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ABSTRACT 

In this paper, we propose that the Lagrangian relaxation approach can be used to approximate the Pareto front 
of the multiobjective optimization problems. We introduce Lagrangian relaxation approach to solve scalarized 
subproblems. The scalarization is a technique employed to transform multiple objectives optimization problems 
into single-objective optimization problems so that existing optimization techniques are used to solve the 
problems. The relaxation approach exploits transformation and creates a Lagrangian problem in which some of 
the constraints are replaced from the original problem to make the problem easier to solve.  The method is very 
effective when the problem is large scale and difficult to solve; this means if the problem has nonconvex and 
nonsmooth structure, then our proposed method efficiently solves the problem. We succeed in establishing 
proper Karush Kuhn-Tucker type necessary conditions for our proposed approach. We establish the relation 
between our proposed approach and the well-known existing approach weighted-sum scalarization methods. 
We conduct extensive numerical experiments and demonstrated the advantages of the proposed method of 
adopting a test problem. 
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1. Introduction 

Lagrangian relaxation method is one of the useful approaches that is being used to solve large scale optimization problems. 
This can be regarded as an extension of the nonlinear programming Lagrange multiplier method. In the 1970s, Lagrangian 
relaxation grew up as a theoretical concept to a tool that is the backbone of a number of large-scale applications. There 
were several surveys of Lagrangian relaxation method conducted by Fisher [1], Geoffrion [2], and an excellent textbook 
treatment by Shapiro [3]. How to put a Lagrangian relaxation approach in practice has been analyzed in Fisher [1] and 
Held et al. [4].  
 
In the real world, many problems have been modeled as optimization problems whose objective function includes a certain 
number of reasonable performance measures. We have to choose at least one individual better off, without making any 
other individual worse off. These types of problems we call a multiobjective optimization problem. One of the popular 
methods to solve multiobjective optimization problem is scalarization method (see, [5-8]). The scalarization approach is 
applied to transform multiple objectives into a single objective so that existing optimization techniques are used to solve 
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the problems. In this paper, we introduce this Lagrangian relaxation approach to solve scalarized subproblems to 
approximate the Pareto front. The relaxation approach exploits transformation and creates a Lagrangian problem in which 
the complicating constraints are replaced. In our analysis, in the scalarization process, the objective functions which play 
the role as constraints are usually considered as complex constraints.  Therefore, the relaxation approach is used to replace 
these objective-constraints from scalarized subproblems. The method is very effective when the problem is complex and 
difficult to solve; this means if the problem is either nonconvex or nonsmooth or both, then our proposed method efficiently 
solves the problem and generate the Pareto front. The proposed method could be more useful in the area of the control 
optimization problem, as in this area problems often modeled as a nonsmooth problem over time. And the existing solver 
cannot handle the problem properly because of the structure of the problem. In this situation, our proposed method, which 
is the augmented form of the original problem, works well to fit solvers to approximate solutions.   We also show that 
proper Karush Kuhn-Tucker type necessary conditions hold for our proposed approach. Moreover, we established the 
relation between our proposed approach and the well-known existing approach weighted-sum scalarization methods. In the 
end, we conduct extensive numerical experiments and demonstrated the efficiency of the proposed method using a test 
problem.  
 

2. Multiobjective optimization problems 

In this section, we introduce some notations and definitions of multiobjective optimization problems, which are 
used throughout the paper. Let 𝐸" be n-dimensional Euclidean space. 
For 𝒙, 𝒚 ∈ 𝐸", we use the following conventions. 
 

𝒙	 > 	𝒚,   iff   𝑥* 	> 	 𝑦*,   i=1,…,n, 
𝒙	 ≥ 𝒚,   iff    𝒙	 > 	𝒚  and   𝒙	 ≠ 	𝒚, 
𝒙	 > 	𝒚,   iff    𝑥* > 𝑦*  i=1,…,n. 

 
Now, we consider the following multiobjective optimization Problem 𝑃: 
 
  𝑚𝑖𝑛	𝑍 = 𝑓 𝒙 ,  subject to the set X: 
       𝒙 ∈ 𝑋 = 𝒙 ∈ 𝐸" 𝒈 𝒙 	< 	0 . 

Assume that,  𝑓: 𝐸" → 𝐸;	and 𝑔: 𝐸" → 𝐸= be continuously differentiable vector-valued functions.  

2.1   Pareto optimality /efficiency/non-superiority  

We consider a solution 𝒙 ∈ 𝑋 of Problem P. Now, 𝒙 is an optimal solution if and only if every objective function 𝑓 𝒙 ≡
𝑓? 𝒙 , 𝑓@ 𝒙 , . . . , 𝑓; 𝒙  attains its minimum value. This appears that the conflicting nature of the objectives, an optimal 

solution that simultaneously minimizes all the objectives is usually not attainable, that is, the definition of optimality is too 
stronger to be used. The extension of the definition of an optimal solution is thus necessary and desirable. Many broader 
definitions of optimal solutions are used in the literature: these are Pareto optimal point [7, 8], vector minimum point [7], 
efficient point [9,10] and non-superiority [9]. In our analysis, we refer to this point as a Pareto point or an efficient point. 
The front that contains Pareto points is called the Pareto front. 
 
Definition 2.1  A point Xx  is called an efficient solution to Problem 𝑃 if there is no Xx  such that 𝒇 𝒙 ≤
𝒇 𝒙 . 

 A point Xx  is called a weak efficient solution to Problem 𝑃 if there is no Xx  such that 𝑓 𝒙 < 𝑓 𝒙 . 

Because of ordering relations, we can get a problem where all points are efficient solutions or the problem does not have 
any efficient point at all. 

 

2.2 Scalarization method 
 
A multiobjective problem is often solved by combining its multiple objectives into one single-objective scalar function. 
This approach is, in general known as the scalarization method. To obtain a set of efficient points, a set of weighting vectors 
is used which would result in a set of single-objective subproblems. This is the reason why such methods are called 
decomposition-based. Because the employed strategy is to decompose a complex problem into a set of simpler ones. 
Simpler in this context does not necessarily mean easier to solve, it means that it is straightforward to apply standard 
methods to solve subproblems. One of the well-known scalarization techniques is kth objective weighted constraint problem 
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introduced in [6,11]. The method is applicable not only to the problems with disconnected Pareto front but also to the 
problems with a disconnected feasible set under the mild assumptions that the objective functions are continuous and 
bounded from below with a known lower bound.   For each fixed 𝑘, the kth objective is minimized while the other weighted 
objective functions are incorporated as constraints. The Problem (BMOP) introduced in [6,11] structure is as follows: 

min𝑤I𝑓I 𝑥 , 
subject to 

𝑤*𝑓* 𝑥 ≤ 𝑤I𝑓I 𝑥 , 𝑖 = 1, … , 𝑙, 𝑖 ≠ 𝑘, 
𝑤* > 0, 𝑤* = 1;

*M? ,  
 𝑔N 𝑥 ≤ 0, 𝑗 = 1, … , 𝑛. 

If 𝑥 is a weak efficient point to the original Problem P, then  𝑥 is the solution of the (BMOP) for each fixed 𝑘. On the other 
hand, a point  𝑥 solves all subproblems of (BMOP), then it is an efficient solution of the original Problem P. This is a strong 
condition and it can be relaxed by setting 𝑥I, 𝑘 = 1,… , 𝑙 solves the k-subproblems of (BMOP) and if Proposition 3.3 in 
[6] holds, then 𝑥I, 𝑘 = 1,… , 𝑙  are weak efficient solutions of the original Problem P. 
 
We recall here another popular scalarization method to solve Problem P which is known as the weighted sum approach 
introduced in [12,13]. 

The method (GMOP) is as follows 

min 𝑤*𝑓* 𝑥;
*M? , 

subject to 
𝑔N 𝑥 ≤ 0, 𝑗 = 1, … , 𝑛, 
𝑤* > 0, 𝑤* = 1;

*M? .  

Every solution of Problem (GMOP) is a weakly efficient point [8], and this fact is used to construct an approximation of 
the Pareto front. Note that the main advantage of this method is that it is very efficient and easy to implement. However, a 
drawback of this approach is it cannot approximate the Pareto point which lies in the nonconvex part of the Pareto front. 
 
3. Lagrangian relaxation in multiobjective optimization problem 
 
Many hard integer programming problems can be regarded as easy problems if it is possible to relax some of the side 
constraints from a constraint set. Fisher [1] proposes a method that dualizes complex constraints produces a Lagrangian 
problem that is straight forward to solve and whose optimal value is a lower bound (for minimization problems) on the 
optimal value of the original problem. This approach has led to dramatically improved algorithms for many important 
problems in the areas of routing, location, scheduling, assignment and set covering. We extend this Fisher’s [1] Lagrangian 
relaxation approach to solve multiobjective optimization problems.  

We provide a Lagrangian relaxation technique to solve the subproblems of (BMOP), start with relaxing the constraints  
𝑤*𝑓* 𝑥 ≤ 𝑤I𝑓I 𝑥 , 𝑖 = 1, … , 𝑙, 𝑖 ≠ 𝑘, 

We define an 𝑙 − 1  vector of nonnegative multipliers 	𝑝 ∈ 𝐸;, 𝑝 ≥ 0 and added the nonnegative term  
𝑝*(𝑤*𝑓* 𝑥 − 𝑤I𝑓I 𝑥 ), 𝑖 = 1, … , 𝑙, 𝑖 ≠ 𝑘, 

to the objective function of (BMOP). Therefore, the mathematical formulation of the revised kth subproblem is 
(LRBMOP) 

min𝑤I𝑓I 𝑥 + 𝑝*[𝑤*𝑓* 𝑥 − 𝑤I𝑓I 𝑥 ], 𝑖;W?
*M? ≠ 𝑘, 

subject to 
𝑤* > 0, 𝑤* = 1;

*M? ,  
𝑔N 𝑥 ≤ 0, 𝑗 = 1, … , 𝑛, 

  𝑝 ≥ 0. 

This can be reformulated as  
min 1 − 𝑝*;W?

*M? 𝑤I𝑓I 𝑥 + 𝑝*;W?
*M? 	𝑤*𝑓* 𝑥 , 𝑖 ≠ 𝑘, 

subject to 
𝑤* > 0, 𝑤* = 1;

*M? ,  
𝑔N 𝑥 ≤ 0, 𝑗 = 1, … , 𝑛, 

  𝑝 ≥ 0. 
 
There are three major questions arise in designing the Lagrangian relaxation method.  

a. Find the constraints set that should be relaxed from the problem?  
b. Find the multipliers 𝑝* that minimize the problems?  
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c. How to presume a good feasible solution to Problem P?  

These fully depend on the specific problem.  

3.1   Determining Lagrangian parameters 𝑝* 
 
Fisher suggested that the best choice of finding 𝑝* is to solve the dual problem of (LRBMOP). However, dualize the problem 
and then solve it to find the Lagrangian parameters 𝑝*  has a clear disadvantage as the procedure is computationally 
extensive. In our analysis, we use Held et al. [4] approach to find the parameters 𝑝* which is as follows. 
The subgradient method is used for setting dual variables. A detailed of this setting can be seen in [2]. We are here recalling 
the main steps to calculate 𝑝*. It is required to determine a sequence of values for	𝑝* that are  

𝑝IX? = max 	0, 𝑝I + 𝑡I 𝐴𝑥I − 𝑏 , 
where 𝑡I is the step-size and 𝑥I are the optimal solution of (LRBMOP). 
A formula for 𝑡I that has been used in practice is  

𝑡I = ^_ `∗W`b c_

de_Wf
g ,                     

𝑍∗ is the objective value of the best-known feasible solution of (P). The sequence 𝜆I is determined from the interval 0,2  
and suitable 𝜆I is required if 𝑍 𝑝*  fails to increase. 
 

4. Existence of Karush Kuhn-Tucker Conditions 

In this section, we show that the solution of (LRBMOP) for all 𝑘, and the regularity conditions GGRC guarantees proper 
Karush Kuhn-Tucker conditions (PKKT). Proper KKT conditions are said to hold if all the Lagrangian multipliers of the 
objective functions are positive (see, more details in [14,15]).  To obtain (PKKT), a set of assumptions is required which 
contains the objective functions and the constraints. These assumptions are called regularity conditions. The following 
assumptions will be needed in the development. 
 
Assumption A: Let 𝑥 be an efficient point and the following regularity condition GGRC holds at 𝑥. 
(Generalized Guignard Regularity Conditions (GGRC))[11] Let 𝑥 be a feasible point of (MOP). Then (MOP) is said to 
satisfy the GGRC if   

𝐿 𝑄; 𝑥 ⊆ 𝑐𝑙𝑐𝑜𝑛𝑣𝑇 𝑄*; 𝑥 ,
;

*M?

	

where, 𝑄* ≡ 𝒙 ∈ 𝐸" 𝒙 ∈ 𝑋,		𝑓I 𝒙 < 𝑓I 𝒙 ,		𝑘 = 1,2, . . . , 𝑙		𝑎𝑛𝑑		𝑘 ≠ 𝑖 , and   

            𝑄	 ≡ 𝒙 ∈ 𝐸" 𝒙 ∈ 𝑋,		𝐟 𝒙 < 𝒇 𝒙 . 
 
Theorem 4.1: Under Assumption A, let 𝑥 be the solution of (LRBMOP) for all 𝑘. Moreover, for every fixed 𝑘, all the 
multipliers associated with Problems (LRBMOP) are positive. 

Proof: Theorem 4.3.1 in [6] states that every weak efficient solution of Problem (MOP) is the solution of (BMOP) for all 
𝑘. We also know that every efficient point is a weak efficient point. Therefore, efficient points are the solution of (BMOP) 
for all 𝑘. By the assumptions we have (see Theorem 4.4 in [6]) 
 

 𝑢*𝛻𝑓* 𝒙;
*M? + 𝑣N𝛻𝑔N 𝒙=

NM? = 0                                                                      (4.1) 
 𝑣N𝑔N 𝒙 = 0, 𝑗 = 1, … ,𝑚,                  

      𝒖 > 0, 𝒗	 > 	0. 
We can rearrange (4.1) as 

𝑢I
𝑤I

𝑤I𝛻𝑓I 𝒙 +
𝑢*
𝑤*
𝑤*𝛻𝑓* 𝒙

;

*M?,*yI

+ 𝑣N𝛻𝑔N 𝒙
=

NM?

= 0, 

𝑢I
𝑤I

+
𝑢*
𝑤*

;

*M?,*yI

		𝑤I𝛻𝑓I 𝒙 +
𝑢*
𝑤*
	

;

*M?,*yI

𝑤*𝛻𝑓* 𝒙 − 𝑤I	𝛻𝑓I 𝒙 + 𝑣N𝛻𝑔N 𝒙
=

NM?

= 0, 

this implies, 
𝑢*
𝑤*

;

*M?

	𝑤I𝛻𝑓I 𝒙 +
𝑢*
𝑤*
	

;

*M?,*yI

𝑤*𝛻𝑓* 𝒙 − 𝑤I	𝛻𝑓I 𝒙 + 𝑣N𝛻𝑔N 𝒙
=

NM?

= 0, 

 
therefore, 
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cz
{z

;
*M? 		𝑤I𝛻𝑓I 𝒙 + 	;

*M?,*yI
cz
{z

;
*M?

|z
}z

|z
}z

~
z��

𝑤*𝛻𝑓* 𝒙 − 𝑤I	𝛻𝑓I 𝒙 + 𝑣N𝛻𝑔N 𝒙=
NM? = 0.        (4.2) 

Assume that 𝜆* =
cz
{z

 and 𝑝* =
|z
}z

|z
}z

~
z��

. Since, 𝑢* > 0 and 𝑤* > 0 for 𝑖 = 1, … , 𝑙, thus 𝜆* > 0 and hence, 𝑝* > 0. Let 𝜆 =
cz
{z
,;

*M?  therefore the equation (4.2) becomes 

𝜆	 𝑤I𝛻𝑓I 𝒙 + 	
;

*M?,*yI

𝑝* 𝑤*𝛻𝑓* 𝒙 − 𝑤I	𝛻𝑓I 𝒙 + 𝑣N𝛻𝑔N 𝒙
=

NM?

= 0. 

We also have  
𝑣N𝑔N 𝒙 = 0, 𝑗 = 1, … ,𝑚.	

Hence,  𝜆* > 0, 𝑖 = 1, … , 𝑙,	 as required. 
 
Now, we establish the relation of the weighted sum scalarization (GMOP) and the Lagrangian relaxation form of kth 
objective weighted constraint problem (LRBMOP).  
 
Lemma 4.1 If there exists 𝑤 ∈ 𝑊  such that 𝑥  solves (WMOP), then there exists 	𝑝* ≥ 0  for all 𝑗 ≠ 𝑘  such 𝑥  solves 
(LRBMOP). 

Proof: Since, 𝑥 solves (WMOP) for some 𝑤 ∈ 𝑊 ≔ 𝑥 ∈ 𝐸;|𝑤* ≥ 0, 𝑤* = 1	;
*M? , we have that        𝑤*𝛻𝑓* 𝒙;

*M? ≤
𝑤*𝛻𝑓* 𝑥;

*M? , for all 𝑥 ∈ 𝑋.                                                                                                               (4.3) 

We can rearrange (4.3) as 
𝑤I
𝑢I
𝑢I𝛻𝑓I 𝒙 +

𝑤*
𝑢*
𝑢*𝛻𝑓* 𝒙

;

*M?,*yI

≤ 	
𝑤I
𝑢I
𝑢I𝛻𝑓I 𝑥 +

𝑤*
𝑢*
𝑢*𝛻𝑓* 𝑥

;

*M?,*yI

, 

𝑤I
𝑢I

+
𝑤*
𝑢*

;

*M?,*yI

		𝑢I𝛻𝑓I 𝒙 +
𝑤*
𝑢*
	

;

*M?,*yI

𝑢*𝛻𝑓* 𝒙 − 𝑢*𝛻𝑓I 𝒙

≤ 	
𝑤I
𝑢I

+
𝑤*
𝑢*

;

*M?,*yI

		𝑢I𝛻𝑓I 𝑥 +
𝑤*
𝑢*
	

;

*M?,*yI

𝑢*𝛻𝑓*(𝑥) − 𝑢*𝛻𝑓I 𝑥 , 

this implies, 
𝑤*
𝑢*

;

*M?

	𝑢I𝛻𝑓I 𝒙 +
𝑤*
𝑢*
	

;

*M?,*yI

𝑢*𝛻𝑓* 𝒙 − 𝑢I	𝛻𝑓I 𝒙 ≤ 	
𝑤*
𝑢*

;

*M?

	𝑢I𝛻𝑓I 𝑥 +
𝑤*
𝑢*
	

;

*M?,*yI

𝑢*𝛻𝑓* 𝑥 − 𝑢I	𝛻𝑓I 𝑥 , 

 
therefore, 

𝑤*
𝑢*

;

*M?

		𝑢I𝛻𝑓I 𝒙 + 	
;

*M?,*yI

𝑤N
𝑢N

;

NM?

{z
cz

{�
c�

;
NM?

𝑢*𝛻𝑓* 𝒙 − 𝑢I	𝛻𝑓I 𝒙

≤ 	
𝑤*
𝑢*

;

*M?

		𝑢I𝛻𝑓I 𝑥 + 	
;

*M?,*yI

𝑤N
𝑢N

;

NM?

{z
cz

{�
c�

;
NM?

𝑢*𝛻𝑓* 𝑥 − 𝑢I	𝛻𝑓I 𝑥 . 

                                        (4.4) 
 

Assume that 𝜆* =
{z
cz

 and 𝑝* =
}z
|z
}�
|�

~
���

, 𝑓𝑜𝑟	𝑖 = 1, … , 𝑙.  Since, 𝑢* > 0 and 𝑤* > 0 for 𝑖 = 1, … , 𝑙, thus 𝜆* > 0 and hence, 

𝑝* > 0. Let 𝜆 = {z
cz
,;

*M?  therefore the equation (4.4) becomes 

𝜆	 𝑢I𝛻𝑓I 𝒙 + 	
;

*M?,*yI

𝑝* 𝑢*𝛻𝑓* 𝒙 − 𝑢𝛻𝑓I 𝒙 ≤ 	𝜆	 𝑢I𝛻𝑓I 𝑥 + 	
;

*M?,*yI

𝑝* 𝑢*𝛻𝑓* 𝑥 − 𝑢𝛻𝑓I 𝑥 . 

Thus, 	

𝑢I𝛻𝑓I 𝒙 + 	
;

*M?,*yI

𝑝* 𝑢*𝛻𝑓* 𝒙 − 𝑢𝛻𝑓I 𝒙 ≤ 	𝑢I𝛻𝑓I 𝑥 + 	
;

*M?,*yI

𝑝* 𝑢*𝛻𝑓* 𝑥 − 𝑢𝛻𝑓I 𝑥 . 

Hence, 𝑥 solves (LRBMOP) as required. 
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5. Numerical Illustrations 

In this section, we demonstrate employing a test problem that the proposed method (LRBMOP) efficiently generate Pareto 
front of the Problem P.   We also provide an algorithm to solve scalarization subproblems using Lagrangian relaxation 
techniques.  
 

Test Problem 5.1 

We take 𝑛 = 𝑙 = 2; Consider the problem  

min 𝑓? 𝑥 , 𝑓@ 𝑥 ,  here, 𝑓? 𝑥 = 𝑥?,	and 𝑓@ 𝑥 = 𝑥@, 

              subject to  𝑋 = 𝑥?, x@ 	 𝑥? − 1 @ + 𝑥@ − 1 @ − 1 < 0 . 
 
We now use the kth objective scalarization approach (BMOP) and construct the auxiliary subproblems and respective 
Lagrangian relaxation approach to solve Test Problem 5.1. (see, Table 5.1) 
 

Table 5.1: Scalarized subproblems. 
 

kth objective weighted 
constraint problem 

Subproblems of Example 5.1 Lagrangian relaxation form of the 
subproblems 

 
 
(Subproblem-1) 
 
 

min𝑤?𝑓? 𝑥 , 
subject to 
𝑤@𝑓@ 𝑥 ≤ 𝑤?𝑓? 𝑥 ,  
𝑤* > 0, 𝑤* = 1@

*M? .  
𝑥 ∈ 𝑋. 

 
 
min𝑤?𝑥? + 𝑝@ 𝑤@𝑥@ − 𝑤?𝑥? ,  
subject to 𝑥 ∈ 𝑋.  
 

 
 
(Subproblem-2) 
 

min𝑤@𝑓@ 𝑥 , 
subject to 
𝑤?𝑓? 𝑥 ≤ 𝑤@𝑓@ 𝑥 ,  
𝑤* > 0, 𝑤* = 1@

*M? ,  
𝑥 ∈ 𝑋.  

 
min𝑤@𝑥@ + 𝑝? 𝑤?𝑥? − 𝑤@𝑥@ , 
subject to 𝑥 ∈ 𝑋.  
 

 
Algorithm (LRBMOP for 𝐥 = 𝟐) 

Step 1 (Input) 

Choose 𝑢 = 𝑢?, 𝑢@  which is a reference point used to pass a ray to identify the Pareto point on the front. Set the 
number of partitioned points (N+1). 

Step 2 (Obtain outer endpoints of the Pareto front) 
a. Solve the Lagrangian relaxation form of (Subproblems-1). 
b. Solve the Lagrangian relaxation form of (Subproblems-2). 

Evaluate 𝑤 = 𝑤�, 𝑤�  as introduced in (Step 2 of Algorithm 3 in [11]) 

Step 3 (Generate a weight partition) 
This step is the same as Step 3 of Algorithm 3 in [11]. 

Step 4 (Obtain Lagrangian parameter 𝑝*) 
Set,  while 𝑡I > .0001 

Follow Step 4 (a and b) of Algorithm 3 in [11] and find optimum solution 𝑥 = 𝑥?, 𝑥@ . 
Evaluate 𝑡I in (1) until it met the while condition. Find 𝑝* that minimize (Subproblems-1 & 2).  
Follow Step 4 (c) of Algorithm 3 in [11]. 

Step 5 Repeat the Steps 2-4 for all weight vectors 𝑤. 

Step 6 Record Data. 

Remark: 5.1 

The implementation of Held et al. [4] algorithm is also quite computationally expensive, but we choose this approach in 
our analysis as it is easy to implement. The algorithms need to fix 0 ≤ 𝜆 ≤ 2	 consistently for each weight vector because 
of the complex procedure of determining Lagrangian multipliers 𝑝?  and 𝑝@ . Otherwise, the algorithm does not find 
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Lagrangian multipliers (𝑝?  or 𝑝@) for which the model converges to a solution. This is the drawback of Lagrangian 
relaxation techniques. However, the method has a clear advantage when the objective functions are nonconvex and 
nonsmooth. Figure 5.1 demonstrates the Pareto front obtained by the Lagrangian relaxation approach (Subproblems-1 & 
2). The implementation of the algorithm required MATLAB programming software. It is also noted that we utilize a range 
of nonlinear solvers such as fmincon (sqp and interior point algorithms), ‘Ipopt’[16] and ‘SCIP’[17], and weight-generation 
algorithms [18]  to solve each of the subproblems. 

 
Figure 5.1: The circle (Red) depicts the efficient solution of Test Problem 5.1 which also approximates the Preto front. 
 
6. Conclusions 
 
We proposed a new approach to solve scalarization problems that formed from multiobjective optimization problems. 
Lagrangian relaxation technique has been used in the proposed approach. We have shown that the new approach effectively 
solves the problem and approximate the Pareto front efficiently. Moreover, the proposed method can be used in large scale 
problems such as when the problem has more than three objective functions, and when the functions are nonconvex and 
nonsmooth. We also have shown that the proposed approach guarantees the proper Karush Kuhn-Tucker conditions. 
Moreover, we prove that the proposed method is more general than the well-known weighted scalarization technique. The 
algorithm with numerical experiments conducted to test the efficiency of the proposed method.   
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