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ABSTRACT 

Self-organized and spatially periodic banded vegetation patterns have been observed in many semi-
arid ecosystems. In order to understand the mechanism of these patterns, we consider a system of 
reaction-advection-diffusion equations in a two-variable model of desertification. This work deals 
with the investigation of the existence of periodic traveling waves in a one-parameter family of 
solutions. In addition, we investigate the existence of periodic traveling waves as a function of 
water transport parameter in the model. 

 
Keywords:  Klausmeier model, periodic traveling waves, desertification, reaction-advection-

diffusion equations. 
 
1. Introduction 

In many landscapes around the world, the vegetation cover is sparse and exhibits spectacular 
organized spatial features[1] that can be either spatially periodic or random (namely labyrinthine, 
spotted or gapped). Commonly denoted as ‘vegetation patterns’ [2, 3]. Among these patterns, self-
organized and spatially periodic banded vegetation patters are a striking characteristic feature of 
many semi-arid ecosystems [4,5]. Approximately 30% of the emerged surface of the earth is 
covered with these patterns. Self-organized vegetation patterns have been observed to form on 
hillsides of the semi-arid regions with the limited availability of the water resources. These 
patterns are concentrated into bands, typically 100m-250m wide, running parallel to the hill’s 
contours on gentle and uniform slopes of about 0.25% gradient. These stripes of vegetation are 
separated by gaps of essentially bare ground in semi-arid region, typically of width 200m-1km, in 
which vegetation cover is almost absent or sparse [3,4,6]. The wavelength of this pattern is 
typically about 1km for shrubs and trees, but the shorter range is observed for grasses [4, 5]. In this 
paper, the stripes of vegetation on a uniform hillslope will be in the center of attention.  

Most of the authors [7-9] agreed that the underlying cause of vegetation patterning is the 
competition for water and the positive feedback between water availability and plant growth. The 
verbal explanation for the mechanism indispensable for the maintenance and movement of 
vegetation bands is as follows: Rain falling on the bare grounds between bands/stripes of 
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vegetation doesn't infiltrate into the soil, but it flows downhill to the next vegetation band where it 
soaks in and enables the maintenance of the vegetation band. This water is then exhausted upon 
reaching the downslope edge of the stripe, which causes again a bare ground. The moist soil on the 
uphill edge of the band creates a tendency to be migrated on the uphill edge. This also explains a 
most striking feature of this pattern formation such that the stripes slowly move uphill as time 
passes. This is because of the fact that vegetation can grow and survive at the upper area of a 
vegetation stripe, because there is enough moisture. On the other hand, the vegetation dies at the 
lower area of a vegetation stripe, because it is not moist enough[10].However, the details of the 
banded vegetation process remain controversial for limited long-term data.  

It is to mention thatarid and semi-arid landscapes cover about one-third of the Earth’s surface. 
Many deserts are expanding due to drought. So that self-organized vegetation patterns are an 
important indication in understanding the potential early warning signals of environmental change 
and imminent regime shifts. Therefore, the aim of studying this particular phenomenon is therefore 
to be able to give early warning signals in regions which are directly threatened by desertification. 
Therefore, they have been the subject of intensive research over the last decade. Field experiments 
are not cost-effective and not so easy to carry out, because of geographical remoteness and 
physical harshness in most instances of the potential study sites of banded vegetation. Moreover, 
there are no laboratory replicates of this phenomenon, and in most cases onehas to rely onusing 
remote sensing satellite images. However, the time scale of pattern evolution is very slow (it may 
take more than one decade), and such observational data are ineffective to investigate the 
implications of changes in environmental parameters such as rainfall levels. Although it has 
obvious limitations, this relevant information has helped us to predict how vegetation pattern 
change in environmental shifts. Being  of  limited utility given the long space and time scales 
involved in the vegetation pattern formation process, theoretical models have emerged as an 
important research tool for studying these patterns, and a range of mathematical models have been 
developed [11]. 

The first continuum mathematical model for vegetation patterning is the Klausmeier model[10], 
and this model and most of its extension [7,12-15]has broadly been used as an important tool for 
researcher and have been studied broadly in both computer-based simulation [16,17],and analytical 
studies [6,18-20]. This model is an important tool to understand the mechanisms of striped 
vegetation, and a simplification for using the single variable of water.  

It is mentioned earlier that, in many semi-arid landscapes vegetation is often self-organized into 
large-scale spatial patterns. The natural phenomenon of these patterns is particularly banded and 
periodic, this motivates us to study the existence of periodic traveling wave solutions (PTWs) in 
one dimension. Therefore, in this paper, we study the existence of the PTWs numerically by using 
a two-component reaction-advection-diffusion system in one-parameter family of solutions in one 
dimension. The focus of thepresent study is to investigate the existence of PTWs of the modified 
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Klausmeier model to understand the mechanism of banded vegetation patterns in semi-arid 
ecosystem as introduced by van der Stelt et al. [20]. 

The rest of this paper is arranged as follows: In section 2 and 3, we briefly describe the Klausmeier 
model and modified Klausmeier model of desertification respectively. Section 4illustrates the 
methods of computation. In section 5, we present our results in one dimension, for various 
parameters with discussion. Finally,section 6 is the conclusion. This section underlies the 
significant results of the present study, and gives further directions for future research on 
prospective areas. 
 
2. A brief outline of the Klausmeier model 

The original Klausmeiermodel, when appropriately non-dimensionalized [6,10] consists of two 
partial differential equations mentioning the plant biomass density and water density and is given 
as follows:   

 = 푤푢 − 퐵푢 + ,   (1a) 

= 퐴⏟ − 푤⏟ − 푤푢

 

+ 휈 .   (1b) 

This model is a dynamical system of interaction between plant and water to get physical vegetation 
pattern. The reaction terms 푓(푢, 푤) = 푤푢 − 퐵푢 and 푔(푢, 푤) = 퐴 − 푤 − 푤푢 describe the local 
kinetics of variables 푢 and 푤. Here, 푢(푥, 푡)  and 푤(푥, 푡)  represent plant biomass density in space 
푥, measured in the uphill direction (positive ‘푥’ direction) at a constant migration speed, and water 
density respectively at time ‘푡’. It is a need to mention that this model is deliberately simple and 
conceptual, because it does not separate water into surface and sub-surface components. The 
model assumes constant rainfall, with water lost via both evaporation and absorption by plants. 
The assumption of proportionality between evaporation and water density is consistent with both 
more detailed modeling and field data [21].Per capita plant growth is assumed to be jointly 
proportional to water density and vegetation biomass. The dependence on biomass reflects the 
positive correlation between the infiltration capacity of soil and its vegetation level in semi-arid 
environments [4,22,23].The non-linear term 푤푢  in (1푎) denotes plant growth, which is 
considered to be proportional to water availability and in (1푏) it is regarded as the uptake feedback 
of water in order to promote the plant growth [10].Plant loss is assumed to occur at a constant per 
capita rate, which may include herbivory. Finally, water flows downhill while plant dispersal is 
modeled by linear diffusion.The advection term 휈 in (1푏) means that spatial patterns are not 
stationary; rather they move in the positive 푥 direction (uphill) at a constant rate. There has been a 
long-running debate in the ecological literature about this uphill migration, with some field studies 
reporting stationary patterns [24]. 
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The model contains three parameters, 퐴, 퐵 and 휈which are dimensionless combination of 
ecological quantities. The parameter 퐴 is the control parameter as well as bifurcation parameter, 
represents precipitation as a source term. However, the parameter 퐴 is proportional to mean annual 
rainfall. Although, in most semi-arid regions rainfall typically occurs at a certain periods of the 
year and sometimes in relatively brief storms [25]. The parameter 퐵 measures plant losses 
including both natural death and the effect of any herbivory, and 휈 is the slope gradient (steepness 
of the slope), which controls the rate at which water flows downhill. The typical values of these 
ecological parameters estimated by Klausmeier (1999) are퐵=0.45for grass,  퐵=0.045for trees; in 
either case 휈 =182.5 for a typical slope with vegetation stripes and we choose those parameter 
values compatible for grass.  
 
3. Modified Klausmeier model of vegetation 

In this study, we also consider a modified version of the Klausmeier [10] model (see Equation (1)) 
by appending an additional term water diffusion which is also reported in [26-28].The modified 
version of the basic Klausmeier model is a reaction- advection-diffusion system of PDEs in which 
the spatial patterns of vegetation is the result of competition for water. The suitably non-
dimensionalized form of the model equations [6,10,17] consist of two state variables 푢 and 푤 
describing the plant biomass density and water density respectively. They are functions of both 
spatial variable ‘푥’(푥 ∈ ℝ), measured in the uphill direction and the temporal variable ‘푡’. It is to 
be mentioned that we will consider a gentle slope and behavior in one spatial dimension ‘푥’, 
following the description in [20,29], which is sufficient for banded patterns. The model is given by 
(2) as follows: 

= 푤푢 − 퐵푢 + 푑 ,  (2A) 

= 퐴⏟ − 푤⏟ − 푤푢

 

+ 휈 + 푑

 

 .  (2B) 

Klausmeier, in his original model, included an advection term for water instead of water diffusion 
on the phenomenological ground. Adding water diffusion in the Klausmeier model is valid due to 
following reasons:  

(a) Because of the physical ground of diffusion term it can be derived from shallow water 
equations [30]. However, Ursino[31] showed that a diffusion term always accompanies the 
advection term when water transport is derived from the Richards equation for soil water 
flow.       

(b)   This term admits capturing the movement of rainwater by the influence of spatial differences 
in the rate of infiltration [12]. 
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A key component of (2) is the non-linear term 푤푢 , assumed to be proportional to water 
absorption (uptake) by plants and this term reflects the fact that the presence of root networks and 
the higher levels of organic matter in the soil increases the  infiltration of rainwater into the soil 
[22,23] to promote the  plant growth. The parameter 퐴 is the control parameter as well as 
bifurcation parameter, represents the rate of mean annual rainfall (as a source term), which 
typically occurs in discrete storm events in semi-arid regions [25,28], and – 푤 represents 
evaporation as a loss term. The dimensionless parameter 퐵 measures plants losses including both 
natural death and the effect of any herbivory. The term 퐵푢 describes plant biomass which is 
considered to have a simple linear form. The diffusion term 푑   represents the spread of plants 
by both clonal reproduction and seed dispersal. The parameter 푑  indicates the plant dispersal co-
efficient. The dimensionless quantity 휈 represents the slope gradient (steepness of the slope), 
which controls the rate at which water flows downhill. The advection term 휈  represents the 
surface runoff, which assumed to be proportional to 푤. This term was derived from shallow water 
theory representing the downhill flow of water [30]. It isa need to mention that the water diffusion 
parameter 푑  was first introduced by Kealy and Wollkind [19]. Recall that, this diffusion term has 
a physical meaning, since it can be obtained from both the Richards equation for soil water flow 
[31], and the shallow water equations [30]. However, the values of the water diffusion coefficient 
푑  in (5.1푏) was not estimated by those authors. Ursino[31] estimated the values of the parameter 
푑 ∈ (7.5, 110). Comparing the rainfall range giving patterns, Siteur et al.[28]used the larger value 
of 푑  = 500 according to field data.However the suitable value of 푑  still remains unclear. 
Intuitively, homogeneous vegetation state arise by sufficiently high rainfall, while a complete 
desert state is the result of very low rainfall. Again, intermediaterainfall levels are very low that it 
can’t maintain homogeneous vegetation cover, butare compatible with vegetation stripes. As we 
are intended to restrict our attention in the response of the system to changes in rainfall, we 
consider rainfall 퐴as a free parameter as well as bifurcation parameter and choose퐴 ∈ [0.1, 3.5]. 
Here, diffusion coefficient 푑 = 500, will typically be much larger than that of plant dispersal 
coefficient of 푑 = 1, this additional term 푑  expedites the pattern forming potential of the model, 
because water diffusion intuitively improves flow from bare ground to vegetated patches. Equation 
(2) is considered as one of the simplest and earliest models dedicating vegetation pattern formation 
in semi-arid ecosystems, and remains gigantic in use [19,28,29,31]. Moreover, it falls in the 
broader class of reaction(-advection-)-diffusion models referred to as activator-depleted substrate 
systems [32] in which vegetation acts as an activator and rainwater acts as a substrate. 
 
4. Methods of computation 

Vegetation stripes that slowly migrate in the uphill direction mean that they are periodic travelling 
waves, can be studied via the ansatz: 

푢(푥, 푡) = 푈(푧),  푤(푥, 푡) = 푊(푧), 
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where a travelling wave coordinate 푧 = 푥 − 푐푡, 푥 and 푡 are the one dimensional space and time 
coordinate respectively, and 푐 is the pattern migration speed.  By using these solution forms, we 
obtain the following equations form:  

휕푢
휕푡

=
푑푈
푑푧

휕푧
휕푡

= −푐
푑푈
푑푧

, 
휕푢
휕푥 =

푑푈
푑푧

휕푧
휕푥 =

푑푈
푑푧 , 

휕 푢
휕푥 =

푑 푈
푑푧 . 

Similarly,   
휕푤
휕푡 =

푑푊
푑푧

휕푧
휕푡 = −푐

푑푊
푑푧 ,  

휕푤
휕푥 =

푑푊
푑푧

휕푧
휕푥 =

푑푊
푑푧 , 

휕 푤
휕푥

=
푑 푊
푑푧

. 

Substituting the above results into the modified Klausmeier model (2), we obtain the following 
second order ODEs  

푑 + 푐 + 푊푈 − 퐵푈 = 0, (3a) 

푑 + (푐 + 휈) + 퐴 − 푊 − 푊푈 = 0 . (3b) 

These ordinary differential equations must be reduced to a first order four-dimensional traveling 
wave ODEs as follows: 

= 푃,  (4a) 

= = (−푐푃 + 퐵푈 − 푊푈 ), (4b) 

= 푄,   (4c) 

= = [−(푐 + 휈)푄 − 퐴 + 푊 + 푊푈 ].  (4d) 

A periodic traveling wave solution is a periodic orbit or a limit cycle solution of this ODE system 
(4). In simple cases, the branch of this solution is monotonic in the parameters, and has at least one 
end terminating at a Hopf bifurcation point [33]. However, in some complex problems the branch 
begins and ends at homoclinic solution. In that case, the user is required to provide a periodic 
traveling wave solution as an initial starting solution from the simulation of the partial differential 
equation for a pair of control parameter and wave speed values for the continuation. 

4.1 Homogeneous steady-state solutions  

Periodic travelling waves typically develop from a Hopf bifurcation of a steady state solution of 
the travelling wave equations.The first step in investigating the pattern-forming potential of the 
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model (2) is to determine the spatially homogeneous steady states.Setting the L.H.S of the first 
order ODEs (4) to zero provides a system of algebraic equations that can easily be solved for the 
unique steady-state with 푈 and 푊 both non-zero: 

푃 = 0, 

퐵푈 − 푊푈 = 0,  (5) 

푄 = 0, 

−퐴 + 푊 + 푊푈 = 0. (6) 

(5) ⇒          푈(퐵 − 푊푈) = 0. 

For all parameter values, (2), has a stable trivial steady state:  

if 푈 = 0, then푊 = 퐴, from (6), corresponding to bare ground, without vegetation.Again, if 
(퐵 − 푊푈) = 0, then 

푈 = 퐵 푊.⁄   (7) 

(5)+(6) ⇒푊 = 퐴 − 퐵푈 ⇒ 푊 = (퐴 ± √퐴 − 4퐵 )/2, by using (7) 

∴ 푈 = 2퐵 퐴 ± √퐴 − 4퐵⁄ , [from (7)]. 

Here, we observe that, when 퐴 ≥ 2퐵, there are also two other homogeneous steady states which 
arise from a saddle-node bifurcation 

                         푈 = 푈 ≡  ,   푊 = 푊 ≡ , (8) 

and                  푈 = 푈 ≡  ,   푊 = 푊 ≡ .   (9) 

The first of thse (8 ) is always unstable to homogeneous peturbations; the second is the key 
equilibrium from which  patterns develop. This steady state is linearly stable to homogeneous 
perturbations whenever 퐵 < 2. For larger values of 퐵 and small 퐴 (9) can become unstable, giving 
complecated local dynamics including a limit cycle, but realistic parameter values for plant growth 
in semi-arid environments imply 퐵 < 2. 
 
5. Numerical results and discussion 

Figure 1 shows the existence of PTW solutions of (1) as a function of the rainfall parameter  퐴 and 
the wave speed or the pattern migration speed푐. Here we consider the parameter 퐴 as rainfall 
parameter as well as bifurcation parameter in our study while the other parameters are 퐵 =
0.45and 휈 = 182.5. 
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Fig. 1: The existence of periodic traveling wave solutions of (1) as a function of the parameter 퐴 and the 
wave speed 푐. 

The parameter 퐴 lies between 0.1 and 3.5 i.e., the range 0.1 ≤ 퐴 ≤ 3.5 , for퐴has been chosen.The 
symbols and values exhibit the results carried out over a domain of 10×10 cells in the 퐴 − 푐 
parameter plane: a filled triangle indicates that there is no PTW existsat that point; a filled square 
indicates that no PTW exists there but solution is convergent at that point. The values on the 
parameter plane signify the periods of the PTW solutions of a given point of the control parameter 
퐴 and the wave speed 푐. The periodic traveling wave also exists for other values of the parameter 
퐴, outside of the above range. However, we are only interested to understand the periodic pattern 
solutions for the model (1) within the above range. The Figure was calculated and plotted using the 
software package WAVETRAIN [33]. 

Figure 2 indicates two periodic traveling wave solutions of (1) as a function of the  control 
parameter  퐴 and the wave speed 푐.In parts (푎) and (푏), symbols 푈 , 푉, and 푊 are the internal 
name of state variables  of (1). (푎) The first one is for the parameter 퐴 = 0.5 and the wave speed 
푐 = 1.3. The period of the wave is = 108.0996. (푏) The second one is for the parameter 퐴 = 2.7 
and the wave speed 푐 = 1.3. In this case the period of the wave is = 21.9949. The other parameter 
values are 퐵 = 0.45 and 휈 = 182.5.These Figures indicate that, increasing the value of control 
parameter 퐴 decreases the periods of the PTW solutions at constant wave speed. However, the 
periods are not changing quickly as 퐴 changes. The other parameter values are the same as in 
Figure 1. 
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Fig. 2: Two periodic traveling wave solutions of (1) as a function of the parameter 퐴 and the wave speed 푐. 

 

    
 

Fig. 3: The branches of periodic traveling wave solutions of (1) with wave speed 푐 = 1.5. 

Figure 3 exhibits the branches of periodic traveling wave solutions or the bifurcation diagrams of 
(1) with fixed wave speed 푐 = 1.5.The other parameter values are the same as in Figure 1.The 
curves were calculated and plotted using the software package WAVETRAIN [33].Figure 3(푎) 
illustrates the 퐿2-norm of the solution of the traveling wave ODEs of (1), plotted as a function of 
the rainfall parameter 퐴. In Figure 3(푏),  pattern wave period is plotted as a function of the rainfall 
parameter 퐴. The branch of solution in each plot (푎) and (푏) initiates from a Hopf bifurcation point 

(푎) (푏) 

(푎) (푏) 
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marked by filled red square at 퐴 = 3.051 and terminates at homoclinic solution by decreasing 
values of퐴. When the value of the parameter 퐴 is increased, the corresponding period decreases 
(Fig. 3(푏)) and 퐿2-norm (Fig. 3(푎)) of the solution increases. It is well known that the existence 
of periodic traveling  wave solutions depend on the parameter values of the PDE system (1) and 
also on the wave speed 푐. If  PTW solutions exist for a parameter setting of the PDEs, then they 
exist for a range of wave speed 푐[34]. 

5.1 Existence of PTWs as a function of water diffusion, 푑  

We consider the effect of both diffusion and advection terms for water in (2). Therefore, we add 
an additional termwater diffusion푑   to the right side of (2푏).Again, we want to limit our study 
to one-space dimension. We investigate the existence of periodic pattern solutions or PTWs in the 
퐴-푐 parameter plane by varying the values of water diffusion coefficient푑 .Since for 푑 = 0, the 
change of solutions for 푑  is not dramatic.Therefore, in this section, we consider the results for 
푑 = 0.01 is similar to the Klausmeier model (1).The other parameter values remain constant as in 
Table 1. Figure 4(a-d) illustrates the region of the 퐴-푐 parameter plane in which pattern exists as a 
function of the water diffusion parameter, calculated via the WAVETRAIN [33,35].A numerically 
determined periodic orbit from the PDEs is used as the beginning point for the continuation. Here, 
we consider the rainfall parameter 퐴 as a free parameter from an ecological point of view, and the 
range of the control parameter 퐴 in the rainfall-wave speed parameter plane is 0.1 ≤ 퐴 ≤ 3.5.The 
triangles and values on the parameter plane exhibitthe results over a domain of 10 × 10 grids in 
the parameter plane. The triangle indicates that there is no PTW at that point, and the value on the 
parameter plane indicates the period of the PTW solution of a given point of the parameter 퐴 and 
the wave speed 푐.The orange line (right boundary) denotes the locus of Hopf bifurcation points in 
the traveling wave ODEs(4).The pink line (left boundary) indicates the locus of homoclinic 
solutions, where the period (wavelength) is infinite. The homoclinic solution is actually 
approximated by a locus of the PTWs with large finite period 3000. Therefore, the pattern forming 
region in the parameter plane is bounded right by a locus of Hopf bifurcation points, and bounded 
left by a locus of homoclinic solutions.We observe that the locus of homoclinic solutions and the 
locus of Hopf bifurcation points slightly change due to the increasing values of the water diffusion 
parameter 푑 = 0.01, 100, 300 and 500 respectively (see Fig. 4). In Figure 4, if the values of  푑  
increase from 0.01 to 500, the PTWs region gets shrink gradually near the region having large 
wave speedas the water diffusion increases from panel (a) to panel (d).  
 
Table 1: Typical set of parameter values in (2) used in the numerical computation. 
 

Parameter 퐴 퐵 휈 푑  푑  
Value varied 0.45 182.5 1 varied 
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Fig. 4: An illustration of the part of the 퐴-푐 parameter plane giving the existence of PTWs of model (2) for 
(푎) 푑  = 0.01, (푏) 푑  = 100, (푐) 푑  = 300 and (푑) 푑  = 500 as a function of the rainfall parameter 퐴 and the 
pattern migration speed 푐.  

5.2 Bifurcation diagrams of PTWs with fixed rainfall as a function of  water diffusion, 푑  

Figure 5 illustrates the bifurcation diagrams of the PTWs in the model (2) for the increasing water 
diffusion parameter (푎) 푑  = 0.01, (푏) 푑  = 100, (푐) 푑  = 300 and (푑) 푑  = 500 by fixing the 
rainfall parameter at 퐴 = 2.5 with other parameter values remaining the same as in Table 1.The 
dispersion curves [36,37,38] demonstrate that the PTW branches begin from a Hopf bifurcation 
point marked by filled red square in each panel at 푐 = 0.3366, 0.3044, 0.1726, and 0.0878 and 
end at Hopf bifurcation point at 푐 = 2.622, 2.398, 2.079, and 1.890 respectively from panel to 
panel (see Figs. 5(푎 − 푑)). 

(푎) (푏) 

(푐) (푑) 

푑 = 0.01 
푑 = 100 

푑 = 300 푑 = 500 
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Fig. 5: The different bifurcation diagrams (dispersion curves) of the PTWs in model (2), plotted wave period 
as a function of the wave speed 푐 for fixed 퐴 = 2.5. The water diffusion coefficients for the panels are at (푎) 
푑  = 0.01, (푏) 푑  = 100, (푐) 푑  = 300 and (푑) 푑  = 500. 

Therefore, we deduce that the range of the wave speed between Hopf bifurcation points decreases 
from panel to panel for the increasing values of water diffusion 푑 . We observe that the spatial 
wave period is increasing with respect to the wave speed 푐 until the period reaches its maximum 
value and eventually decreases. It is seen that there exists a fold bifurcation point marked by filled 
red circle at 푐 = 1.967 in the Figure 5(푑).  

5.3 Bifurcation diagrams of the PTWs: W versus 퐴 

Figure 6 shows the different branches of the PTWs of (2), plotted W as a function of the rainfall 
parameter 퐴, by fixing the wave speed at 푐 = 1.5. The water diffusion coefficients for the panels 
are at (푎) 푑  = 0.01, (푏) 푑  = 100, (푐) 푑  = 300 and (푑) 푑  = 500. The other parameter values are 

푑 = 0.01 푑 = 100 

푑 = 300 푑 = 500 

(푎) (푏) 

(푐) (푑) 
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푑 = 1, 퐵 = 0.45,and 휈 = 182.5.  Legend on the top of each panel shows the color of the locus of 
each solution branch. Note that the same line color is used for the W  and W . The light green 
line(middle line) in each panelindicates the 퐿2-norm of the solution of the traveling wave ODEs 
(4). The blue lines (upper line and lower line) indicate the loci of the maximum and minimum of 
the water density variable W respectively. 

 

 
 

Fig. 6: The different bifurcation diagrams of the PTWs in the model (2), plotted W as a function of the 
rainfall parameter 퐴 for fixed migration speed 푐 = 1.5. 

The branches of solution begin from a Hopf bifurcation point marked by filled red square at 퐴 = 
3.051, 2.915, 2.769, 2.693 respectively for푑  = 0.01, 100, 300, and 500. We observe that the 
values of the Hopf bifurcation points decrease gradually for the increasing values of 푑  = 0.01, 
100, 300, and 500 respectively. In other words, increasing the water diffusion decreases the value 

푑 = 0.01 

(푎) 

푑 = 100 

(푏) 

푑 = 300 푑 = 500 

(푑) (푐) 
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of the rainfall parameter in order to born of the PTWs. There exists a fold point on the L2-norm 
marked by filled red circle at 퐴 = 2.805, 2.748 respectively for 푑  = 300, and 500. There exist 
also two fold points marked by filled red circles at 퐴 = 2.805, 2.748 on the locus of maximum 
and minimum water density variable W respectively for 푑  = 300, and 500. We also observe that 
there exists no fold point for 푑  = 0.01, and 100. It is to be mentioned that theW  increases as a 
function of 푑 , e.g., for 퐴 = 1.0, theW ≈ 0.25, 0.29, 0.34, 0.38 respectively when 푑 =
0.01, 100, 300, and 500. But, the W  remains almost constant for any value of퐴. 

5.4 Bifurcation diagrams of the PTWs: W versus 푐 

Figure 7 shows the different branches of the PTWs of  (2), plotted W as a function of the wave 
speed 푐, by fixing the rainfall parameter at 퐴 = 2.5. The water diffusion coefficients for the panels 
are at (푎) 푑  = 0.01, (푏) 푑  = 100, (푐) 푑  = 300 and (푑) 푑  = 500. The values of the other 
parameter are the same as in Figure 6. Legend on the top of each panel shows the color of the locus 
of each solution branch. The same line color is used for theW and W . The light green line 
(middle line) in each panel exhibits the 퐿2-norm of the solution of the traveling wave ODEs (4). 
The locus of the maximum and minimum of the water density variable W is indicated by the blue 
line (upper line and lower line) from panel (푎) to panel (푑). The branches of solution initiate from 
a Hopf bifurcation point marked by filled red square at 푐 = 0.3366, 0.3044, 0.1726, 0.0878 
respectively for 푑  = 0.01, 100, 300, and 500. And, the branches of solution terminate at a Hopf 
bifurcation point at 푐 = 2.622, 2.398, 2.079, and 1.890 respectively for 푑  = 0.01, 100, 300, and 
500.The branches of PTWs are bounded with 푐∈ [0.3366, 2.622] for 푑  = 0.01, 푐∈ [0.3044, 2.398] 
for 푑  = 100, 푐∈ [0.1726, 2.079] for 푑  = 300 and 푐∈ [0.078, 1.890] for 푑  = 500. It is to be 
mentioned that the ranges of the wave speed 푐 between the Hopf bifurcation points decrease 
gradually for the increasing values of 푑  = 0.01, 100, 300, and 500 respectively.  
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Fig. 7: The different bifurcation diagrams of the PTWs in the model (6.1),plotted W as a function of the 
migration speed 푐 for fixed rainfall parameter 퐴 = 2.5.  

There exists a fold point or a saddle-node bifurcation point marked by filled red circle on the L2-
norm at 푐 = 1.967 when 푑 = 500. There alsoexist two fold points marked by filled red circles at 
푐 = 1.967 on the locus of maximum and minimum water density variable W  for 푑  = 500. We 
observe that there exists no fold point for 푑  = 0.01, 100, and 300. 

5.5 Bifurcation diagrams of the PTWs: U versus 퐴 

Figure 8 illustrates the different branches of the PTWs of  (2), with U specified as the plant density 
variable, plotted as a function of the rainfall parameter 퐴, by fixing the migration speed at 푐 = 1.5. The 
water diffusion coefficients for the panels are at (푎) 푑  = 0.01, (푏) 푑  = 100, (푐) 푑  = 300 and (푑) 푑  
= 500. The value of the other parameters are  푑 = 1, 퐵 = 0.45, and 휈 = 182.5.  Legend on the top of 
each panel shows the color of the locus of each solution branch. Note that the same line color is used for 
the U   and U . The light green line (middle line) in each panel indicates the 퐿2-norm of the 
solution of the traveling wave ODEs (4). The blue lines (upper line and lower line) exhibit the loci of 
maximum and minimum of the plant density variable U respectively in each panel. The branches of 
solution begin from a Hopf bifurcation point marked by filled red square at 퐴 =3.051, 2.915, 2.769, 
2.693 respectively for 푑  = 0.01, 100, 300, and 500. We observe that the values of the Hopf bifurcation 
points decrease gradually for the increasing values of 푑  = 0.01, 100, 300, and 500 respectively.  There 
exists a fold point on the L2-norm marked by filled redcircle at 퐴 = 2.805, 2.748 respectively for 푑  
= 300, and 500. There also exist two fold points marked by filled red circles at 퐴 = 2.805, 2.748 on 
the locus of maximum and minimum of the plant density variable U respectively for 푑  = 300, and 500. 
There exists no fold point for 푑  = 0.01, and 100. We also observe that theU  increases as a function 
of푑 , e.g., for퐴 = 1.0,the U ≈ 16.3, 18.4, 22.75, and  27.5 respectively when 푑 =
0.01, 100, 300, and500. But, theU  remains almost constant for any value of퐴. 

(푐) 

푑 = 300 푑 = 500 

(푑) 
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Fig. 8: The different bifurcation diagrams of the PTWs in the model (2),plotted U as a function of the 
parameter 퐴, for fixed migration speed 푐 = 1.5. 

5.6 Bifurcation diagrams of the PTWs: U versus 푐 

Figure 9 shows the different branches of the PTWs of  (2), with U specified as the plant density 
variable, plotted as a function of the migration speed 푐, by fixing the rainfall parameter at  퐴 =
2.5. The water diffusion coefficients for the panels are at (푎) 푑  = 0.01, (푏) 푑  = 100, (푐) 푑  = 
300 and (푑) 푑  = 500. The values of the other parameter are  푑 = 1, 퐵 = 0.45, and 휈 = 182.5.  
Legend on the top of each panel shows the color of the locus of each solution branch. The same 
line color is used for the U   and U  . 
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Fig. 9: The different bifurcation diagrams of the PTWs in the model (6.1),plotted U as a function of the 
migration speed 푐, for fixed rainfall parameter A = 2.5.  

The light green line (middle line) in each panelindicates the 퐿2-norm of the solution of the 
traveling wave ODEs (4). The blue lines (upper line and lower line)  exhibit the loci of maximum 
and minimum of the plant density variable U respectively in each panel. The branches of solution 
emanate from a Hopf bifurcation point marked by filled red square at 푐 = 0.3366, 0.3044, 0.1726, 
0.0878 respectively for 푑  = 0.01, 100, 300, and 500. Again, the branches of solution terminate to 
a Hopf bifurcation point at 푐 = 2.622, 2.398, 2.079, 1.890 respectively for 푑  = 0.01, 100, 300, 
and 500. Therefore, the branches of PTWs are bounded with 푐∈ [0.3366, 2.622] for 푑  = 0.01, 푐∈ 
[0.3044, 2.398] for 푑  = 100, 푐∈ [0.1726, 2.079] for 푑  = 300 and 푐∈ [0.078, 1.890] for 푑  = 
500. It is to be mentioned that the ranges of the wave speed 푐 between the Hopf bifurcation points 
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푑 = 300 푑 = 500 
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decrease gradually with the increase of water diffusion coefficient 푑 = 0.01, 100, 300, 500 
respectively. There exists a fold point or a saddle-node bifurcation point marked by filled red circle 
on the L2-norm at 푐 = 1.967 when 푑 = 500. There exist also two fold points marked by filled 
red circles at 푐 = 1.967 on the locus of the U  and U  for 푑  = 500. We observe that there 
exists no fold point for 푑  = 0.01, 100, and 300.  
 
6. Conclusion 

We have studied the existence of the periodic traveling wave solutions numerically, in the 
Klausmeier model and in the modified Klausmeier model. We have introduced an additional water 
diffusion term in (2b) to understand the behavior of the dynamics in order to understand the 
change of the existence of solutions as a function of water transport parameter,푑 . We have 
observed that,when the value of the parameter 퐴 is increased, the corresponding period decreases 
(see Fig. 3(푏)) and 퐿 -norm (see Fig. 3(푎)) of the solution increases. We have briefly investigated 
the existence of the PTWs of the modified Klausmeier model (2) in the 퐴-푐 parameter plane as a 
function of the water diffusion parameter. We have calculated a locus of Hopf bifurcation points 
and a locus of homoclinic solutions (PTWs having period infinity) in each panel in order to specify 
the right and left boundary respectively of the pattern forming region in the A-c parameter plane 
(see Fig.4(푎 − 푑)).We have observed that the locus of homoclinic solutions and the locus of Hopf 
bifurcation points slightly change due to the increasing values of the water diffusion parameter 
푑 = 0.01, 100, 300 and 500 respectively. The PTWs region gets shrink gradually for large wave 
speed as the water diffusion increases from panel (a) to panel (d) (see Fig. 4).We have established 
several types of bifurcation diagrams [39]for the models (1) and (2). Our results have showed a 
significant variation in migration speed. We have observed that, for a fixed rainfall, pattern 
wavelength is an increasing function of pattern migration speed 푐 (see Fig. 5). But this test is 
impossible due to insufficient field data on migration speeds.We have also observed that both 
W  and U  increase as a function of water diffusion coefficient 푑 . On the other hand, W  
and U  remain almost constant for any value of 퐴(see Fig. 6 and 8).In the Figure 7 and 9, we 
have mentioned that the ranges of the wave speed 푐 between the Hopf bifurcation points decrease 
gradually for the increasing values of water diffusion parameter.Therefore, it can be deduced that, 
the study of the existence of periodic traveling waves is essential to understand the complex 
spatiotemporal pattern formation in a reaction-diffusion-advection type of ecological model. 
However, in order to understand the detailed ecological complexity, one needs to study the 
stability of solutions thatwe areleaving for the publication in our forthcoming paper.  
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