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ABSTRACT

As an inventory management instrument, Economic Order Quantity (EOQ) is gaining increased attention. EOQ
has become the focus point of everyone’s interest, especially scientists. There are inventory problems in the
production and repair system where the used products are collected to repair, and after repairing, it is considered
as a new product. A two-stage EOQ model for manufacturing, repairing and disposing of products is discussed
in our analysis. The present model follows a former model introduced by Nahimas and Rivera, where the repair
system is finite. We propose a new mathematical model in reverse logistics system where demand in production
and repair items follows an exponential rate. Mathematical expressions for determining the production and
repair quantities are also initiated here. In this model, it is assumed that the available space for supply and
repair depots is limited, and we impose two constraints that turn the problem into a constrained optimization
model. We also conduct extensive numerical experiments, and advantages are addressed.

© 2020 Published by Bangladesh Mathematical Society

Received: October 02, 2020 Accepted: December 29, 2020 Published Online: January 15, 2021

Keywords: EOQ model; Reverse logistics; Procurement; Repair; Exponential demands

AMS Subject Classifications 2020: 90B05; 90C30; 90B06

1 Introduction

Economic order quantity (EOQ) is the standard number of units that a company should purchase or pro-
duce to increase its inventory. EOQ is applied to minimize inventory holding costs and other related costs.
Besides, reverse logistics refers to a process which relates to collecting and remanufacturing used products to
extend their useable lives. Thus, reverse logistics helps us to reduce waste and conserve natural resources with
remanufacturing being a collective noun for a process such as receiving, repairing and recycling products [1].
These inventories exist primarily to make goods available to customers or producers without delay and to in-
crease sales and profits. It is natural to classify the type of items carried by an inventory process to two broad
classifications, namely consumable and repairable items. For example, papers, pencils, fuels, food, etc. are
considered consumable items that cannot be recycled or remanufactured. On the other hand, a repairable item
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is one that can be repaired after a failure or wear-out and subsequently will provide some flow of services to the
user. Automobiles, containers, engines, computers are all examples of repairable items [2].

After 1960, the repairable inventory was given importance for the first time. At that time, many models
were published on economic order quantity. For determining optimal production and repair quantities, Schardy
[2] first developed an inventory model. He proved that renovated products considered for moreover 50% of
the currency staked in inventory. Schardy improved an economic order quantity model for fixable things. He
assumed that the production and repair rates are abrupt without dumping costs. Schardy’s model was extended
by Nahimas and Rivera [3]. They considered a finite repair rate with the supposition of finite storage in new
procurement and fix-it shops.

Reverse logistics came to be a business term in the 1990s and the research on the inventory and manufacturing
problem took a new trend. Richter [4]-[8] put a lot of effort to develop the EOQ model of the reverse logistics
system and its properties. He investigated the cost analysis of his earlier works to show that a pure (bang-
bang) policy of either no waste disposal (total repair) or no repair (total waste disposal) dominates a mixed
strategy of waste disposal and repair. He developed an EOQ model for stationary demand that is satisfied with
production items of a certain product using new materials and components and from repairing used items that
are collected from the market at the same rate. The EOQ repair and waste disposal problem was studied in
[4-8] and was extended by Saadney and Jaber [9]–[13] to the problem of minimizing the total cost of production,
remanufacturing and inventory. In the paper of Saadney and Jaber, the extended EOQ production; repair
and waste disposal model of Richter was modified to show that ignoring the first time interval results in an
unnecessary inventory and, consequently is an overestimation of the holding costs [4].

In our practical life, the demand for all daily necessities does not always stay constant. There are items the
demand for which changes over time t. Such a situation has not much been discussed in the literature. In this
paper, we try to establish a novel model that can describe a situation where demand change from time to time.
In our analysis, considering that products or items decrease at an exponential rate with time t. We can utilize
this concept in real-life situations to calculate optimum production or purchase in inventory management. More
research can be seen in [14]–[19].

A two-stage EOQ model for a single product is considered in this project. Here we use two types of items;
newly produced and repaired items to satisfy customer’s demand. But after repairing, repaired items are also
considered as good as new. At the first stage, we assume that r is a recovery rate as a percentage of the demand
d = e−at. We further assume that the repairable items are repaired at a constant rate of λ, and products are
delivered from the repair depot to the supply depot with a constant rate of λ− re−at. In the second stage, the
inventory always decreases at a rate of e−at to satisfy customer’s demand.

The purpose of this paper is to investigate the repairable and disposal item inventory problem and to develop
decision rules for a repairable inventory model giving due consideration to the costs associated with a repairable
system and a waste disposal system.

The layout of the paper is as follows. The intended research has two stages, and these are the analytical part
as well as the numerical experiments. In Section 2, in the mathematical part, we first provide a geometric model
of the system. Then we develop the mathematical expressions for each movement of the item. In this section,
we formulate a new mathematical model of the inventory problem. We establish the theoretical properties of the
proposed model. In Section 3, we extend the proposed new model to the case where inventory cost is minimized
by considering some constraints. In Section 4, we conduct computational experiments based on the theoretical
results obtained in Sections 2 and 3.

1.1 Assumptions

In our analysis, we assume that a single product is procured and repaired items are considered as good as
new. We further assume that lead time is zero, and no shortage is allowed, and we also consider that demands
are known, constant and independent. Throughout the paper, we use the following notations.

Qp → quantity of new product in a single batch.

QR → quantity of repaired item in a single batch.

τp → lead time of new product.

τR → lead time of repaired item.

Ap → fixed cost of new product.

AR → fixed cost of repaired item.
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h1 → holding cost of new product.

h2 → holding cost of repaired item.

d = e−at → demand rate of item.

T → the time between two new procurement.

n → number of repair cycle.

λ → repair rate of used product.

l1 → size of a single new product.

l2 → size of a single repaired product.

k1 → maximum free space in storage for new product.

k2 → maximum free space in storage for the repaired product.

1.2 Repairable Model

In this model, we use two types of items. One of them is a new product and the other is a used-product.
Used items are required to repair to meet customers’ demand. In our study, we consider that after repairing,
repaired products are sold as new products.The behavior of inventory for produced, collected used and repaired
items over the total time interval T is illustrated in Figure 1.1.

Figure 1.1: Material flow for manufacture and repair system.

2 Mathematical Model

Now we consider the case where the repair rate is finite. We also assume, when used products are recycled,
then they are collected at the recycle store and gradually delivered in a fixed quantity to the supply store. Let
the used items be repaired at finite rate, λ > 0, always decrease at a rate of e−at. Similarly, Type-2 inventory will
always increase at a rate of re−at. Since some used items are beyond repair, (1− r)e−at items are condemned.
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Figure 2.1: Repairable model with the exponential repair rate.

Again, we consider the repair batch is QR that means at a time QR items can be repaired in a batch. So

during repair, the decrease in Type-2 inventory is
QR
λ

(
λ− re−at

)
.

The system is shown in Figure-2.1. From the figure, we can say the procurement and repair lead times τp & τR
are zero for clarity of presentation.

At the same time, Type-1 inventory gradually increased at a rate of
(
λ− re−at

)
. So from Type-2 inventory

QR
λ

(
λ− re−at

)
items are delivered to Type-1 in a single batch. So we can write

(
λ− re−at

)
=
QR
λ

(
λ− re−at

)
+

c1, this yields, t =
1

a
log

r (λ−QR)

λ (λ−QR − c1)
.

Thus, the area of OPQ is

∫ 1

a
log

r (λ−QR)

λ (λ−QR − c1)

0

(
λ− re−at

)
dt, and thus

[λt]

1

a
log

r (λ−QR)

λ (λ−QR − c1)
0 +

r

a

[
e−at

]1

a
log

r (λ−QR)

λ (λ−QR − c1)
0 ,

therefore, we have

M1 =
λ

a
log

r (λ−QR)

λ (λ−QR − c1)
+
r

a

(
λ (λ−QR − c1)

r (λ−QR)
− 1

)
.

In Type-1 inventory, products are delivered to the customers at a rate of e−at. At the point, when the repaired
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products are exhausted, we bring a new procurement batch Qp to satisfy customers’ demand. While the repair

process continues in repair depot system, from Figure 2.1, we get e−at = Qp + c1, thus, t = −1

a
log (Qp + c1).

The area of PQR is

M2 =

∫ −1

a
log (Qp + c1)

1

a
log

r(λ−QR)

λ(λ−QR − c1)

e−atdt,

this implies,

M2 =
1

a

{
λ (λ−QR − c1)

r (λ−QR)
− (Qp + c1)

}
.

When the new procurement item in Type-2 inventory reaches tends to zero, again we bring repaired items from
Type-1 inventory. Repaired items again come to the supply depot system at a rate of

(
λ− re−at

)
. It follows

that, e−at = c1, it yields, t = −1

a
log c1.

So, the area of RSU is

L =

∫ −1

a
log c1

−1

a
log (Qp + c1)

e−atdt,

and therefore, L =
1

a
Qp. Now, the stated process will continue to repeat until the new procurement (which is

also equal to the time between successive suspensions of repair) arrives. The time of cycle length T is equal to
two new procurements. Thus, we get the value of T from Figure-2.1. Here,

T = −1

a
log c1 + (n− 1)

(
−1

a
log (Qp + c1)

)
,

where n is the value of total repair inductions in a cycle.

In order to find the total supply depot area, it is necessary to find the value of n. From Type-2 inventory, the
value of n can be determined by successive inductions due to condemnations. So the successive repair induction
is p1p3 − p8p9 or {rc1 (1−Qp − c1)}.
Thus, the total loss of stock is (n− 1) rc1 (1−Qp − c1), which must be equal to the value of (p2p3 − p6p5) or
(rc1 −QR). Therefore, we can write, (n− 1) rc1 (1−Qp − c1) = (rc1 −QR), this implies,

n =
(rc1 −QR)

rc1 (1−Qp − c1)
+ 1.

Thus, we get the actual value of T , and we illustrate this as

T = −1

a
log c1 −

1

a

(rc1 −QR)

rc1 (1−Qp − c1)
log (Qp + c1).

Let A1 be the area of the Type-1 inventory curve during a cycle T . So from the Figure-2.1, we can write,
A1 = L+ n(M1 +M2), thus we have

A1 =
Qp
a

+

(
(rc1 −QR)

rc1 (1−Qp − c1)
+ 1

)[
λ

a

{
log

r (λ−QR)

λ (λ−QR − c1)
+

(r + 1) (λ−QR − c1)

r (λ−QR)

}
1

a
(r +Qp + c1)

]
.

Let A2 be the area under Type-2 inventory curve during one cycle. Now we can divide the area A2 into some
small areas and rectangles, that help us to calculate the total area. By comparing with Type-2 inventory, we

see the limit of area O′p2p3 from t =
1

a
log

r(λ−QR)

λ(λ−QR − c1)
to t = −1

a
log c1.

So, the area of O′p2p3 is

S =

∫ −1

a
log c1

1

a
log

r(λ−QR)

λ(λ−QR − c1)

re−atdt,
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this yields,

S =
r

a

(
λ(λ−QR − c1)

r(λ−QR)
− c1

)
.

The area of p1p3N , p8p10A, p5p6p12 are equal to the area of OPQ in Figure-2.1. From Figure-2.1, we find the

limit of area p8p9N is

(
−1

a
log c1 +

1

a
log

r(λ−QR)

λ(λ−QR − c1)

)
to

(
−1

a
log c1 −

1

a
log (Qp + c1)

)
. So the area of

p8p9N is

M3 =

∫ (−1

a
log c1 −

1

a
log (Qp + c1)

)
(
−1

a
log c1 +

1

a
log

r(λ−QR)

λ(λ−QR − c1)

) re−atdt,
and thus,

M3 =
r

a

{
c1λ (λ−QR − c1)

r (λ−QR)
− c1(Qp + c1)

}
.

Now, we have to find the area of rectangles p1p2p4p9 & p4p5p7p10. Therefore, rectangle p2p4p9p1 has a base,

p2p4 = −1

a
log (Qp + c1), and height, p2p1= p2p3 − p1p3, where, p2p3 + c2 = re

(
−a(−1

a
log c1)

)
. Thus, p2p3 =

rc1 − c2, and p2p1 =

{
(rc1 − c2)− QR

λ

(
λ− re−at

)}
. Therefore, the area of p2p4p9p1 is M4 = p2p1 × p2p4, so,

M4 =
1

a
log (Qp + c1)

{
QR
λ

(
λ− re−at

)
− (rc1 − c2)

}
.

Rectangle p4p5p7p10 has the same base of the rectangle p1p2p4p9. But height is p4p10 which is equal to
(p4p8 − p8p10).

Now, p8p10 = p1p3 = QR

λ (λ− re−at) , where, p4p8 + c2 = rc1(Qp + c1). So, p4p10 = rc1 (Qp + c1) −
QR
λ

(
λ− re−at

)
− c2. Thus, the area of p4p5p7p10 is M5 = p4p5 × p4p10, this implies,

M5 =
1

a
log (Qp + c1)

{
rc1 (Qp + c1)− c2 −

QR
λ

(
λ− re−at

)}
.

So, the total repair depot area is,

A2 = S +M4 +M5 + nM1 + (n− 1)M3

=
r

a

(
λ (λ−QR − C1)

r (λ−QR)
− c1

)
+

1

a
log (Qp + c1)

{
QR
λ

(
λ− re−at

)
− (rc1 − c2)

}
+

1

a
log (Qp + c1)

{
rc1 (Qp + c1)− c2 −

QR
λ

(
λ− re−at

)}
+

(
(rc1 −QR)

rc1 (1−Qp − c1)
+ 1

){
λ

a
log

r (λ−QR)

λ (λ−QR − c1)
+
r

a
(
λ (λ−QR − c1)

r (λ−QR)
− 1)

}
+

(rc1 −QR)

rc1 (1−Qp − c1)

r

a

{
c1 (λ−QR − c1)

r (λ−QR)
− c1 (Qp + c1)

}
,

After simplifications, we get

A2 =
2λ

a

(λ−QR − c1)

(λ−QR)
− r

a
(1 + c1) +

1

a
log (Qp + c1) {rc1 (Qp + c1 − 1)}

+
rc1 −QR

rc1 (1−Qp − c1)

[
λ

a
log

r (λ−QR)

(λ−QR − c1)
+
λ

a

(λ−QR − c1)

(λ−QR)
(1 + c1)− r

a
{1 + c1 (Qp + c1)}

]
+
λ

a
log

r (λ−QR)

(λ−QR − c1)
,

It now follows that the total cost c(QR, Qp) is given by
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c (QR, Qp) = Ap + nAR + h1A1 + h2A2

= Ap +

(
(rc1 −QR)

rc1(1−Qp − c1)
+ 1

)
AR

+h1

[
Qp
a

+

(
(rc1 −QR)

rc1(1−Qp − c1)
+ 1

)
λ

a

(
log

r(λ−QR)

λ(λ−QR − c1)
+

(r + 1)(λ−QR − c1)

r(λ−QR)

)
− 1

a
(r +Qp + c1)

]
+h2[

2λ

a

(λ−QR − c1)

(λ−QR)
− r

a
(1 + c1) +

1

a
log (Qp + c1) {rc1 (Qp + c1 − 1)}

+
rc1 −QR

rc1 (1−Qp − c1)

[
λ

a
log

r (λ−QR)

(λ−QR − c1)
+
λ

a

(λ−QR − c1)

(λ−QR)
(1 + c1)− r

a
{1 + c1 (Qp + c1)}

]
+
λ

a
log

r (λ−QR)

(λ−QR − c1)
].

And the average cost is given by

K (QR, Qp) =
c (QR, Qp)

T
= c (QR, Qp)

[
−1

a
log c1 −

1

a

(rc1 −QR)

rc1 (1−Qp − c1)
log (Qp + c1)

]−1
. (2.1)

3 Extension

We can extend the above model by imposing constraints on available space in the supply and repair depots
area. Let k1 and k2 are the maximum free space in storage for new and repaired products, respectively. We
also know that Qp is the size of new procurement at unit time in Type-1 inventory. From Type-2 inventory, we
get the value of p2p3 is (rc1 − c2) or rc1(1−QR/λ), where QR is the size of the repaired procurement at unit
time. So, we can express the model as follows:

minimize f(x) = K(QR, Qp). subject to the conditions,

{
l1Qp ≤ k1
l2rc1 (1−QR/λ) ≤ k2,

(3.1)

where l1 and l2 are the size of a single new and repaired product, respectively.

4 Numerical Illustration

In this section, we first test the proposed cost function (2.1) for fixed input parameter values.

4.1 Test Problem: 1

Let us set the input parameters as a = .5; c1 = .3; λ = 20; r = .5; Ap = 1; Ar = 1; h1 = .6; h2 = .2;
We aim to minimize function K(QR, Qp), under the lower bound Qp ≥ 5 and QR ≥ 22. In these setting, we
minimize the function (2.1) and obtain the procurement and repair batches are Qp = 10.7040 and QR = 22 with
the optimal cost 9.5382. The solution and function surface of (2.1) are depicted in Figure 4.1. We solved Test
Problem 1 writing code in MATLAB. We utilize a range of nonlinear solvers such as fmincon with sequential
quadratic programming, Ipopt [20], and SCIP [21]. We have got an approximation of the solution set that is
demonstrated in Figure 4.1 (red circles).
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Figure 4.1: The circle (red) depicts the solution of Test problems 1 & 2, and blue surface demonstrates the
geometric surface of (2.1) and (3.1).

Figure 4.2: Rotated view of Figure 4.1

4.2 Test Problem: 2

Let us set the parameters as a = .5; c1 = .3; λ = 20; r = .5; Ap = 1; Ar = 1; h1 = .6; h2 = .2; l1 = .3;
l2 = .5; k1 = 160; k2 = 120; We aim to minimize function K(QR, Qp), subject to constraints (3.1) under the
lower bound Qp ≥ 5 and QR ≥ 22. We utilize the same algorithm that we were considered to solve Test Problem
1. We observe that we obtain the same result, as demonstrated in Figure 4.1.

Open Question: The above model can be extended to the problem where demand is stochastic, implies
that, demand is not known in advance. In this case, demand always cannot be fulfilled by the supply system
where the shortage is allowed. The model can also be extended to the hybrid problem, which is a mixture of
both deterministic and stochastic. We leave this research as our future project.



142 Billah et al. / GANIT J. Bangladesh Math. Soc. 40.2 (2020) 134–144

5 Conclusions

We proposed a noble mathematical model of the reverse logistics system. The model extended Nahimas
approach where we considered that the demands for procured and repaired items are exponential with time.
We developed two-phase mathematical models to minimize inventory costs. The proposed first model optimizes
the cost that is not restricted by any conditions. The second model includes constraints on floor space. This
turns the problem into a constrained optimization problem. Both models find the optimum procurement and
repair batches such that the total cost would be minimal. We expect our established mathematical model in
reverse logistics can solve many real-life complex problems. Numerical experiments were also conducted to test
the models. Moreover, we provided two examples with the same input parameters and solved the problem using
a range of nonlinearly constrained optimization solvers.
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APPENDIX A

Code is written in MATLAB for Examples given in the text. We have included the code in the text if anyone
is interested in running the algorithms to solve any test problems.

Listings

1 MATLAB function file for objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2 MATLAB function file for constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3 MATLAB directory file to solve the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4 MATLAB data file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Listing 1: MATLAB function file for objective function

1 % Function f i l e f o r Object ive Function
2 func t i on f = myfun (x )
3 g l oba l r Ap c1 a lam Ar h2 h1 ;
4 pp=(lam−x (2 ) ) /( lam−x (2 )−c1 ) ;
5 n=1+(( r ∗c1−x (2 ) ) /( r ∗ c1∗(1−x (1 )−c1 ) ) ) ;
6 T=−(1/a ) ∗ l og ( c1 )−((n−1)/a ) ∗ l og ( x (1 )+c1 ) ; % Time cyc l e
7 A1=(x (1 ) /a )+(n∗ lam/a ) ∗ l og ( r ∗pp/lam)+((n∗ lam ∗( r+1) ) /( r ∗a∗pp) )−(n∗( r+c1+x (1) ) /a ) ;
8 A2=(r /a ) ∗ ( ( lam/( r ∗pp) )−c1 )−(1/a ) ∗ l og ( x (1 )+c1 ) ∗( x (2 )−r ∗ c1 )+(r ∗ c1/a ) ∗ l og ( x (1 )+c1 ) ∗( x (1 )+

c1−1)+(n∗ lam/a ) ∗ l og ( r ∗pp/lam)+(n∗ r /a ) ∗ ( ( lam/( r ∗pp) )−1)+((n−1)∗ r /a ) ∗ ( ( c1∗ lam/( r ∗pp) )
−c1 ∗( x (1 )+c1 ) ) ;

9 f=(Ap+n∗Ar+h1∗A1+h2∗A2) /T; % Total co s t func t i on

Listing 2: MATLAB function file for constraints

1 % Function f i l e f o r Const ra int s Function
2 func t i on [ c , ceq ] = c i r c l e c o n (x )
3 g l oba l r c1 lam p12 p22 k11 k22 ;
4 c=[p12∗x (1 )−k11 ; p22 ∗( r ∗ c1∗(1−(x (2 ) /lam) ) )−k22 ] ; % Inequa l i t y Const ra int s
5 %c = [ ] ;
6 ceq = [ ] ; % Equal i ty Const ra int s

Listing 3: MATLAB directory file to solve the problem

1 % Main d i r e c t o r y f i l e ; Prepared by Dr Mohammed Mustafa Rizv i & Misha B i l l ah
2 c l c
3 c l e a r a l l
4 g l oba l r Ap c1 a lam Ar h2 h1 p12 p22 k11 k22 ;
5 % Parameter va lue s
6 a=.5 ; c1 =.3 ; lam=20; r =.5 ; Ap=1; Ar=1; h1=.6; h2=.2 ; p12=.3; p22=.5; k11=160; k22=120;
7 A = [ ] ; % l i n e a r equa l i t y c on s t r a i n t s s e t
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8 b = [ ] ; % l i n e a r c on s t r a i n t s s e t
9 Aeq = [ ] ; % l i n e a r i n e qua l i t y c on s t r a i n t s s e t

10 beq = [ ] ;
11 lb = [5 2 2 ] ; % Lower bounds
12 ub = [ ] ; % Upper bounds
13 x0 = [ 1 , 1 ] ; % I n i t i a l Point
14 fun=@myfun % Ca l l i ng ob j e c t i v e func t i on
15 nonlcon = @c i r c l e c o n ; % Ca l l i ng c on s t r a i n t s f unc t i on s
16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−− L i s t o f So l v e r s −−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−− L i s t o f So l v e r s −−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 %opt ions = opt imset ( ' Algorithm ' , ' act ive−set ' ) ;
19 %opt ions = opt imopt ions(@fmincon , 'Algorithm ' , ' act ive−set ' , ' MaxIter ' , 5 000 ) ;
20 opt ions = opt imopt ions(@fmincon , 'Algorithm ' , ' i n t e r i o r−point ' ) ;
21 %opt ions = opt imopt ions(@fmincon , ' Algorithm ' , ' sqp ' , ' MaxIter ' , 5 000 ) ;
22 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Optimizat ion −−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 [ x , f v a l ] = fmincon ( fun , x0 ,A, b , Aeq , beq , lb , ub , nonlcon , opt ions )

Listing 4: MATLAB data file.

1 % Data generate to p l o t the Const ra int s Optimizat ion Problem .
2 c l c
3 c l e a r a l l
4 % Parameter input va lue s
5 a=.5 ; c1 =.3 ; lam=20; r =.5 ; Ap=1; Ar=1; h1=.6; h2=.2 ; p12=.3; p22=.5; k11=160; k22=120;
6 X = 5 : . 1 : 2 0 ; % x pa r t i t i o n ed
7 Y = 2 2 : . 1 : 3 0 0 ; % y pa r t i t i o n ed
8 data = fopen ( ' reco . txt ' , 'w ' ) ;
9 f o r k=1: l ength (X)

10 f o r j =1: l ength (Y)
11 % con s t r a i n t s c ond i t i on s v a r i f i c a t i o n
12 i f p12∗X(k )−k11<=0 && p22 ∗( r ∗ c1∗(1−(Y( j ) /lam) ) )−k22<=0
13 pp=(lam−Y( j ) ) /( lam−Y( j )−c1 ) ;
14 n=1+(( r ∗c1−Y( j ) ) /( r ∗ c1∗(1−X(k )−c1 ) ) ) ;
15 T=−(1/a ) ∗ l og ( c1 )−((n−1)/a ) ∗ l og (X(k )+c1 ) ;
16 A1=(X(k ) /a )+(n∗ lam/a ) ∗ l og ( r ∗pp/lam)+((n∗ lam ∗( r+1) ) /( r ∗a∗pp) )−(n∗( r+c1+X(k ) ) /a ) ;
17 A2=(r /a ) ∗ ( ( lam/( r ∗pp) )−c1 )−(1/a ) ∗ l og (X(k )+c1 ) ∗(Y( j )−r ∗ c1 )+(r ∗ c1/a ) ∗ l og (X(k )+c1 ) ∗(X(k )+

c1−1)+(n∗ lam/a ) ∗ l og ( r ∗pp/lam)+(n∗ r /a ) ∗ ( ( lam/( r ∗pp) )−1)+((n−1)∗ r /a ) ∗ ( ( c1∗ lam/( r ∗pp) )
−c1 ∗(X(k )+c1 ) ) ;

18 Z=(Ap+n∗Ar+h1∗A1+h2∗A2) /T; % Cost func t i on
19 % Data record
20 f p r i n t f ( data , '%12.10 f %12.10 f %12.10 f \n ' , X(k ) , Y( j ) , Z) ;
21 end
22 end
23 end
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