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ABSTRACT

Morse-Novikov or Lichnerowicz cohomology groups of a manifold has been studied by researchers to deduce
properties and invariants of manifolds. Morse-Novikov cohomology is defined using the twisted differential
dω = d +ω∧, where d is the usual differential operator on forms, and ω is a non-exact closed 1-form on
the manifold. On a Riemanian manifold each Morse-Novikov cohomolgy class has unique harmonic repre-
sentative, and has Poincare duality isomorphism. This isomorhism have been proved in many elegant ways
in literature. In this article we provide yet another proof using ellepticity of a differential complex, Green’s
operator, and Hodge star operator which may be useful in other computations related to Morse-Novikov coho-
mology.
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1 Introduction
Let M be a manifold with differentiable structure of dimension n; denote by Ωk(M) the set of all degree k

differential forms on M and the de Rham cohomology ring is denoted by Hk (M). Let ω be a closed 1−form
not necessarily exact forming the twisted operator dω = d+ω∧ : Ωk(M)→ Ωk+1(M). It can easily be verified
that dω ◦ dω = 0. The cochain complex (Ω∗(M),dω) of the manifold M is known as the Morse-Novikov
complex. The Morse-Novikov or Lichnerowicz cohomology groups of M are the cohomology groups Hk

τ (M)
of this cochain complex. To study poisson geometry, A. Lichnerowicz in [1] studied, the Morse-Novikov
cohomology first. The zeros of the form ω has a combinatorial relation with ranks of these cohomologies
which has been used to give a generalization of the Morse inequalities in [2] and [3], S. P. Novikov while gave
an analytic proof of the real part of the Novikov’s inequalities has been studied by Pazhintov [4]. E. Witten
exploited exactness of τ to his famous invention of the the Morse-Novikov cohomology for exact τ in his
famous discovery Witten deformation in [5]. M. Shubin and S. P. Novikov applied the Witten deformation to
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an rigorous anlysis of limits of eigenvalues of Witten Laplacians for vector field and some more generalized 1-
form in [6] and [7]. For 1-forms with non isolated zeros and vector fields, Braverman and Farber [8] generalized
them. See [9] for more on this topics. Alexandra Otiman in [10] studied Lichnerowicz cohomology for special
classes of closed 1-forms. An important result in this connection due to X. Chen showed in [11], proved that a
Riemannian manifold M with almost non-negative sectional curvature and nontrivial first de Rham cohomology
ring has trivial Morse-Novikov cohomology ring independent of the closed non-exact 1-form ω . In [12], L.
Meng proved the Leray-Hirsch theorem for Morse-Novikov cohomology and for Dolbeault-Morse-Novikov
cohomology on complex manifolds, a blow up formula. Locally conformal symplectic manifolds has also been
studied using Morse-Novikov cohomology theory (see [13], [14], and [15]). Morse-Novikov cohomology
groups using d+ω∧ as the differential for a closed 1-form ω , on Riemannian manifold has nice properties like
each cohomology class has unique harmonic representative and finite dimensional, and has Poincare duality
isomorphism. This isomorhism have been proved in many elegant ways in literature. In this article we provide
yet another proof using ellepticity of a differential complex, Green’s operator, and Hodge star operator which
may be useful in other computations related to Morse-Novikov cohomology. This manuscript is composed
from a section of my doctoral thesis [16].

2 Review of known results
For a introduction to Morse-novikov cohomology see [16] [17]. Here we define it with few examples.

Let M be a manifold with differentiable structure of dimension n; denote by Ωk(M) the set of all degree k
differential forms on M and the de Rham cohomology ring is denoted by H p(M). Let ω be a closed 1-form
not necessarily exact forming the twisted operator dω = d +ω∧ : Ωk(M) → Ωk+1(M), where d is the usual
exterior derivative. Since d ◦ d = d2 = 0, ω ∧ω = 0,and d(ω ∧ ν) = dω ∧ ν −ω ∧ dν for any k-form ν , it
can easily be varified that dω ◦dω = 0. The cochain complex (Ω∗(M),dω) of the manifold M is known as the
Morse-Novikov complex. The Morse-Novikov or Lichnerowicz cohomology rings of M are the cohomology
rings Hk

ω(M) of this cochain complex. Let dω
k be the restriction of dω to Ωk (M). The cohomology group is

defined as

Hk
ω(M) =

ker(dω
k )

Im(dω
k−1)

.

This cohomology group is also known as Lichnerowicz cohomology group [1].

Example 1. [16][17] Morse-Novikov cohomology groups of S1 are trivial.

Example 2. [16][17] Morse-novikov cohomology group of real projective space Hk
ω(RPn)∼= Hk(RPn) for all

k and any closed 1-form ω . Where Hk(RPn) is the de Rham Cohomology group.

Example 3. [16][17] Morse-Novikov cohomology groups of T2 = {(x,y) ∈ R2}/2πZ2 are trivial.

We now review some well-known facts (see, e.g [18]). Let (M,g) be a closed compact oriented Riemannian
manifold of dimension n. At every point p ∈ M, we have an inner product gp on the tangent space TpM, and
therefore also an inner product on the cotangent space T ∗

p M determined by the inverse matrix of the matrix
of gp. This inner product is extended in a natural way to differential forms. So each vector bundle ΛkT ∗M
carries a metric that allows us to define an inner product on the space of smooth k-forms on M by the following
formula

⟨α,β ⟩=
∫

M
g(α,β )vol.

Let α ∈ Ωk(M) be a k-form. Define the linear Hodge star operator ∗ : Ωk(M) → Ωn−k(M) such that for all
β ∈ Ωk(M)

α ∧∗β = g(α,β )vol.

So the inner product defined above can be expressed by the even simpler formula

⟨α,β ⟩=
∫

M
α ∧∗β .

It turns out that ∗∗α = (−1)k(n+k)α for α ∈ Ωk(M) and that β ∧∗α = α ∧∗β for all α,β ∈ Ωk (M).
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The codifferential d∗ : Ωk (M)→ Ωk−1 (M) in the exterior algebra may be expressed in terms of the Hodge
∗ operator; for β ∈ Ωk (M),

d∗
β = (−1)nk+n+1 ∗ (d ∗β ) .

Lemma 1. (See, for example, [18]) On a closed compact Riemannian manifold, d∗ is the formal adjoint of d
with respect to the global inner product defined above.

It follows that ∗ : Ωk(M)→ Ωn−k(M) is an isomorphism. Since ∗ commutes with ∆ = d∗d +dd∗, ∗ is the
Poincaré duality isomorphism of de Rham cohomology of a compact oriented manifold,

Hk(M)∼= Hn−k(M) for every 0 ≤ k ≤ n.

The interior product in the exterior algebra is defined in terms of the Hodge ∗ operator; for β ∈ Ωk (M) and
ω ∈ Ω1 (M) is a covector, the interior product ω⌟ : Ωk (M)→ Ωk−1 (M) is defined as

ω⌟β = (−1)nk+n ∗ (ω ∧∗β ) .

Lemma 2. The adjoint of ω∧ with respect to the inner product defined above is ω⌟.

Proof. Let β ∈ Ωk (M) and γ ∈ Ωk−1 (M), then

(γ,ω⌟β )vol = (−1)nk+n
γ ∧∗∗ (ω ∧∗β )

= (−1)nk+n+(n−k+1)(−k+1)
γ ∧ω ∧∗β

= (−1)k+1 (−1)k−1
ω ∧ γ ∧∗β

so that (γ,ω⌟β )vol = (ω ∧ γ,β )vol.

Laplace and Dirac type operators [18], [19] are examples of elliptic operators. We first define the principal
symbol of a differential or pseudodifferential operator. If π : E → M and π ′ : F → M are two vector bundles
and P : Γ(E)→ Γ(F) is a differential operator of order k acting on sections, then in local coordinates of a local
trivialization of the vector bundles P can be written as

P = ∑
|α|=k

sα(x)
∂ k

∂xα
+ lower order terms,

where the summation is over all possible multi-indices α = (α1, · · · ,αk) of length |α| = k and each sα(x) ∈
Hom(Ex,Fx) is a linear transformation. If ξ = ∑ξ jdx j ∈ T ∗

x (M) is a non-zero covector at x, we define the
principal symbol of P to be

σ(P)(ξ ) = ik ∑
|α|=k

sα(x)ξ α ∈ Hom(Ex,Fx),

where ξ α = ξα1 . · · · .ξαn . It turns out that the principal symbol is invariant under coordinate transformations.
One coordinate-free definition of σ(P)x : T ∗

x M → Hom(Ex,Fx) can be given as follows. For any ξ ∈ T ∗
x M

choose a locally defined function f such that d fx = ξ . Then we define the operator

σm(P)(ξ ) = lim
t→∞

1
tm (e−it f Peit f ),

where (e−it f Peit f )(u) = e−it f (P(eit f u)). Then the order k of the operator and symbol are defined to be k =
sup{m : σm(P)(ξ )} < ∞ and σ(P)(ξ ) = σk(P)(ξ ). It follows that if P and Q are two differential operators
such that the composition PQ is defined, then

σ(PQ)(ξ ) = σ(P)(ξ )σ(Q)(ξ ).

Definition 1. An elliptic differential operator P on M is defined to be an operator such that its principal symbol
σ(P)(ξ ) is invertible for all nonzero covectors ξ ∈ T ∗M.
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Example 4. The symbol of the Dirac operator D = ∑c(e j)∇e j is

σ(D)(ξ ) = i∑c(e j)ξ j = i∑c(ξ je j) = ic(ξ ♯).

The symbol of the Dirac Laplacian D2 is

σ(D2)(ξ ) = σ(D)(ξ )σ(D)(ξ ) = (ic(ξ ♯))2 = ∥ξ
♯∥2,

where ξ ♯ is the corresponding vector of the covector ξ induced by the metric on M. The last equality is a
consequence of the definition of Clifford multiplication; see [20]. Therefore for non-zero ξ , both these symbols
are invertible, and hence D and D2 are elliptic differential operators.
An operator P is strongly elliptic if there exists c > 0 such that

σ(P)(ξ )≥ c|ξ |2

for all non-zero ξ ∈ T ∗M. The Laplacian ∆ of Rn and D2 on Clifford bundle are strongly elliptic. For more
about elliptic differential operators on manifolds see [18], [19], [20].

3 Main result
Let M be a closed, compact, and oriented Riemannian manifold. We consider the de Rham operator for the

differential
dw : Ω

e/o(M)→ Ω
o/e(M),

where Ωe(M) and Ωo(M) denote the bundle of differential forms of even degree and odd degree respectively.
We choose a Riemannian metric g on M; this induces a volume form on M and Hermitian inner products on all
the spaces Ωk(M). Since dω is a linear differential operator and the bundle in question carries a Hermitian met-
ric induced from the Hermitian inner product, there exists an unique adjoint of dω , denoted by d∗

ω . Combining
dω and d∗

ω we obtain a deformed differential operator

Dω = dω +d∗
ω : Ω

e/o(M)→ Ω
o/e(M).

For each k, we define the Laplace operator ∆ω : Ωk(M) → Ωk(M) by the formula ∆ω = (dω + d∗
ω)

2 =
dω d∗

ω + d∗
ω dω . A form τ ∈ Ωk(M) is called ω-harmonic if ∆ω τ = 0. We denote H k

ω (M) = ker∆ω , the space
of all ω-harmonic forms of degree k. Notice that ∆ω is a second order, formally self adjoint, linear differential
operator on Ωk(M). Because dω and d∗

ω square to zero,

(∆ω α,β ) = (dω α,dω β )+(d∗
ω α,d∗

ω β ) = (α,∆ω β ) .

Theorem 1. ker∆ω is finite dimensional.

Proof. Since the principal symbols of dω +d∗
ω , and ∆ω are the same as that of d+d∗ and ∆, the operatorsdω +

d∗
ω and ∆ω are elliptic operators. The following sequence

Γ
(
M,Λ0(M)

) dω→ Γ
(
M,Λ1(M)

) dω→ ··· dω→ Γ(M,Λn(M))

is an elliptic complex, since the associated symbol sequence

0 → π
∗
Γ
(
M,Λ0(M)

) σ(dω )→ ·· · σ(dω )→ π
∗
Γ(M,Λn(M))→ 0

is exact, where Γ
(
M,Λk(M)

)
= Ωk(M) is the set of smooth sections of the bundle π : Λk(M)→ M, and σ(dω)

is the principal symbol of dω . See Chapter IV, Example 2.5 of [19]. We may therefore apply the theorem
concerning an elliptic differential complex of vector bundles (see Chapter IV, Theorem 5.2 of [19]) to conclude
that H k

ω (M) = ker∆ω is finite dimensional, and we have the following orthogonal decomposition of Ωk(M):

Ω
k(M) = H k

ω ⊕ im(∆ω G) ,

where G : Ωk(M)→ Ωk(M) is a Green’s operator.
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Now we can state and prove the Hodge theorem for the Morse-Novikov cohomology.

Theorem 2. Let (M,g) be a closed compact and oriented Riemannian manifold. Then H k
ω (M)∼= Hk

ω(M). In
other words, every Morse-Novikov cohomology class has a unique ω-harmonic representative.

Proof. Let α ∈ H k
ω (M), which is smooth by elliptic regularity. Then we have

(∆ω α,α) = 0
⇒ (dω α,dω α)+(d∗

ω α,d∗
ω α) = 0

⇒∥dω α∥2 +∥d∗
ω α∥2 = 0.

This implies that α is ω-harmonic if and only if dω α = 0 and d∗
ω α = 0. These ω-harmonic forms are

closed and therefore define classes in Morse-Novikov cohomology. We have a map I : H k
ω (M) → Hk

ω(M)
defined by I (α) = [α]. We show that this map is a bijection.

Suppose α ∈ H k
ω is dω exact, say α = dω τ for some τ ∈ Ωk−1(M). Then

∥α∥2 = (α,α) = (α,dω τ) = (d∗
ω α,τ) = 0,

and therefore α = 0. To prove the surjectivity, let α ∈ Ωk(M) such that dω α = 0. Then by the decomposition
Ωk(M) = H k

ω ⊕ im(∆ω G) , for some τ ∈ H k
ω (M) and β ∈ Ωk(M), we have

α = τ +∆ω Gβ = τ +dω d∗
ω Gβ +d∗

ω dω Gβ .

Applying dω on both sides of this equation, it follows that dω d∗
ω dω Gβ = 0, and therefore

∥d∗
ω dω Gβ∥2 = (d∗

ω dω Gβ ,d∗
ω dω Gβ ) = (dω Gβ ,dω d∗

ω dω Gβ )

proving that d∗
ω dω Gβ = 0. Hence we have α = τ +dω d∗

ω Gβ ; therefore [α] = [τ].

Now we give a proof of Poincaré duality for Morse-Novikov cohomology, see Proposition 3.5 [21], using
the Hodge star operator and the Hodge theorem for Morse-Novikov cohomology.

Theorem 3. If M is a closed compact oriented manifold of dimension n and ω is a closed 1-form, then the
Hodge star operator ∗ : Ωk(M)→ Ωn−k(M) induces the isomorphism

Hk
ω(M)∼= Hn−k

−ω (M).

Proof. From (ω⌟) = (−1)nk+n ∗ (ω∧)∗, ∗2 = (−1)k(n−k), and d∗ = (−1)n(k+1)+1 ∗d∗ on Ωk (M), we have the
following identities for operators acting on Ωk (M). For any β ∈ Ωk (M)

(ω⌟)∗β = (−1)n(n−k)+n ∗ (ω∧)∗2
β

= (−1)n2+nk+n (−1)k(n−k) ∗ (ω∧)β ,

so that (ω⌟)∗= (−1)k ∗ (ω∧) on Ωk (M). Also,

∗(ω⌟)β = (−1)nk+n ∗2 (ω∧)∗β

= (−1)nk+n (−1)(n−k+1)(n−(n−k+1)) (ω∧)∗β ,

so that ∗(ω⌟) = (−1)k+1 (ω∧)∗ on Ωk (M). Next

d∗ ∗β = (−1)n(n−k+1)+1 ∗d ∗2
β

= (−1)n(n−k+1)+1 (−1)k(n−k) ∗dβ ,

so that d∗∗= (−1)k+1 ∗d on Ωk (M). Finally

∗d∗
β = (−1)n(k+1)+1 ∗2 d ∗β
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= (−1)n(k+1)+1 (−1)(n−k+1)(n−(n−k+1)) d ∗β ,

so that ∗d∗ = (−1)k d∗ on Ωk (M). From these equations we have

(d∗+ω⌟)∗= (−1)k+1 ∗ (d −ω∧)
(d +ω∧)∗= (−1)k ∗ (d∗−ω⌟)

on Ωk (M). As before d∗ is the L2 adjoint of d, and ⌟ represents interior product. It turns out that the L2 adjoint
of dω = d +ω∧ is d∗

ω = d∗+ω⌟ and the Laplacian is ∆ω = (dω + d∗
ω)

2 = dω d∗
ω + d∗

ω dω = (d +ω∧)(d∗+
ω⌟)+(d∗+ω⌟)(d +ω∧). If β ∈ Ωk(M), then by the formulas above we have for all β ∈ Ωk (M),

∗∆ω β = ∗(d +ω∧)(d∗+ω⌟)β +∗(d∗+ω⌟)(d +ω∧)β
= (−1)k−1(d∗−ω⌟)∗ (d∗+ω⌟)β +(−1)k(d −ω∧)∗ (d +ω∧)β
= (−1)k−1(−1)k(d∗−ω⌟)(d −ω∧)∗β +(−1)k(−1)k+1(d −ω∧)(d∗−ω⌟)∗β

= −((d∗−ω⌟)(d −ω∧)+(d −ω∧)(d∗−ω⌟))∗β

= −∆−ω ∗β .

Thus the operator ∗ maps ω-harmonic forms to (−ω)-harmonic forms, so from the Hodge theorem for the
Morse-Novikov cohomology ∗ induces the required isomorphism.
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