix as follow:

—(n+pi) 0 —Ps
J= pi —(L+0) Bs (12)
0 a —(n+v)

So the Jacobian at the Disease Free Equilibrium i.e at (s,e,i) =(1,0,0) is

—-n 0 -B
Jopp=| 0 —(u+a®) B
0 a —(n+7)

Now the characteristic equation of Jypg is
| e =AD| 2% +5,4% +b, A+ by
where b; =(Gp+v+a)
by =[(+7)(+0)—Pat+pCu+y+a)]

by = p[(p+y)(u+o)-Bal
If b; >0,b; >0and b;b, —b; >0 are true, then by Routh-Hurwitz criterion, all the roots of the
characteristic equation have negative real part which means stable equilibrium [16]. Using R,
(from equation (8)) in b, andb;, we get b, = Ba(RL—l)+u(2u+y+(x) and by = pBa(RL—l) .
0

0
Therefore

bibs —bs = (2~ DR +afy+Po} Uy +a)Gut7+0).
0

Here b; >0 is always true. Now b; >0 and b;b, —b; >0 will be true only iff R, <1. So Disease
Free Equilibrium is stable iff R, <1 otherwise it is unstable.

By the help of equation (8) we rewrite the Endemic Equilibrium equation (7) as follow:
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(S*se*ai*): I 5
Ry Ry(u+a) p

1 pRo -1 pR, —1)} a3

By using the value of (s*,e*,i*) in equation (12), we have the Jacobian at endemic equilibrium
point as follow:

“UR 0o IVt

o
Jep = |0R o -1 —(n+0) w

0 o -(u+v)

Therefore the characteristic equation of J z, is
|(Tge =AD| =A% +p A% +p,A+p;,
where p; =a+y+(2+Ry)p
P2 =RouCu+o+y)
ps =Ry~ Dk +p(a+y)+ o]

Again if the coefficients of characteristic equation p; >0,p; >0 and p,p, —p; >0 are true, then
by Routh-Hurwitz criterion, all the roots of the characteristic equation have negative real parts
which means a stable equilibrium [8]. It is notified that if R, >1then both p, and p; become
positive quantities. Now for the third condition p;p, —p; >0, we have

PP, —Ps =R {Bu+a+y)(—a+7)+p*(3+2R ) +v’}+p’ +p(a+y)+oy],

which is greater than zero for all parameters value along with R, >1. Therefore by Routh-
Hurwitz criterion when R, >1 the endemic steady state is stable.

25 Herd Immunity Threshold

To control transmission of the disease, the population has to be immunized. The percentage of the
population that needs to be immunized for controlling the transmission is the Herd Immunity
Threshold (HIT) [6]. We have proposed the HIT (Hr) as the sole immunization strategy. It protects
directly the immunized individuals from infection and also provides protection of being
susceptible individuals. To evaluate HIT, we use the equation, given in [3], as follows:

1
Hy =1-—- (14)

0
2.6 Model Analysis

In order to evaluate the Herd Immunity Threshold as well as numerical analysis of the SEIR
models, we have considered the information about influenza A (HIN1) virus as defined in [7] and
real numerical data in perspective of Bangladesh [12, 13 and 11]. The latency period of A (HIN1)
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virus is 1 to 4 days and infectious period is one day prior to on set of symptoms to 7 days after
symptom onset [7]. So the mean latency period of A (HIN1) virus is 2 days and mean infectious
period is 3.5 days. Therefore by using equations (9) and (10), we havey =0.2857, a=0.5.
According to [12], from 18 June 2009 to 20 July 2009, 84 individuals had been tested and among
them 24 individuals were found influenza A (HIN1) virus positive. Again for month July 2015,
258 individuals have been tested and among them 100 individuals were found influenza A (HIN1)
virus positive [13]. Therefore, we have

24 100 By +B>
=—, =—— and B=—"—""==0.3374.
Pr=rga P2 =555 I P="75

We have the death rate of population of Bangladesh is x =0.00564 and the total population of
Bangladesh is N= 166280712 [11]. Using the value of B, a, y and p in (8) we get R, =1.1453. So
Disease Free Equilibrium (s,e,i) =(1,0,0)is unstable asR,(=1.1453) >1. By substituting the
above value in equation (13), we have Endemic Equilibrium

* ok x 1 HRy-D u®Ry-1

(s ,e ,i )=|—mm, s
RO Ro(“*“) B

=(0.8731,0.001415,0.002428)

which is stable as R (=1.1453) >1. Moreover by Equation (14), the Herd Immunity Threshold is
calculated as follows:

Hy=1-——=01269.
R

0

Now the sensitivity will be analyzed for both Disease Free Equilibrium and Endemic Equilibrium
points of the SIER model in perspective of Bangladesh. For these experiments the death rate as
well as the expose rate is considered to be fixed. On the other hand the transmission rate as well as
the recovery rate is changed as shown in the Tables I. At first, the value of recovery rate (0.2857)
is kept unchanged whereas the corresponding values of transmission rate are changed. Secondly
keeping the value of transmission rate (0.3374) unchanged, we have varied the values of recovery
rate. Finally we have calculated the R values for each changed values of (y). The experimental
results are displayed in the Table I. It is observed in the Table I that when the transmission rate ()
decreases (0.3374—0.25) with unchanged values of other parameters, then the Disease Free
Equilibrium approaches unstable to stable and Endemic Equilibrium becomes stable from unstable
as the value of R decrease from 1.1453 to less than one. Again keeping unchanged the values of
all parameters except the value of recovery rate, we have observed that for the increasing of the
value of recovery rate (0.2857->0.5), the Disease Free Equilibrium again approaches from
unstable to stable as well as Endemic Equilibrium becomes unstable from stable as the value of
R, decreases to less than one. That is if transmission rate will decrease or recovery rate will
increase then the Disease Free Equilibrium becomes stable as well as Endemic Equilibrium
approaches to unstable in perspective of Bangladesh. This implies that the disease will not spread
out. What happen if we will consider the reverse strategy? From the experimental results, given in
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the Table I, we observe that
decreased then Ry becomes greater than one and consequently the Disease Free Equilibrium is

when the transmission rate (3 ) increased or recovery rate (v )

found unstable as well as Endemic Equilibrium becomes stable from unstable as well. Which
implies disease will spread out.

Table I. Sensitivity analysis of the Disease Free Equilibrium state and Endemic Equilibrium state.

n B o Y R, Nature of DFE state | Nature of EE state
0.00564 0.35 0.5 | 0.2857 1.1879 | Unstable Stable
0.00564 0.3374 0.5 |0.2857 | 1.1453 | Unstable Stable
0.00564 0.30 0.5 | 0.2857 1.0824 | Unstable Stable
0.00564 | 0.294626 | 0.5 | 0.2857 | 1.00 Critical value Critical value
0.00564 0.27 0.5 |0.2857 | 09164 | Stable Unstable
0.00564 0.25 0.5 | 0.2857 | 0.8485 | Stable Unstable
0.00564 0.3374 05 |03 1.09156 | Unstable Stable
0.00564 0.3374 0.5 | 0.32799 | 1.00 Critical value Critical value
0.00564 0.3374 0.5 |0.35 0.9238 | Stable Unstable
0.00564 0.3374 0.5 |05 0.1668 | Stable Unstable
0.00564 0.3374 0.5 | 0125 2.5539 | Unstable Stable

In perspective of Bangladesh, now we will find the critical value of Transmission rate and the
critical value of recovery rate by keeping constant the values of other parameters (u, a, v ) and (u,
a, B) respectively. To find the critical value of Transmission rate (B*) we set Ro= 1(by keeping fix
other parameters), in equation (8) we have B*= 0.294626. Now to find the critical value of
Recovery rate (y*), we again set Rg= 1(by keeping fix other parameters), in equation (8) we have
v*= 0.32799. The experimental results regarding B* and y* are also displayed in the Table I.
Therefore, if all the parameters are unchanged except the transmission rate, the disease will be
spread out or controlled according to the values of transmission rate is greater or less than the
critical value of B*= 0.294626. Similarly, if all the parameters are unchanged but only the values
of recovery rate are varied, then disease is spread out or controlled according to the values of
recovery rate is less or greater than the critical value of y*=0.32799.

Here R, >1revealed that the state of disease free equilibrium is unstable and the state of endemic
equilibrium is stable. In the case of unstable state of disease free equilibrium as well as in the case
of stable state of endemic equilibrium, diseases spread out. To control the spread out of the
disease, we need to calculate Herd Immunity Threshold. In perspective of Bangladesh, we have
calculated the Herd Immunity Threshold, which is 0.1269.
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Figure 2: Dynamics of the various compartments at the initial outbreak of A (HIN1).

Moreover, we have performed numerical simulation of the model. For the numerical simulation of
the SIER model (the system of ODEs (3)), in perspective of Bangladesh on March 2014, we have,
S (0) = 166280706, E (0) =3 (assumed), / (0) =3 and R (0) =0 [10]. So dividing each of the terms
by the total population of Bangladesh, N=166280712 [17], we have s (0) =0.9999999639, e (0)
=0.00000001804, i (0) =0.00000001804 and r (0) =0 respectively. It is noted that regarding the
data of Bangladesh the value of u= 0.00564, a=0.5, p=0.3374 and y=0.2857 are calculated in the
section 2.6. The numerical solutions of the system of ODEs (3) are shown in the Figure 2. It is
observed in the Figure 2 that the initial proportion of infectious has minimal effect on susceptible.
One of the cause of this insignificance effect on susceptible may be that the value of initial
infectious 7 (0) =0.00000001804 is very small.

What happen if the proportion of infective is significantly large, keeping unchanged the value of
the parameters? For this experiment, we have changed the proportion of initial infective to i(0)
=0.4 as well as proportion of initial susceptible s(0) =0.5999999639 (but e (0) =0.00000001804 is
considered unchanged), around the endemic equilibrium point for a period of 5 and 16 months.
The simulated results of 16 months period are shown in Figure 3.We observe in Figure 3 that
when the population of infectious is increased to proportion 0.4, around the neighborhood of
endemic equilibrium, the proportion of exposed individuals initially increased from 0 to 0.06 in
two months then decreased gradually to a 0.01 by 16 months. On the other hand the proportion of
susceptible declines from 0.5999999639 to a minimum value 0.31 by 16 months. The proportion of
recovered also increases monotonically with time and has reached at point 0.62 by 16 months.
We also observed that the recovered population is equal to infective around the 2.5 months at a
value 0.24 and to susceptible around 5.9 months at a value 0.4 from the outbreak. The simulated
results of 5 months period reveal similar trend with simulated results of 16 months. It is also
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observed in both periods that exposed are maximum at 2 months and after 2 months the proportion
of exposed monotonically decrease.

0.7
Susceptible
DB Exposed
Infectious
05 Recovered

0.4

03

0.2

Susceptible Exposed Infectious Recoverad

0.1

Time(months)

Figure 3: Numerical simulated values of various compartments within 16 months periods regarding
SEIR model.

2.7 Discussion

The estimated Basic Reproduction Number (Ry) for the SEIR epidemiological model is greater
than one in perspective of Bangladesh. This indicates that disease will spread out. The sensitivity
analysis revealed that whenever the transmission rate is increased or recovery rate is decreased, the
disease spread, but whenever the transmission rate is decreased or recovery rate is increased then
the value of estimated Ry becomes less than one, this implies that the disease dies out. In the
experiments we have also estimated the critical value of transmission rate (when other parameters
except f assumed unchanged) and recovery rate (when other parameters except 7y assumed
unchanged). If it is possible to apply some mechanism (like closing school, preventing mass
gathering etc) by which the value of f can be made less than $*(0.294626) then spread out of
disease can be controlled. Similarly if it is possible to apply some mechanism (like applying drug,
environment support etc) by which the value of y can be made greater than y*(0.32799) then
spread out of the disease can be controlled.

From the simulation Figure 2, it is found that the initial proportion of invectives has minimal effect
on the various compartments. As the proportion of infective was increased to 0.4 (shown in Figure
3) around the neighborhood of endemic equilibrium state, the SEIR model exhibited a decline in
the proportion of susceptible. This means that as more and more people infected with A (HIN1)
virus, the disease will be endemic in that region. Furthermore it is observed that the recovered
population increases with time monotonically. This result implies that even though the susceptible
population was infected, a high amount of them recovered quickly which provide herd immunity.
In this study our controlling strategy is vaccinating for which we have found the Herd Immunity
Threshold. In perspective of Bangladesh, for influenza A (HIN1) virus we have found that the
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Herd Immunity Threshold is 0.1269, by using SEIR model. This means that vaccinating 12.69%
population of Bangladesh can control spreading of the pandemic novel A (HIN1) virus when

outbreak occurs.
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