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ABSTRACT 

This paper studies the two-dimensional magnetohydrodynamics steady incompressible Cu-water nanofluid 
flow considering different shapes of nanoparticles in a divergent channel. The continuity equation, momentum 
equations and energy equation governing the problem are transformed to a set of non-dimensional ordinary 
differential equations by suitable transformations. The transformed dimensionless equations are solved by 
using power series approach and then Hermite-Padé approximation method is applied for analyzing the 
solution. Brick, cylinder and platelet-shaped Cu-nanoparticles are considered to investigate the effect of shape 
factor. Moreover, impact of physical parameters such as channel angle, flow Reynolds number, Hartmann 
number, Eckert number, Prandtl number and nanoparticles solid volume fraction on velocity and temperature 
profiles are also examined. The results show that the different shapes of Cu-nanoparticles have significant 
effect on the temperature distributions in the channel. 
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1. Introduction 

Jeffery [1] and Hamel [2] discovered two dimensional viscous incompressible fluid flow in a channel with 

non-parallel walls. This flow is separated by a fixed angle and moved by a source or sink at a peak which is 

known as the classical Jeffery-Hamel flow. Many researchers [3-8] have investigated this flow considering 

various effects such as megnetohydrodynamics (MHD) and heat transfer phenomena through convergent-

divergent channels. These flows have the similarity solution of Navier-Stokes equation and the dimensionless 

parameters are depended on the flow Reynolds number and channel angular width [9]. This type of flows has 

several applications in industrial, aerospace, chemical, civil, environmental, mechanical and biomechanical 

engineering.  

Magnetohydrodynamics (MHD) is related to the mutual interaction of fluid flow and magnetic field. Many 

natural and man-made flows are influenced by magnetic field. The theory of megnetohydrodynamics (MHD) 

states that the presence of magnetic field produces a current through a moving conductive fluid. This inclined 
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current results force on ions of the conductive fluid. The investigation of MHD flow through convergent-

divergent channels is not only interesting theoretically but also becomes more applications in mathematical 

modeling of several industries to design cooling system with liquid metals, MHD generators, accelerators, 

pumps and flow meters  

New types of fluids need to develop, which are more effective in terms of heat exchange performance 

considering the recent demands of modern technology, including chemical production, power station and 

microelectronics. Presently, it is seen that the thermal conductivity of fluids has been enhanced with 

nanoparticles by Choi [10]. Nanoparticles have unique chemical and physical properties and have better 

thermal conductivity and radiative heat transfer compared to the base fluid only. Nanofluids are engineered 

dilute colloidal dispersions of nanosized (less than 100 nm) particles in a base fluid such as water, oil and 

ethylene glycol analysed by Das et al. [11]. These nanoparticles are good conductors of heat and enable the 

basic fluids to enhance their thermal properties.  

An extension of the classical Jeffery-Hamel flows to magnetohydrodynamics was studied by Makinde 

and Mhone [12]. They explained that the effect of external magnetic field works as a parameter in the solution 

of magnetohydrodynamics flows in convergent-divergent channels. Makinde and Mhone [13] investigated the 

terrestrial development of small disturbances in magnetohydrodynamics Jeffery-Hamel flows. This concept 

described at very small magnetic Reynolds number Rm for the stability of hydromagnetic steady flows in 

convergent-divergent channels using Chebyshev spectral collocation method. Moradi et al. [14] described the 

effects of heat transfer and viscous dissipation on the Jeffery-Hamel flow of nanofluids. Alam et al. [15-16], 

Alam and Khan [17] studied MHD Jeffery-Hamel nanofluid flow for different nanoparticles.  

Recently, the effect of nanoparticle shapes on irreversibility analysis of nanofluid flow in a microchannel 

with radiative heat flux and convective heating was investigated by Sindhu and Gireesha [18]. Asifa et al. [19] 

performed a comparative fractional study of the significance of shape factor in heat transfer performance of 

molybdenum-disulfide nanofluid in multiple flow. Moreover, the effects of nanoparticle shape and size on the 

thermohydraulic performance of plate evaporator using hybrid nanofluids was analysed by Bhattad and Sarkar 

[20]. Furthermore, Das and Alam [21] investigated different shaped Al2O3 and TiO2 nanoparticles on water-

based MHD nanofluid flow through convergent-divergent channels. 

To the best of Author’s knowledge, the shape factors effect of Cu-water nanofluid flow in divergent 

channel is not available in open literature yet. This study aims to investigate magnetohydrodynamics Cu-water 

nanofluid flow in a divergent channel with the effects of three different shapes of nanoparticles; brick, cylinder 

and platelet. The impacts of various physical parameters namely channel angle 𝛼, Reynolds number Re, 

Hartmann number Ha, Eckert number Ec, Prandtl number Pr and nanoparticle solid volume fraction 𝜙 on 

velocity profiles and temperature distributions are also discussed. 

 

2. Mathematical Formulation 

Consider a two-dimensional viscous incompressible Cu-water nanofluid flow from a source or sink between 

two channel walls intersect at an angle 2𝛼 as seen in Fig.2.1. A cylindrical coordinate system (𝑟, 𝜑, 𝑧) is used 

and the velocity is considered to be purely radial such that it depends on 𝑟 and 𝜑 only. Thus there is no 

variation for the physical parameters along the 𝑧  direction.  The velocity field takes the form 𝑉 =
[𝑢(𝑟, 𝜑), 0,0]. An external magnetic field B0 is operated vertically downward to the top wall. Let 𝛼 be the 

semi-angle and the domain of the flow be  −|𝛼| < 𝜑 < |𝛼|. The continuity equation, momentum equations 

and energy equation with viscous dissipation and Joule heating in reduced polar coordinates are 

𝜌𝑛𝑓

𝑟

𝜕

𝜕𝑟
(𝑟𝑢(𝑟, 𝜑)) = 0,                                                                                                                                                  (2.1) 

𝑢(𝑟, 𝜑)
𝜕𝑢(𝑟, 𝜑)

𝜕𝑟
= −

1

𝜌𝑛𝑓

𝜕𝑝

𝜕𝑟
+ 𝑣𝑛𝑓 (

𝜕2𝑢(𝑟, 𝜑)

𝜕𝑟2
+

1

𝑟

𝜕𝑢(𝑟, 𝜑)

𝜕𝑟
+

1

𝑟2

𝜕2𝑢(𝑟, 𝜑)

𝜕𝜑2
−

𝑢(𝑟, 𝜑)

𝑟2
) −

𝜎𝑛𝑓𝐵0
2

𝜌𝑛𝑓𝑟2
𝑢(𝑟, 𝜑)     (2.2) 

1

𝜌𝑛𝑓𝑟

𝜕𝑝

𝜕𝜑
−

2𝑣𝑛𝑓

𝑟2

𝜕𝑢(𝑟, 𝜑)

𝜕𝜑
= 0,                                                                                                                                    (2.3) 
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𝑢(𝑟, 𝜑)
𝜕𝑇(𝑟, 𝜑)

𝜕𝑟
=

𝜅𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

(
𝜕2𝑇(𝑟, 𝜑)

𝜕𝑟2
+

1

𝑟

𝜕𝑇(𝑟, 𝜑)

𝜕𝑟
+

1

𝑟2

𝜕2𝑇(𝑟, 𝜑)

𝜕𝜑2
) + 

𝜇𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

(4 (
𝜕𝑢(𝑟, 𝜑)

𝜕𝑟
)

2

+
1

𝑟2
(

𝜕𝑢(𝑟, 𝜑)

𝜕𝜑
)

2

) +
𝜎𝑛𝑓𝐵0

2

(𝜌𝑐𝑝)
𝑛𝑓

𝑟2
(𝑢(𝑟, 𝜑))

2
                                                            (2.4) 

 

The respective boundary conditions for the problem are as follows 

𝜓 =
𝑄

2
,

𝜕𝜓

𝜕𝜑
= 0  at 𝜑 = ±𝛼                

𝑇 = 𝑇ℎ  at 𝜑 = 𝛼  and 𝑇 = 𝑇𝑐   at 𝜑 = −𝛼                                                                                                   (2.5) 

where 𝜓 = 𝜓(𝑟, 𝜑) be the stream function and 
𝜕𝜓

𝜕𝜑
= 𝑢𝑟. The volumetric flow rate through the channel is 

defined by 

𝑄 = ∫ 𝑢𝑟𝑑𝜑                                                                                                                                                                  (2.6)
𝛼

−𝛼

 

Since the flow is symmetrically radial, i.e. 𝑣 = 0. Here, 𝐵0 is the electromagnetic induction, 𝑢 is the velocity 

along radial direction and 𝑝 is the fluid pressure. The effective density 𝜌𝑛𝑓, the effective dynamic viscosity 

𝜇𝑛𝑓, the electrical conductivity 𝜎𝑛𝑓 and the kinematic viscosity 𝑣𝑛𝑓 of the nanofluid are given as. 

𝜌𝑛𝑓 = 𝜌𝑓(1 − 𝜙) + 𝜌𝑠𝜙, 𝜇𝑛𝑓 =
𝜇𝑓

(1 − 𝜙)2.5
 ,      𝑣𝑛𝑓 =

𝜇𝑛𝑓

𝜌𝑛𝑓

  , 

𝜎𝑛𝑓

𝜎𝑓

= 1 + [3 (
𝜎𝑠

𝜎𝑓

− 1) 𝜙 ((
𝜎𝑠

𝜎𝑓

+ 2) − (
𝜎𝑠

𝜎𝑓

− 1) 𝜙)⁄ ]                                                                                   (2.7) 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

Fig. 2.1: Geometry of the Problem 

 

The corresponding effective thermal conductivity and heat capacity of nanofluid are 

𝜅𝑛𝑓 = 𝜅𝑓

𝜅𝑠 + (𝑚 + 1)𝜅𝑓 − (𝑚 + 1)(𝜅𝑓 − 𝜅𝑠)𝜙

𝜅𝑠 + (𝑚 + 1)𝜅𝑓 + (𝜅𝑓 − 𝜅𝑠)𝜙
, 



44                                                                         Md. Sarwar Alam et. al. /  GANIT J. Bangladesh Math. Soc. 41.2 (2021) 41–52 

(𝜌𝑐𝑝)
𝑛𝑓

= (1 − 𝜙)(𝜌𝑐𝑝)
𝑓

+ 𝜙(𝜌𝑐𝑝)
𝑠
                                                                                                                      (2.8) 

 

Here, 𝜙 is the nanoparticles solid volume fraction and 𝑚 is the shape factor. The thermophysical properties of 

water and Cu- nanoparticles as Das et al. [22] are presented in Table 2.1.  

Table 2.1: Thermophysical properties of water and Cu-nanoparticles. 

 

Physical properties Water Cu 

𝜌(𝑘𝑔 𝑚3⁄ ) 997.1 8933 

𝑐𝑃(𝐽 𝑘𝑔𝐾⁄ ) 4179 385 

𝜅(𝑊 𝑚𝐾⁄ ) 0.613 401 

𝜎(Ω𝑚) 0.05 5.96× 107 

 

The sphericity and shape factor of Cu-nanoparticles are shown in Table 2.2. As it necessitates 𝑄 ≥ 0, then the 

flow is diverging from a source at 𝑟 = 0 for 𝛼 > 0.  

 

The dimensionless variable 𝜂 is introduced as, 

   𝜂 =
𝜑

𝛼
 

Then the dimensionless stream function and temperature are defined by 

  𝐹(𝜂) =
2 𝜓(𝜑)

𝑄
, 𝜃(𝜂) =

𝑇 − 𝑇𝑐

𝑇ℎ − 𝑇𝑐

                                                                                                                             (2.9) 

 

Table 2.2: Sphericity and shape factor of Cu-nanoparticles [23-25]. 

 

Nanoparticle shapes Aspect ratio Sphericity Shape factor 

Platelet 1:1/18 0.52 5.7 

Cylinder 1:8 0.62 4.9 

Brick 1:1:1 0.81 3.7 

 

The pressure term 𝑝 is eliminated from equations (2.2) and (2.3) by using equation (2.9). The non-dimensional 

ordinary differential equations of steam function and temperature profile are reduced to the following form 

𝐹(𝑖𝑣) + 2𝛼 𝑅𝑒 𝐴(1 − 𝜙)2.5 𝐹′ 𝐹′′ + (4 − (1 − 𝜙)2.5 𝐷 𝐻𝑎2)𝛼2 𝐹′′ = 0,                                                       (2.10)  

𝜃′′ +
𝐵 𝐸𝑐 𝑃𝑟

𝐶(1 − 𝜙)2.5
[4𝛼2𝐹′2

+ (𝐹′′)2 + (1 − 𝜙)2.5 𝐷 𝐻𝑎2 𝛼2 𝐹′2
] = 0,                                                          (2.11) 

Here, prime denotes the differentiation with respect to 𝜂 . The similarity transforms reduce the boundary 

conditions as follows:  

𝐹 = 1, 𝐹′ = 0, 𝜃 = 1   at 𝜂 = 1          

𝐹 = −1, 𝐹′ = 0, 𝜃 = 0 at 𝜂 = −1                                                                                                                         (2.12) 

Where, 𝑅𝑒 =
𝑄

2𝑣𝑓
 is Reynolds number, 𝑃𝑟 =

(𝜇𝑐𝑝)
𝑓

𝜅𝑓
 is Prandtl number, 𝐸𝑐 =

𝑈𝑚𝑎𝑥
2

(𝑐𝑝)
𝑓

𝑇ℎ
 is the Eckert number, 
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𝐻𝑎2 =
𝜎𝑓𝐵0

2

𝜌𝑓𝑣𝑓
 is square of Hartmann number and 𝛼 is the channel angle. Moreover, 

𝐴 = (1 − 𝜙) +
𝜌𝑠

𝜌𝑓

𝜙,        𝐵 = (1 − 𝜙) +
(𝜌𝑐𝑝)

𝑠

(𝜌𝑐𝑝)
𝑓

𝜙 , 

𝐶 =
𝜅𝑠 + (𝑚 + 1)𝜅𝑓 − (𝑚 + 1)(𝜅𝑓 − 𝜅𝑠)𝜙

𝜅𝑠 + (𝑚 + 1)𝜅𝑓 + (𝜅𝑓 − 𝜅𝑠)𝜙
 , 

𝐷 = 1 + [3 (
𝜎𝑠

𝜎𝑓
− 1) 𝜙 ((

𝜎𝑠

𝜎𝑓
+ 2) − (

𝜎𝑠

𝜎𝑓
− 1) 𝜙)⁄ ]      are the constants. 

 

3. Series Analysis 

The non-linear differential equations (2.10) and (2.11) are solved for stream function and temperature profile. 

To solve equations (2.10) and (2.11), the power series expansions are assumed in terms of the parameter 𝛼 as 

follows: 

𝐹(𝜂) = ∑ 𝐹𝑖(𝜂)𝛼𝑖,   𝜃(𝜂) = ∑ 𝜃𝑖(𝜂)𝛼𝑖,     𝑎𝑠  |𝛼| < 1                                                                                  (3.1)

∞

𝑖=0

∞

𝑖=0

 

By substituting the equation (3.1) into equations (2.10) and (2.11) along with the boundary conditions (2.12) 

and then equating the coefficient of power of 𝛼. 

Order zero(𝛼0): 

𝐹0
(𝑖𝑣)

= 0,       𝜃0
′′ +

𝐵 𝐸𝑐 𝑃𝑟

𝐶(1 − 𝜙)2.5
(𝐹0

′′)2 = 0                                                                                                             (3.2) 

𝐹0 = 1, 𝐹0
′ = 0, 𝜃0 = 1   𝑎𝑡 𝜂 = 1                                                                                                                              (3.3) 

𝐹0 = −1, 𝐹0
′ = 0, 𝜃0 = 0 𝑎𝑡 𝜂 = −1                                                                                                                         (3.4) 

Order one(𝛼1): 

𝐹1
(𝑖𝑣)

+ 2 𝑅𝑒 𝐴(1 − 𝜙)2.5𝐹0
′𝐹0

′′ = 0, 𝜃1
′′ +

𝐵 𝐸𝑐 𝑃𝑟

𝐶(1 − 𝜙)2.5
(2𝐹0

′′𝐹1
′′) = 0                                                              (3.5) 

𝐹1 = 0, 𝐹1
′ = 0, 𝜃1 = 0 𝑎𝑡 𝜂 = 1                                                                                                                                (3.6) 

𝐹1 = 0, 𝐹1
′ = 0, 𝜃1 = 0 𝑎𝑡 𝜂 = −1                                                                                                                             (3.7) 

The first 13 coefficients of the series for stream function 𝐹(𝜂) and temperature 𝜃(𝜂) have been calculated 

using algebraic programming language MAPLE. The first few coefficients of the series for 𝐹(𝜂) and 𝜃(𝜂) in 

terms of 𝛼, 𝑅𝑒, 𝐻𝑎, 𝐸𝑐, 𝑃𝑟, 𝜙, 𝐴, 𝐵, 𝐶, 𝐷 are as follows: 

𝐹(𝜂; 𝛼, 𝑅𝑒, 𝐻𝑎, 𝜑, 𝐴, 𝐷) =
3

2
𝜂 −

1

2
𝜂3 −

3

280
 𝑅𝑒 𝐴(1 − 𝜙)(5 2⁄ )𝜂(𝜂2 − 5)(𝜂 − 1)2(𝜂 + 1)2𝛼 + (

1

431200
𝜂(𝜂 −

1)2(𝜂 + 1)2(43120 + 14375 𝑅𝑒2 𝐴2 𝜙4 + 28750 𝑅𝑒2 𝐴2 𝜙2 − 2875 𝑅𝑒2 𝐴2 𝜙5) − 14375 𝑅𝑒2 𝐴2 𝜙 −

28750 𝑅𝑒2 𝐴2 𝜙3 − 98𝜂6 𝑅𝑒2 𝐴2 − 2472 𝜂2 𝑅𝑒2 𝐴2 + 954 𝜂4 𝑅𝑒2 𝐴2 − 10780√1 − 𝜙 𝐷 𝐻𝑎2 −

4795 𝜂4 𝑅𝑒2 𝐴2 𝜙 + 4795 𝜂4 𝑅𝑒2 𝐴2 𝜙4 + 9590 𝜂4 𝑅𝑒2 𝐴2 𝜙2 − 9590 𝜂4 𝑅𝑒2 𝐴2 𝜙3 +
98 𝜂6 𝑅𝑒2 𝐴2 𝜙5 + 490 𝜂6 𝑅𝑒2 𝐴2 𝜙5 − 980 𝜂6 𝑅𝑒2 𝐴2 𝜙2 + 980 𝜂6 𝑅𝑒2 𝐴2 𝜙3 − 490 𝜂6 𝑅𝑒2 𝐴2 𝜙4 −
959 𝜂4 𝑅𝑒2 𝐴2 𝜙5 + 2472 𝜂2 𝑅𝑒2 𝐴2 𝜙5 − 24720 𝜂2 𝑅𝑒2 𝐴2 𝜙2 + 24720 𝜂2𝑅𝑒2 𝐴2 𝜙3 −

12360 𝜂2 𝑅𝑒2 𝐴2 𝜙4 + 12360 𝜂2 𝑅𝑒2 𝐴2 𝜙 + 21560 √1 − 𝜙 𝐷 𝐻𝑎2 𝜙 − 10780 √1 − 𝜙 𝐷 𝐻𝑎2 𝜙2) 𝛼2 +
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𝑂(𝛼3)+. . .                                                                                                                                                                        (3.8)     

𝜃(𝜂;  𝛼, 𝑅𝑒, 𝐻𝑎, 𝜙, 𝐸𝑐, 𝑃𝑟, 𝐴, 𝐵, 𝐶, 𝐷) = −
1

4𝐶(1−𝜙)(5 2⁄ ) (1 + 𝜂)(3 𝐵 𝐸𝑐 Pr  𝜂3 − 3 𝐵 𝐸𝑐 Pr 𝜂2 +

3 𝐵 𝐸𝑐 Pr 𝜂 − 2 𝐶 (1 − 𝜙)(5 2⁄ ) − 3 𝐵 𝐸𝑐 𝑃𝑟) −
3

560 𝐶
 𝐵 𝐸𝑐 Pr 𝑅𝑒 𝐴(9𝜂4 − 38𝜂2 − 19) (𝜂 − 1)2(𝜂 +

1)2𝛼 + 𝑂(𝛼2)+. . .                                                                                                                                                          (3.9)  

 

4. Numerical Procedure: Hermite-Padé Approximants 

In this present study, a very effective solution method, known as Hermite-Padé approximants, which was first 

introduced by Padé [26] and Hermite [27] have been applied. In this method, a function is an approximant for 

the series 

𝑆𝑁−1(𝛼) = ∑ 𝑎𝑛𝛼𝑛          𝑎𝑠          |𝛼| < 1                                                                                                              (4.1)

𝑁−1

𝑛=0

 

If it shares with 𝑆, the similar first few series coefficients for |𝛼| < 1. Therefore, the simple approximants are 

the partial sums of the series 𝑆. As soon as this series converges quickly, such polynomial approximants can 

provide good approximations of the sum. 

Consider the (𝑑 + 1) tuple of polynomials, where 𝑑 is a positive integer, 

𝑃𝑁
[0]

, 𝑃𝑁
[1]

, … , 𝑃𝑁
[𝑑]

 

where,  deg 𝑃𝑁
[0]

+ deg 𝑃𝑁
[1]

+. . . + deg 𝑃𝑁
[𝑑]

+ 𝑑 = 𝑁,                                                                                            (4.2) 

is a Hermite-Padé form of these series if 

∑ 𝑃𝑁
[𝑖](𝛼)𝑆𝑖(𝛼) = 𝑂(𝛼𝑁)      𝑎𝑠       |𝛼| < 1                                                                                                            (4.3)

𝑑

𝑖=0

 

Here, 𝑆0(𝛼), 𝑆1(𝛼), … , 𝑆𝑑(𝛼) may be independent series or different form of a unique series. It requires to find 

the polynomials 𝑃𝑁
[𝑖]

 that satisfy the equation (4.2-4.3). These polynomials are fully determined by their 

coefficients. Thus, the total number of unknowns in equation (4.3) is 

∑ deg 𝑃𝑁
[𝑖]

+ 𝑑 + 1 = 𝑁 + 1                                                                                                                                      (4.4)

𝑑

𝑖=0

 

Expanding the left hand side of equation (4.3) in powers of 𝛼 and equating the first 𝑁 equations of the system 

equal to zero, we get a system of linear homogeneous equations. To compute the coefficients of the Hermite-

Padé polynomials, it requires the normalization form, such as 

𝑃𝑁
[𝑖](0) = 1  for some integer  0 ≤ 𝑖 ≤ 𝑑                                                                                                                  (4.5) 

It is necessary to emphasize that the only input required for the computation of the Hermite-Padé polynomials 

are the first 𝑁 coefficients of the series 𝑆0(𝛼), 𝑆1(𝛼), … , 𝑆𝑑(𝛼). The equation (4.4) simply ensures that the 

coefficient matrix associated with the system is square. One approach to construct the Hermite-Padé 

polynomials is to solve the system of linear equations using any standard method such as Gaussian elimination 

or Gauss-Jordan elimination. 

Drazin and Tourigney [28] approximant is a particular kind of algebraic approximants and Khan [29] 

introduced High-order differential approximant (HODA) as a special type of differential approximants. 

Drazin-Tourigney differential approximant is applied to both the series solutions (3.8) and (3.9) to analyse the 

results. Then, the influence of physical parameters namely channel angle 𝛼, Reynolds number Re, Hartmann 

number Ha, nanoparticles volume fraction 𝜙 , Eckert number Ec on velocity profiles and temperature 

distributions with the effect of three different shapes of Cu-nanoparticles is presented in section 5.  
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5. Results and Discussion 

Three different shapes’ effects of nanoparticles such as:  brick, cylinder and platelet are analysed on velocity 

profiles and temperature distributions for varying values of physical parameters such as; nanoparticles solid 

volume friction 𝝓, channel angle 𝜶, Reynolds number 𝑹𝒆, Hartmann number 𝑯𝒂, Eckert number 𝑬𝒄 and 

Prandtl number 𝑷𝒓 in the present study. 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

                                                          (a)                                                                                                            (b) 

Fig. 5.1: (a) Velocity Profiles, (b) temperature distributions of Cu –water nanofluid with different values of 𝛼 at 𝑅𝑒 = 10, 𝐻𝑎 = 1, 𝜙 =

0.05, 𝑃𝑟 = 7.1, 𝐸𝑐 = 0.1. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
                                                        (a)                                                                                                            (b)   

Fig. 5.2: (a) Velocity Profiles, (b) temperature distributions of Cu–water nanofluid with different values of 𝑅𝑒 at 𝛼 = 𝜋 18⁄ , 𝐻𝑎 =
1, 𝜙 = 0.05, 𝑃𝑟 = 7.1, 𝐸𝑐 = 0.1. 

 

The channel angle effect on the velocity profiles and temperature distributions for Cu-water nanofluid in the 

divergent channel is shown in Figs. 5.1(a-b). It is observed in Fig. 5.1 (a) that, the velocity around the centerline 

increases for the rising values of 𝛼. One can also see that the rising values of channel opening 𝛼 produces 

backward flow adjacent to the two walls of the channel. Cu –nanoparticle (at 𝜙 = 0.05) accelerate the 

enhancement of centerline velocities more swiftly and there occurs major backward flow near the walls for 

large value of 𝛼 = 𝜋 6⁄ . It is noticed that if channel opening expands, then exhibited flow generates at the 

centerline and as a result, a major backward flow raised near the walls for diverging channel. The hypothesis 

of Fig. 5.1(a) agreed well with those results of Alam et al. [17].  
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                                                   (a)                                                                                                                 (b) 

Fig. 5.3: (a) Velocity Profiles, (b) temperature distributions of Cu–water nanofluid with different values of 𝐻𝑎 at 𝛼 = 𝜋 18⁄ , 𝑅𝑒 =
10, 𝜙 = 0.05, 𝑃𝑟 = 7.1, 𝐸𝑐 = 0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

                                                      (a)                                                                                                                 (b) 

Fig. 5.4: (a) Velocity Profiles, (b) temperature distributions of Cu–water nanofluid for different values of  𝜙 at 𝛼 =
𝜋 18, 𝑅𝑒 = 10, 𝐻𝑎 = 1, 𝐸𝑐 = 0.1, 𝑃𝑟 = 7.1⁄ . 

 

Figure 5.1(b) represents the effect of channel angle 𝛼 on temperature profiles. It is noticed that the temperature 

increases massively around the channel centerline due to the escalating values of channel angle for Cu-

nanoparticles. There is almost negligible change in the temperature of the fluid near the walls of the channel. 

Figures 5.2(a-b) highlight the velocity profiles and temperature distributions of Cu-water nanofluid for the 

increment of Reynolds number 𝑅𝑒. It is interestingly observed in Fig. 5.2(a) that the centerline velocity 

increases when the value of 𝑅𝑒 increases, since backward flow arises at the walls. Since Reynolds number is 

the ratio of momentum forces and the viscous forces. This means that higher values of 𝑅𝑒 are due to the 

stronger momentum forces for Cu –water nanofluid. Due to this reason, these forces generate fully developed 

flow at centerline and an important reverse flow at the channel walls. For increasing values of 𝑅𝑒 on the 

variations in temperature are portrayed in Fig. 5.2(b). Since 𝑅𝑒 is the ratio of momentum forces and viscous 

forces, it indicates that stronger momentum forces are responsible for rising temperature in divergent channel 

case. The increasing values of 𝛼 and 𝑅𝑒 accelerate the fluid velocity around the channel centerline. These 

expanded fluid flow produces consistently higher temperature in Figs. 5.1(b) and 5.2(b). It is seen that the 

brick-shaped nanoparticles have higher temperature followed by cylinder- and platelet- shaped nanoparticles 

in all incidents.  
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For a divergent channel, the effects of increasing Hartmann number 𝐻𝑎 on the velocity profile and temperature 

distribution are plotted in Figs. 5.3(a-b). The velocity curves show that the rate of alteration is significantly 

reduced with increase of Hartmann number. The velocity along the centerline (−0.5 < 𝜂 < 0.5) reduces for 

the increasing value of 𝐻𝑎 . The velocity decreases near the left wall (−1.0 < 𝜂 < −0.5) and right wall 

(0.5 < 𝜂 < 1.0) uniformly for the decreasing value of 𝐻𝑎. The variation of 𝐻𝑎 leads to the variation of the 

Lorentz force due to magnetic field. This Lorentz force produces more resistance to the alternation phenomena. 

Figure 5.3(b) demonstrate the effect of Hartmann number on temperature field for Cu–nanoparticles. The  

higher values of temperature around channel centerline are observed for rising Hartmann number 𝐻𝑎. Near 

the walls of the channel, there is almost negligible change in the temperature of the fluid. It can be seen that 

brick –shaped nanoparticles have higher temperature than cylinder – and platelet –shaped nanoparticles. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

                                                        (a)                                                                                                              (b) 

Fig. 5.5: Temperature profiles of Cu –nanoparticles for different values of (a) 𝐸𝑐 and (b) 𝑃𝑟 at 𝛼 = 𝜋 18, 𝜙 = 0.05, 𝑅𝑒 = 10, 𝐻𝑎 = 1⁄ . 

 

 

The effect of solid volume fraction 𝜙 of Cu -nanoparticles is investigated in the range of 0 ≤ 𝜙 ≤ 0.15 with 

𝐻𝑎 = 1 and is displayed in Figs. 5.4(a-b). In Fig. 5.4(a), it is observed that as the solid volume fraction 𝜙 

increases, the velocity increases. The volume fraction 𝜙 increases when the nanofluids consistency increases 

and this increasing consistency enhances the fluid flow. For the increasing value of solid volume fraction the 

velocity expands, but the difference in the velocity is very small. The effects of Cu–nanoparticles solid volume 

fraction 𝜙 on temperature distributions with various shape factors are shown in Fig. 5.4(b). It is observed that 

when the value of 𝜙 increases, the temperature distribution reduces particularly toward the channel centerline. 

When 𝜙 = 0.00, there is almost negligible change in the temperature of the fluid for three different shaped 

nanoparticles which is consistent.  

 

Table 5.1: Comparison of the solutions for different number of coefficients of stream function 𝐹 when  

𝑅𝑒 = 10, 𝐻𝑎 = 1, 𝛼 = 𝜋 18⁄ , ∅ = 0.05 
 
𝜂 𝑁 = 5 𝑁 = 6 𝑁 = 7 𝑁 = 8 𝑁 = 9 𝑁 = 10 𝑁 = 11 𝑁 = 12 𝑁 = 13 

-1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 

-0.8 -0.9571418 -0.9571878 -0.9572025 -0.9572074 -0.9572091 -0.9572096 -0.9572098 -0.9572099 -0.9572099 

-0.6 -0.8263751 -0.8265170 -0.8265623 -0.8265773 -0.8265824 -0.8265841 -0.8265847 -0.8265850 -0.8265850 

-0.4 -0.6105530 -0.6107610 -0.6108278 -0.6108499 -0.6108574 -0.6108600 -0.6108609 -0.6108612 -0.6108614 

-0.2 -0.3251298 -0.3252911 -0.3253434 -0.3253608 -0.3253667 -0.3253688 -0.3253695 -0.3253697 -0.3253698 

0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 
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0.2 0.3251298 0.3252911 0.3253434 0.3253608 0.3253667 0.3253688 0.3253695 0.3253697 0.3253698 

0.4 0.6105530 0.6107610 0.6108278 0.6108499 0.6108574 0.6108600 0.6108609 0.6108612 0.6108614 

0.6 0.8263751 0.8265170 0.8265623 0.8265773 0.8265824 0.8265841 0.8265847 0.8265850 0.8265850 

0.8 0.9571418 0.9571878 0.9572025 0.9572074 0.9572091 0.9572096 0.9572098 0.9572099 0.9572099 

1.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

 

For other values of 𝜙, the brick-shaped nanoparticles have highest temperature values compared to cylinder-

shaped and platelet-shaped nanoparticles. The effect of Eckert number, 𝐸𝑐 on temperature field for Cu –

nanoparticles within the channel is discussed in Fig. 5.5(a). We know that Eckert number is the ratio of the 

square of maximum velocity and specific heat. As a result, it is found from Fig. 5.5(a) that the temperature 

increases at this region and the fluid flow rate along the centerline becomes faster for increasing values of 

Eckert number. The effect due to the dissipation term in energy equation is defined by Eckert number. From 

this figure, it can also be verified that due to the stronger viscous forces, the temperature of the fluid rises in 

divergent channel. Variations of Prandtl number, 𝑃𝑟 on temperature profiles are plotted in Fig. 5.5(b) for Cu-

nanoparticles. Rise in temperature for higher values of Prandtl number is observed for Cu–nanoparticles. 

Prandtl number is the ratio of viscous force and thermal force. Increase of viscosity is responsible for the 

increasing values of 𝑃𝑟. Thus, the increasing value of temperature distribution of the fluid is seen close to the 

centerline of the channel. Table 5.1 represents the comparative values of stream function for different numbers 

of coefficients of the solution (3.8). It is observed that if the number of coefficients in the solution increases 

from 

𝑁 = 5  to 𝑁 = 13, the values of stream function 𝐹 increase gradually and uniformly for all values of 𝜂. 
 

6. Conclusions 

This paper has studied magnetohydrodynamics (MHD) Cu-water nanofluid flow in a divergent channel 

with the effects of three different shapes of nanoparticles. The influences of different flow parameters on 

the velocity field and temperature distribution are extensively analysed. The three shapes of nanoparticles 

are brick, cylinder and platelet –shaped. The major conclusions of this work are as follows: 

 The increasing values of 𝛼 and 𝑅𝑒 speed up the fluid velocity around the channel centerline 
and these developd flow produce higher temperature values in this region.  

 The fluid velocity lessens while the temperature increases near the channel centerline at 
greater values of Hartmann number. Besides, fluid flow close the two walls increases as 𝐻𝑎 
increases. 

 The velocity profile rises however the temperature reduces for escalating values of the 
nanoparticles volume fraction. 

 As the values of Eckert number and Prandtl number increased, the temperature distributions 
around the channel centerline become higher. 

 The temperature field inside the channel affected significantly by the nanoparticles shape 
factors. Brick-shaped nanoparticles have larger temperature values than the cylinder-shaped 
and platelet-shaped nanoparticles. 
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