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ABSTRACT 

Redistribution of flow in the bronchial tree is an important factor that enhances gas exchange in the lungs, especially, in 

diseased lungs. The bifurcated bronchial tree is like an electric network in series and parallel. A lumped-model of parallel 

system for constant flow rate is solved analytically to demonstrate the intrinsic characteristics and the dynamic behavior of 

the system. Inertial and capacitive time constants are calculated for 19th generation airways of human lung to control the 

solution. The investigation revealed that (i) higher inertial force takes more time to maximize the inertial flow to steady state  

and more time to minimize the resistive flow to steady state  and (ii) the compliant effect is negligible for a relatively higher 

inertial time constant, 𝑡𝐿 > 6𝑠 on the same experimental conditions. 
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1. Introduction 

Inspiration of O2
 (Oxygen) and expiration of CO2

 (Carbon dioxide) along human lung is a fluid transportation from trachea 

(0th generation, G0) to alveolar end (23rd generation, G23) and vice versa. Pressure in steady or pulsatile is a driving force of 

oscillatory flow of respiration. The relation between pressure and flow in a respiratory tube depends on its diameter, length, 

roughness and elasticity. Angle and curvature of bifurcations are other factors which influence the pressure-flow relation in 

bronchial tube. It is very difficult to simulate a problem showing the effect of all parameters in a single experiment. 

Mathematical modeling, computational model, circuit analogy and lab experiment are the leading methods of approximating 

the physical values. So, the flow through complex geometry mounts the importance of lumped model with three elements: 

resistance, inertance and compliance associated with the flow and geometry of lung tube. Numerous works have been done 

on respiratory flow experimentally and numerically. Otis et al. [1] carried out a study of breathing movements which overcome 

several types of resisting forces such as viscous and turbulent resistance, resistance for elasticity and deformation of airways. 

They experimentally measured the resistance related to moving gas through respiratory tract and derived equations that give 

an approximate description of the mechanical system. They measured resistance related to moving gas through the respiratory 

tract experimentally and derived equations that give an approximate description of mechanical system. A non-linear lumped 

parameter model has been developed to investigate the dependency of airflow distribution in the bronchial tree on time 

 

 
*Corresponding Author. Email Address: mahtab_ahmmed@juniv.edu 



Ahmmed and Sultana / GANIT J.  Bangladesh Math. Soc. 40.2 (2020) 86–94                                                                                                             87 

dependent parameters, resistance and compliance by Elad et al. [2]. They revealed that diameter asymmetry is more dominant 

than length asymmetry for compliance effect. Moreover, the parameters are defined by Zamir [3]. Saing et al. [4] developed 

a non-linear multi-compartment lung mechanics model that accounts for non-linearities of the airway resistances and the lung 

compliances. They also found that the non-linearrity in the airway resistance is much evident during expiration than 

inspiration. Eckmann et al. [5] and Fujioka et al. [6] studied oscillatory flow of gas transport for curved tubes. They found 

effective diffusion in bent and bifurcated tubes than in straight tubes and gas exchange between inspiration and expiration. 

Calay [7] worked for numerical simulation of breathing in normal and exercise conditions. He found that,  the respiratory 

flows are strongly dependent on the convective effect and the viscous effect with some contribution of the unsteadiness effect. 

Hirahara et al. [8] simulated oscillatory gas flow in lower airways where boundary conditions are based on compliance and 

resistance of airways. They investigated inertial effect and irreversible flow for various compliances. Also, phase delay was 

calculated by lumped parameter analysis.  The effect of compliance under constant resistance and inertance  for lumped 

parameter model is investigated by Ahmmed [9] . He introduced inertial and capacitive  time constants to characterize the 

oscillatory flow behavior.  Various mechanisms of gas transport for oscillatory flow along human lung are identified by Chang 

[10] and Pillow [11]. They examined the importance of convective transport of gases for gas exchange during respiration. 

These studies were limited to mathematical modeling and numerical simulation of different transport problems along 

bronchial tree of human lung. Our efforts has been directed towards the parallel airways of bronchial tree. 

In the present work we solved a lumped-parameter model of parallel system to study the dynamics of resistive flow, 

capacitive flow and inertial flow for RLC elements. The elemental values of resistance, inertance and compliance were 

evaluated from laboratory studied of airway models and physiological measurements [2]. The change of basic intrinsic 

characteristics of RLC system due to the change of RLC elements for respiratory disease or clinical intervention, will 

demonstrate the dynamic behavior of lung problem. 

 

Nomenclature: 

Symbol  Meaning   Unit 

R  Resistance   Pa.s.m-3 

L  Inertance   Pa.s2.m-3 

C  Compliance   m3Pa-1 

q  Total flow rate   m3s-1 

d  Diameter of channel  m 

Rq   Resistive flow rate  m3s-1  

Lq   Inertial flow rate                m3s-1  

Cq   Capacitive flow rate  m3s-1 

Lt   Inertial time constant  sec (s) 

Ct   Capacitive time constant               sec (s) 

LR   Laminar resistance  Pa.s.m-3 

p   Pressure drop   Pa 

v   Change in volume  
3m  

t   Change in time   sec (s) 

Re  Reynolds number  Dimensionless 

 

Greek Letters 

   Kinematic viscosity of air   m2.s-1 

   Dynamic viscosity of air                Pa.s 

   Density of air   kg.m-3 

   Roots of solution                 s-1 

 

 

 

2. Anatomy and Model Channel 

 

2.1  Anatomy of Human Lung 

According to dichotomy model of human lung, the bronchial tree consists of 23 generations from trachea (0 th generation, G0) 

to alveolar end (23rd generation, G23), G for generation and there are mainly two states; gas flow state and gas diffusion state 



88                                                                                                                   Ahmmed and Sultana / GANIT J. Bangladesh Math. Soc. 40.2 (2020) 86–94 

in the human lung Weibel [12].  Gas mainly transports from trachea (G0) to the terminal bronchioles (G16) which is called 

the conducting zone or anatomical dead space. The zone from G17 to G23 is called respiratory zone where convection and 

diffusion take place in gas transportation. The transition from convection to diffusion occurs at the beginning of respiratory 

zone and gas exchange mostly occurs at the end of respiratory zone in presence of respiratory bronchioles, alveolar ducts and 

alveolar sacs. We expect active gas mixing and gas exchange in the respiratory zone so that we prefer the generations G18 to 

G20 for numerical experiment.  

 

2.2 Model Channel of Human Lung Structure 

The bronchial airways of human lung are compliant by nature. Because of experimental limitations, it is quite impossible to 

conduct experiment in lab with a real lung. For this, we propose a rigid model channel connecting compliant balloon as alveoli 

at the end of 20th generation. The lab experimental value of resistance, inertance and compliance are incorporated in numerical 

experiment to have the real flow characteristics of our model channel. Also, the geometric configuration and dynamical 

behavior is considered in the entire experiment. Fig. 1.1(a) illustrates doubly-bifurcated two-dimensional respiratory model 

channel of G18 to G20 for adult human lung and Fig. 1.1(b) is the corresponding circuit analogy of lumped-model. The 

primary feature of our model channel is symmetric bifurcation of one tube into two smaller tubes. Each branch of channel 

was fabricated axially symmetric and entire channel is symmetric about axis of mother tube (G18). The ratio of diameters of 

our test channel, 8:9:10:: 201918 ddd  shows the linear change of flow channel.  The widths (rectangular 

channel) as well as the diameters (cylindrical channel) of G18, G19 and G20 are 500, 450 and 400μm, respectively. The 

average width of rectangular channel is 500μm that represents the depth of our channel. The length of the middle branch, G19 

is1.2 mm along the centreline and the lengths of G18 and G20 are enough to reach up to fully developed flow. Since channel 

resistance is delicately sensitive to change in radius, we take into consideration the real scale measurement of G19. So, real 

flow phenomena and hence gas exchange mechanisms are expected in G19. 

 

 

 

(a) Physical model channel (b) RLC circuit model 

Figure1.1 Model Channel of 18th to 20th generation 

 

 

3. Lumped-Parameter Model 

3.1. Description of Model Equations 

The pressure-flow relation in a bifurcated model channel of human lung depends on channel diameter, length, angle of 

bifurcation, the curvature at junction, the elasticity of channel and the driving pressure (steady or oscillatory) applied along 

it. The flow through complex geometry mounts the importance of lumped model. The flow simulation of our lumped model 

consists of three parameters such as resistance (R), inertance (L) and compliance (C). Resistance is a measure of pressure 

difference in a fluid acting opposite to the motion of fluid in a channel. It is proportional to the pressure drop ( p ) as driving 

force in a channel for a resistive flow rate (
Rq ). The resistance of channel may be defined as  
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RRqp =  (3.1) 

Inertance (L) is a measure of pressure difference in a fluid required to change the inductive flow rate ( Lq ) with time. Inertia 

in flow field occurs due to the acceleration or deceleration. It can be defined by  

dt

dq
Lp L=  

 

(3.2) 

Compliance (C) of a bronchial channel of human lung is the ability to stretch and expand. A balloon like an alveolus of lung 

is in an inflated state when pressure inside the balloon is higher than pressure outside it. The compliance of the balloon is 

defined by the amount of change in the pressure difference ( p ) required to produce a change in volume ( v ) such that   

)( p

v
C




=   

(3.3) 

For incompressible flow, the only way to change the volume of the balloon is to change the amount of fluid within it. If a 

small change in volume ( v ) for an increment time ( t ) is found for a volumetric or capacitive flow rate ( Cq ), the relation 

becomes 

 

tqv C=  (3.4) 

Equations (3.3) and (3.4) lead to 

 

tq
C

p C=
1

)(  
 

(3.5) 

Due to oscillatory flow and complex geometry of bronchial channel, the driving pressure varies with time. As a consequence, 

if )(tpp = then )(tqq CC =  and Eqn. (3.5) becomes 

dtq
C

p C=
1

 
 

(3.6) 

Now we consider that the lumped parameters R, L and C are in parallel under a driving pressure drop ( p ) as shown in Fig.1.1 

where G19L and G19R are parallel in 19th generation and G20LL, G20LR, G20RL and G20RR are parallel in 20th generation. 

Total flow rate into the parallel system is given by 




++


=

++=
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(3.7) 

Differentiating once with respect to time and introducing inertial time constant, )/( RLtL = as well as compliant time 

constant, )( RCtC = we yield  

dt

dq
Rp

tdt
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pd
t

L

C =+


+
 1)()(
2
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(3.8) 

 

3.2. Parameters and RLC Elements 

The Reynolds number (Re), an important dimensionless quantity, is a ratio of inertial forces to viscous forces within a fluid 

which is used to predict flow patterns in different fluid flow situations. The Reynolds number is defined as 

d

q



4
Re =  (3.9) 

where q ,  and d are total flow rate, kinematic viscosity of air and diameter of the tube. The resistance at a given generation 

for the total flow rate is defined as [13] 
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(3.10) 

https://en.wikipedia.org/wiki/Viscous
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Here, LR is the laminar resistance in n-th branch tube, l is the length of the tube and μ is the viscosity of air.  The inertance is 

an associated parameter which corresponds to the fluid acceleration or deceleration and can be expressed in terms of tube 

dimensions[14], thus 

2

4

d

l
L




=  

(3.11) 

where, ρ is the density of air. Our interest of experiment is in G18 to G20. The bronchial airways of G20 are connected with 

compliant tubes as volume-dependent compliance, whereas G18 and G19 preserve constant volume for rigidity. According 

to the investigation of Sharp et al.[15], the net lung’s compliance (C) is : 

 OL/cmH31.0~128.0
)(

2=



=

P

v
C  

(3.12) 

The compliance below G20 was estimated from the number of branches and the length of each tube that was adjusted for the 

equivalent compliance. 

 

 

3.3. Solution of Governing Equation 

If total flow rate is kept constant ( const.=q ) to find the viscous effect of resistive tube, the inertial effect of inductive tube 

and the capacitive effect of compliant tube, then Eqn. (3.8) grow into  

0
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(3.13) 

Eqn. (13) is a standard second order differential equation with constant coefficients. Its solution depends on the nature of the 

roots of the associated equation 

0
12 =++
L

C
t
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(3.14) 

The roots are generally given by 

C
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t
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=  

In case of over damped flow condition,  is real for LC tt 4 . If 
1 and 

2 are two distinct real roots, then solution of Eqn. 

(13) is   
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Where A and B are arbitrary constants to be calculated. The non-dimensional forms of resistive, inductive and capacitive flow 

rates are
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3.16 (a, b, c)) 

The pressure drop can also be put in non- dimensional form as 

tt
eBeARqptp 21/)(


+==  
(3.17) 

Where,  / RqAA = and RqBB /=  

At initial condition, t = 0 Eqns. (16) reduce to 

BAq
R

+=)0(   

 

3.18 (a, b, c) 
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LLL
ttBAq /)//()0( 21 ++=   

CC
tBAq )()0( 21  +=  

We need only two initial conditions to calculate two unknown constants A and B. So, we may prescribe only two initial flow 

rates. We intend to examine the dynamic system of our problem for Lt and Ct  so that the entire inflow q is passed through 

the resistive tube while the sum of the inductive and capacitive flow rates is zero, that is 

0)0()0(,1)0( =+=
CLR

qqq  (3.19) 

The sum of two initial flow rates is zero only if they are separately zero and hence the initial conditions are  

0)0(,0)0(,1)0( ===
CLR

qqq  (3.20) 

Which give, after some algebra 

 )/(  ),/( 121122  −−=−= BA  (3.21) 

The values in (3.21) satisfy the conditions 1=+ BA  in 14(a) and 1)0()0()0()0( =++=
CLR

qqqq in (3.7). With the help 

of values of A and B , the non-dimensional flow rates in Eqns. (3.18) can be plotted as functions of time. Values of the time 

constants 
CL tt  , are required in order to complete the process. 

 

4. Results and Discussion 

 

Electrical analogy of parallel flow for over-damped condition is considered in our present study by which we examine the 

flow behavior along human lung. It is very difficult even impossible to attain quantitative results instead of qualitative 

behavior. Total flow is kept constant for model equation (3.8) with initial conditions (3.20). Resistive flow rate (
Rq ) through 

the resistive tube, inertial flow rate (
Lq ) through the inductive tube and capacitive flow rate (

Cq ) through the capacitive tube 

are taken in over-damped flow. The intensity of flow through inductive tube and capacitive tube is measured by inertial time 

constant (
Lt ) and capacitive time constant (

Ct ), respectively. 

The time constants are calculated from the values ]/mPa.s[1075.8 327=L , ]Pa.s/m[1044.1 37=R  and ]/Pam[1094.6 38−=C  

obtained from Eqns. 10-12. The values of
Lt , 

Ct  are required in order to complete the process graphically. The total flow into 

the system is fixed at a normalized value of 1 and the initial values of 
Lq , 

Cq and 
Rq  are set to 0, 0 and 1 respectively. So, 

initially the resistive tube carries the entire flow rate into the system. Then the numerical experiment is continued for 6=Lt

sec and 99.0=Ct sec within 
LC tt 4 .The non-dimensional flow rates in Eqns. 16 are plotted as functions of time as shown in 

Fig. 4.1. Here the inertial flow,
Lq  (dashed dot curve, green) grows rapidly from zero to the entire flow into the system and 

Cq , 
Rq diminish to zero as a consequence.  The inertial flow rate approaches to steady state at 1=q for 

Lt =6 s and 

capacitive flow rate (dotted curve, blue) diminishes to zero at 0=q for 99.0=Ct s. Moreover, the resistive flow rate (solid 

curve, black) becomes zero in the system. 

 

The effect of capacitance like compliance (C) of the system is evident in capacitive flow rate curve for a minimum time 

constant, 
Lt =6 s and 99.0=Ct s as in Fig. 4.1. The curve shows that, the capacitive flow rate is initially zero and ultimate 

to zero but capacitor is inflated prior to be steady state at zero. That means the capacitor absorbs fluid mass prior to its ultimate 

value to zero due to a very short time constant of 
Lt =6 s. The larger value of )10( LtL

is considered in Fig.4.2 to find the 

state of capacitor in the system. In time constants )/( RLtL = and )( RCtC = , R for tube resistance and C for capacitance 

of a system are taken constant as experimental value. So, s99.0=Ct is constant throughout the experiment and 
Lt varies for 

the value of inertance (L). Mathematically, 101),(
1

= iiLf
R

tL
gives the pairs 

).60,10(...,),12,2(),6,1(),/( =LtRiL  For ),/10( LtRL  and s99.0=Ct , the effect of capacitance is negligible due to 

higher inertial effect as depicted in Fig. 4.2. The higher the inertial effect the longer it takes the flow to reach steady state.  
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Fig. 4.1 Flow behavior of Rq , 
Lq and Cq  for  

,6=Lt 99.0=Ct s. 

Fig. 4.2 Flow behavior of Rq , 
Lq and Cq  for  

,60=Lt 99.0=Ct s. 

 

  

Fig. 4.3 Variation of resistive flow,
Rq with the 

change of .Lt  

Fig. 4.4 Variation of capacitive flow,
Cq with the 

change of .Lt  

 

From Fig. 4.1 and 4.2 we can conclude that shorter the inertial time constant, higher the effect of capacitance in parallel 

network of lung model. To investigate the effect of inertia is a challenging work in biological field especially within 18 th to 

20th generation of human lung due to high resistance and compliance properties. The rate of gas exchange within lung depends 

on the rate of inertia and diffusion. It is also required to examine the effect of inertia individually in resistive tube, in capacitive 

tube and in inductive tube when the total flow is constant in the parallel system.  

Fig.4.3 shows the variation of 
Rq for different values of L when ),0(),( = iiLftL

under constant flow. We 

see that the gradient of resistive flow is gradually decreasing with the increase of inertial force. It means higher inertial force 

takes more time to minimize the resistive flow rate at 0)( =tq of steady state. 

Fig.4.4 shows the variation of Cq  for different values of L under constant flow rate. Mathematically, this effect is 

found from Eqn. (16c). The gradient of flow curve is initially negative and then positive to reach steady state at zero. be steady 

state to zero. The variations of Cq  indicates that compliant tube receives fluid particles and discharge it within a very small 
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inertial time constant (L/R). In a consequence, the compliant effect is negligible for a long inertial time constant as in Fig. 4.4 

(blue curve). 

 

 

Fig. 4.5 Variation of inertial flow,
Lq with the change of .Lt  

 

Fig.4.5 shows the variation of Lq for different values of L when ),0(),( = iiLftL
under constant flow rate. We see 

that the gradient of inertial flow is gradually decreasing with the increase of inertial force. It means higher inertial force takes 

more time to maximize the inertial flow rate at 1)( =tq  of steady state. In a word, the resistive flow in Fig.4.3 and the inertial 

flow in Fig.4.5 behave reversely as shown in Fig. 4.1 and 4.2.   

 

5. Conclusions 

A lumped-model of parallel system for incompressible air of constant inflow through bronchial tree is considered. The 

movement of air is associated with inertance (L), the viscosity of air is subject to resistance (R) of tube wall and the elasticity 

of tube is associated with compliance or capacitance (C) of bronchial tube. Free dynamics of the RLC system represent its 

basic intrinsic characteristics. Any relevant change of R, L, C, as a result of respiratory disease or clinical intervention, may 

change the intrinsic characteristics and demonstrate the dynamic behavior of the system. We found that the inertial flow 

ultimately encompasses the entire flow into the system, thus reducing resistive and capacitive flow to zero. The dynamics of 

resistive flow, capacitive flow and inertial flow are examined for the variant inertial forces. We found that higher inertial force 

takes more time to maximize the inertial flow to steady state ( 1)( =tq ) and more timeto minimize the resistive flowto steady 

state ( 0)( =tq ). It is also found that the compliant effect is negligible for a relatively high inertial time constant, stL 60=
on the same experimental conditions. 
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