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ABSTRACT 

Black-Scholes model plays a very significant role in the world of quantitative finance. In this paper, the focus 

are on both nonlinear and linear Black-Scholes (BS) equations with numerical approximations. We aim to find 

an effective numerical approximations for Black-Scholes model. Several models from the most relevant class 

of nonlinear Black-Scholes equations with European option are analyzed in this study. The problem is 

approached by transforming the problem into a convection-diffusion equation and later it is approximated with 

the help of finite difference method (Crank-Nicolson). The result of finite difference schemes (Crank-

Nicolson) for several volatility models are presented, including the Risk Adjusted Pricing Methodology 

(RAPM), Leland’s model and the Barles’-Soner’s Model. At the same time, it is attempted to illustrate a 

comparison of different volatility models. In the case of linear Black-Scholes model, we approximate the 

model with finite difference method (FDM) and finite element method (FEM) and compare the results. All the 

numerical schemes are implemented in MATLAB and corresponding graphs are also presented here.  
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1. Introduction 

Black-Scholes equation is the most preferable model in the field of option pricing as it can calculate the price 

of an option more correctly [1, 2, 4, 17, 18]. A large number of researchers and investors have shown their 

interests in the study of Black-Scholes model in these days as it is one of the most important tools to compute 

the value of an option [1, 31]. Fisher Black, Myron Scholes and Robert Merton, these three great economists 

[31] contributed to build-up the model in 1970 [1, 2, 4, 19]. It is possible to banish risks that does exist in 

markets through Black-Scholes model that can create a risk-less hedging portfolio [18, 20, 21].   

 

Option is a kind of contract that gives the owner the right to buy or sell the asset for a specified price within a 
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specified time [2, 3, 9, 11, 31]. Option is a part of financial derivative. Option is a way to minimize the loss in 

case there is any uncertainty. Options are hugely applied for hedging [11]. The fixed price is called the strike 

price or exercise price and it is denoted by E  [1, 4, 11, 31].  The fixed time is called the expiration time or 

the maturity time and it is denoted by T [1, 4, 11, 31]. Basically call option and put option are exercised in 

real market [11]. Call option gives the owner the right to buy the underlying real asset [2, 4, 5, 31] whereas 

put option gives the owner the right to sell the underlying real asset [2, 4, 5].   

 

The most commonly applied options are European option and American option [2, 6, 11, 31]. There are some 

other types of options, for example, Bermudan options, Asian options, Barrier options, etc [11]. To work on 

option pricing it is enough to have idea on European option, American option and Asian option.  

 

European option can be exercised only at the expiration time T  [5, 7, 8, 9, 31]. Lower premium cost is one 

of the advantages of European option [13, 14]. Index options are applicable in European option and investors 

get the chance to close the option before the expiration date [14]. On the other hand, American option can be 

exercised at any time until the expiration time T  [2, 5, 9, 31]. American option is more flexible [14]. Stocks 

that are optionable follow the American Option [15]. To be able to exercise the option before the expiry time 

is considered as a huge advantage of American option which can be a helpful tool to maximize the profit [16]. 

We consider the average price of the underlying asset in Asian option [6, 10]. Asian options possess less 

volatility [10, 11]. Asian call or put options are calculated in two different forms, one is arithmetic average 

form and another one is geometric average form [11, 12].  

 

More frequently, Black-Scholes model is exercised to evaluate European option, American option and Asian 

option. In this paper we consider European option for simplicity. Finite Difference Method (FDM) and 

Galerkin’s Finite Element Method (FEM) are two very significant schemes in financial engineering [5, 17,  

20, 24] and these schemes are applied for solving the linear case. The Crank-Nicolson method is 

applied for solving the nonlinear case. 

 

Nonlinear model is considered as a model with transaction cost whereas linear model does not consider 

transaction cost [23, 52]. In linear model, we restrict ourselves by considering some assumptions which can 

sometimes become unreal [2, 23, 53]. On the other hand, in nonlinear model we have the opportunity to relax 

some of the restrictions for which the model becomes more realistic [2, 23]. For example, in nonlinear model, 

we consider volatility is non-constant due to transaction cost [2, 23, 42, 45, 52]. That’s why considering all 

the circumstances we are giving priority to nonlinear BS model over the linearized version. 

 

To approximate the nonlinear Black-Scholes model and to analyze the parameter dynamics of the model are 

both challenging. A few articles can be found where the researchers approximate the nonlinear BS model with 

a volatility corrector as a variable. Keeping this fact in mind this article focuses on to propose a few schemes 

both for linear and nonlinear Black-Scholes model so that researchers can use it to analyze such complicated 

models. To be specific, finite difference method and finite element method have been employed to 

approximate BS model as these two schemes are very easy and powerful schemes in financial engineering. 

The main objective of this paper is to study FDM and FEM for approximating linear Black-Scholes model and 

to analyze different volatility models with finite difference scheme. 

 

In section 2, there is a discussion on Black-Scholes model including both nonlinear and linear version. In 

section 3, we describe the solving methodology of nonlinear Black-Scholes equation. Next we move on to 

solving the linear version with the help of FDM and FEM methods in section 4. We have done stability and 

error analysis of Black-Scholes model in section 5. Different types of numerical results of nonlinear model are 

discussed in section 6. In section 7, we present a numerical discussion on the linear BS model and do a 

comparison between FDM and FEM scheme. In section 8, we summarize our total observations through the 

conclusion. 

 



52                                                                                      Khan and Tushar /  GANIT J. Bangladesh Math. Soc. 42.1 (2022) 050–068 

2. The Model Description 

Black-Scholes model creates an adjustment between stocks and options [22]. The Black-Scholes equation is 

one kind of parabolic equation [17, 31] and at the same time it depends on two independent variables, first is 

the time and the second is the stock price which follows a random path [1, 2]. Basically Black-Scholes model 

equation represents a partial differential equation (PDE) [2, 7, 9, 20, 23, 24] and it is very important to note 

that if we wish to solve a PDE, then we may get infinite number of solutions [9]. That’s why to get the unique 

solution, we impose some boundary conditions in BS model [2, 7, 9]. 

 

It is possible to derive Black-Scholes equation from Brownian motion by using Ito’s lemma [1, 2, 4, 9, 25]. 

We assume some facts and conditions while we are interested to calculate a fair value of an option by using 

the Black-Scholes pricing model [1, 9, 25].  

 

Black-Scholes model is divided into two types, linear and nonlinear [2, 23]. In both linear and nonlinear Black-

Scholes equation, some assumptions are same [9, 24]. 

 

2.1 Preliminaries of nonlinear Black-Scholes model 

Nonlinear Black-Scholes equation deals with the transaction costs, volatility, market liquidity, uncertain risks 

and so on [2, 9, 23, 31]. In nonlinear Black-Scholes model, the model equation is reduced to a nonlinear 

parabolic type equation [2, 9, 44]. Sometimes the solution of the nonlinear Black-Scholes model shows 

asymptotic behavior [9, 21]. The solution of the nonlinear Black-Scholes model equation can converge even 

for large market frictions [2, 9, 21].  

 

In nonlinear BS model, we assume that drift   is constant and volatility   is non-constant [2, 23, 42, 45] 

which is defined as  SSS VVSt ,,,~~ 22    [23, 43, 52, 53]. We want to hedge the position such that there 

are no risks [9, 52]. There are some assumptions on nonlinear Black-Scholes model [2, 9, 23, 43, 44]. Because 

of transaction costs, the drift   and volatility   depend on some other parameters, such as stock price S , 

time t , derivatives of the option price V etc [42, 45, 52]. That means the nonlinearity arises as an output of 

transaction costs [2, 9, 44, 45, 52]. The nonlinear Black-Scholes equation is [23, 42, 43, 45, 52, 53] 

 

  .0,0;02,,,2~

2

1
TtSVrSSVSSSVSVStSVSrtV                       (2.1) 

 

The terminal and boundary conditions can be defined in the following way [23, 52, 53].  

 

European Call Option 

 

Terminal condition is        SESTSV 0;)0,max(),( , 

 

 Boundary condition is           
.;),(

0;0),0(

)( 



 SEeStSV

TttV

tTr
 

 

European Put Option 

 

Terminal condition is         SSETSV 0;)0,max(),( ,  

 

Boundary condition is            
.;0),(

0;),0( )(



 

StSV

TtEetV tTr

 

 

As the analytical solution of nonlinear BS model (transaction cost models) is unknown to us [23], we have 

tried to approximate the numerical solution of different volatility models. In this case, we solve nonlinear BS 
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equation with FDM (Crank-Nicolson) [23].  

 

We have studied some transaction cost models with different volatilities. We have considered three types of 

volatility models [2, 23, 52].  

 

 Leland’s Model 
 

In Leland’s model, the volatility of the nonlinear Black-Scholes equation is defined as [2, 9, 23, 43, 52] 

 

 
  SSVsignLe 122~ 

 
(2.2) 

 

where the symbols have the following meaning [2, 9, 23, 42, 43],  

 

 Round trip transaction cost for per unit dollar of transaction, 

 Original volatility, 

t  Transaction frequency, 





t

Le






2
Leland’s number. 

 

 Barles’ and Soner’s Model 
 

The volatility of Barles’ and Soner’s model is defined as [2, 9, 23, 43, 46, 52]                                                                                                                                 

  SS
tTr VSae 22)(22 1~  .                                                           (2.3) 

Here, 



a  and )(x  is the solution for the following ordinary differential equation [9, 43, 46] 

0,
)(2

1)(
)( 




 x

xxx

x
x . 

We have, initial condition 1)(lim,1
)(

lim,0)0( 





x
x

x

xx
. 

For identity xx  )( , then the volatility of (2.3) becomes [9, 23, 43, 46] 

                                                                                                                                     

.22)(122~






  SSVSatTre

                                                      
(2.4) 

 Risk Adjusted Pricing Methodology (RAPM) Model 
 

The volatility of this model is [2, 9, 23, 43, 52, 53] 

 

                                                                                                                                   








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





















3

1

2
22

2
31~

SSVS
MC


 .                                   (2.5) 

Here, 0M   and 0C  denotes the measure of transaction cost and risk premium respectively [2, 9, 23, 

43]. 

 

 

2.2  Introduction to Linear Black-Scholes Model 

We have also considered the linearized version of BS model. If   is constant, then nonlinear BS model will 

become linear BS model. When we say Black-Scholes model equation, we mainly mean to say linear Black-
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Scholes equation. The famous and well-known linear Black-Scholes (BS) partial differential equation is [2, 5, 

7, 9, 20, 23, 26, 31] 

0
2

1
2

2
22 













rV

S

V
S

S

V
rS

t

V
 ,                                                   (2.6) 

where the symbols have their usual meaning. In linear BS equation, we assume that  ,,r  are constants [2]. 

The solution of equation (2.1) and (2.6) are defined on the domain  S0  and Tt 0  [7, 5, 25, 26]. 

We are considering European option. 

 

If we want to find the solution of linear Black-Scholes equation, we need to provide boundary and terminal 

conditions [2, 9, 24, 25, 31].  

 

European call option 

 

We have the following conditions [1, 2, 5, 7, 26, 27, 31] 

 

.)(),(

],0[0),0(

0)()0,max(),(







StTrEeStSV

TttV

SESESTSV

 for

 for

 for

                                          

(2.7) 

 

 

European put option 

 

The conditions are as follows [1, 2, 5, 7, 27] 

 

.for 0),(

],0[for ),0(

0for )()0,max(),(
)(










StSV

TtEetV

SSESETSV
tTr

                                       (2.8)                                                                                         

 

The analytical solution of linear BS equation can be obtained with the help of Fourier transformation from 

heat equation [7, 28, 29]. The solution that we get is unique [1]. The theoretical solution of BS model are as 

follows [2, 7, 30, 31] 

Option].Put For [;)()(eEt)V(S,
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3. A Simple Scheme for Nonlinear BS Equation 

The working procedure to find the numerical solution of nonlinear BS equation is similar as linear BS 

equation [2]. We transfer the nonlinear Black-Scholes equation of the European call option into a 

convection-diffusion equation through the following transformation of variables [23, 53] 
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  ),(),(,
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 .                                             (3.1) 

 

Then volatility for Leland’s model becomes [23] 

 

  xxx uusignLe  1~ 22  . 

Volatility of Barles’ and Soner’s model is [23] 
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Volatility of RAPM model is [23, 53] 
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The convection-diffusion equation is [23, 53] 

  0
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2

2
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 ,                                                              (3.2) 

where 
2

2



r
D  .   

 

We solve convection-diffusion equation for the transformed mesh Tx
~

0,    [23, 53]. The initial 

and boundary conditions are defined in the following manner [23, 53]. 
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Boundary condition is
 

.;1),(

;0),(





 xexu

xxu

xD


 

 

We assume the followings for volatility models [23], for example, 
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We can convert the convection-diffusion equation in the following system of equations [23] 
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Equation (3.3) is executed iteratively for the uniform grid points  nix , . We apply Crank-Nicolson method 

as this method is unconditionally stable. 

 

Domain Discretization 

We have the domain as: 
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where x  is the step size for space and   is the step size for time. NNi
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N :, 


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4. Methods Applied to Solve Linear BS Model 

As heat equation can provide us well-posed solution [17, 26], the Black-Scholes equation is reduced to a heat 

equation [5, 7, 17, 25, 26, 31]. The heat equation is a key to financial engineering [17]. It is an extreme material 

of Black-Scholes (BS) equation [17]. The boundary conditions of the heat equation can also be applied for BS 

equation.  

 

To reduce BS equation to a heat equation, we apply the following change of variables [1, 5, 7, 26] 
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The one dimensional heat equation is [5, 7, 17, 26] 
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The heat equation is defined for the following domain [5, 7, 26] 
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Equation (4.2) is the one-dimensional heat equation and we can compare it to the temperature distribution 

),( xu  along a rod or slab of length l  for time   [17, 36, 39, 40]. The heat-flow equation (4.2) is also a 

parabolic partial differential equation of second order [37, 39, 40].  
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Once we solve the heat equation, then we return to the solution of BS equation with the help of backward 

substitution [1, 5, 7, 23, 25, 26]. We mainly solve heat equation by different numerical schemes. We consider 

[-1, 1] spatial domain [7]. 

 

4.1  A Finite Difference Scheme of the Model 

Finite difference method (FDM) is widely applied in quantitative finance [17, 20]. This scheme is a well-

known section of numerical analysis [17, 37, 39]. In this method, we approximate the derivatives by using 

finite differences [7, 17, 36, 37, 38, 39]. That is, the differential equation is replaced by algebraic equations 

and then the algebraic equations are solved at each mesh point [7, 36, 37, 38, 39]. In short, FDM solves a 

discrete set of equations [7, 36, 37, 38, 39]. 

 

FDM is a relatively simple way to find the approximate solution ),( xu  of the heat equation [7, 17, 37, 38, 

39]. We mainly consider explicit, implicit, Crank-Nicolson (CN), these 3 types of FDM to solve Black-Scholes 

equation [17]. 

 

Explicit method is also known as FTCS (Forward-Time Central-Space) method [17, 36, 37, 38, 40]. That is, 

we apply a forward difference in time   and central difference in space x  [36, 37, 38, 39, 40]. We need 

condition 
2

1

2







x
s


 for applying explicit scheme [17, 34, 36, 37, 38, 39, 40]. That’s why we say that 

explicit (FTCS) method is conditionally stable [36, 37, 38, 39]. If this condition is not specified, the solution 

becomes unstable and begins to oscillate [40]. 

 

Implicit method is called as BTCS (Backward-Time Central-Space) method [17, 36, 40]. This method is 

sometimes called “Fully implicit scheme (or, backward in time)”. In this case, we use backward difference in 

time   and central difference in space x  [36, 37, 38, 39, 40]. We do not have any condition on implicit 

scheme [38, 39]. That’s why implicit (BTCS) scheme is unconditionally stable [36, 37, 38, 39, 40]. 

 

Crank-Nicolson method is an improvement of the implicit method (BTCS) [36]. This is usually known as 

CTCS (Central-Time Central-Space) method [7, 17, 36, 40]. Basically CN scheme is the average of forward 

Euler (explicit) and backward Euler (implicit) schemes [39, 40]. That is, we take central difference at time   

and central difference at space x  [36, 37, 38, 39, 40]. CN scheme is unconditionally stable [36, 37, 38, 39].  

 

Explicit, implicit and CN scheme have errors of order ),(),,(),,( 2222 xOxOxO    respectively. 

Crank-Nicolson scheme is always preferable in FDM as it can give more accurate result comparing to the 

other schemes (FTCS & BTCS) [17, 36, 39]. That’s why Crank-Nicolson method is recommended if we want 

to find the solution of Black-Scholes equation through FDM [20]. 

 

In general, we can express finite difference method as “weight formula” or “  method”. We can write heat 

equation as [37, 41] 
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.                                 (4.3) 

 

If 0 , we get explicit Euler scheme. 

If 1 , we get implicit Euler scheme. 

If 5.0 , we reach to Crank-Nicolson scheme. 

If 
2x





 , we can rewrite the above equation as 
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We can write the above equation in the following form  

CBUAU mm 1
,                                                                   (4.5) 
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We are going to apply FDM (CN) with the help of “weight formula” to the heat equation. 

 

For European call option, the initial and boundary conditions are defined as follows [1, 5, 7, 25, 26]. 

 

Initial condition is  
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Boundary condition is 
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For European put option, the initial and boundary conditions are defined as follows [1, 5, 7, 25, 26]. 

 

Initial condition is 
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Boundary condition is 
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4.2  A Piece-wise Polynomial Scheme of the Model  

In Finite element method (FEM), the domain is discretized with the help of finite element. We have used 

residual formula in FEM [5, 32]. The basic equations that are required for finite element analysis can easily 

be obtained by weighted residual method [5, 32]. We define the weak formulation or integral formulation [5, 

32] of the heat equation. We also define stiffness matrix and mass matrix [5, 32]. In this case, we consider 

linear element and linear shape functions 
21, LL  where Lagrangian polynomials are applied [5, 32, 34]. To 

approximate the solution, we assume a test function in Galerkin’s weighted residual method. It is important 

that the test function w  should be a member of )(1

0 H  [47, 48, 50] where   is the polygonal domain [51] 

and   is the boundary [47, 50, 51]. As )(1

0 Hw , we get a unique solution u  of the heat equation [47].  

 

Local coordinate variable   is used whose value varies from 1  to 1  [5, 32]. That is, space variable x  

and shape functions )(),( 21 xLxL  are expressed as functions of   [5, 32, 33]. 
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In FEM, we have to do integrations that are taken over elements [33]. Like, for linear elements [5, 32, 34, 35, 

56], 

.2,1,;)()( 

e

ji jidxxLxL                                                                  (4.6) 

Let h  be the length of the element. Integrals over elements can easily be computed with the help of    

coordinate [5]. After completing the integration (4.6), we reach to a mass matrix N  [5]. 
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Similarly, we often need to use element integrals involving shape functions [5, 32, 34, 35]. Like, for linear 

elements [5, 32, 34, 35, 56], 

 

e

ji jidx
dx

dL

dx

dL
.2,1,;                                                              (4.7) 

We compute this integral using . Finally, from this integration, we obtain stiffness matrix M [5, 32, 35, 56]. 
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The shape function L  must be differentiable for the existence of the integration (4.7).  That is, the derivatives 

dx

dL

dx

dL ji ,  must be well-behaved [48]. 

 

The integral (4.6) & (4.7) exist and they both are bounded as the function belongs to S. For our problem, we 

want to find the approximate solution u  such that 1
0Hu  [48, 49]. More specifically, 1

0)(., Hu   where 
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),(   indicates the inner product in 2L  (or 2L  norm) [50, 56, 51] and 2Lu  [50]. 

 

Galerkin’s weighted residual method is applied to obtain the trial solution w  [5, 32] where 1
0Hw  [48, 49]. 

1
0H  is such a space that consists of all admissible functions for boundary value problem and therefore all the 

trial functions exist in 1
0H  [48]. 

2211 wLwLw  . 

We assume that the test function or the trial solution w  is a smooth function. At the same time, w  is a 

differentiable and continuous function [47]. We also assume some conditions for 1
0H . For example 1

0H  will 

form a linear space i.e. 1
02211 HwLwLw   and 1

0H  is finite dimensional [48]. 

 

Here we see that 
21, LL  are multiplied with the unknown parameters

21, ww . So, 
21, LL  are weighting 

functions or weight functions [5]. Residual function g  is defined as follows [32]  
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The weak formulation or integral formulation is obtained by multiplying the residual function g  and weight 

function L , integrating over the domain nxxx 1  of the problem, equating to zero [33]. That is, 
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...,,2,1;0 .                                                            (4.9) 

The weak form  dxLg  is an inner product which belongs to )(2 L  [47]. The integral 
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 will exist and be finite (i.e.  dxLg ) [48] if the test function w  is twice 

differentiable w.r.t. x  and one time differentiable w.r.t.  . 

 

Equation (4.9) is called weighted residual equation. From (4.9), we get, 
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We compute the above equation for each element. The 1st term of equation (4.10) is 
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. If we take 

element with two nodes, then for each element, we get [33], 
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From (4.10), we get [5], 
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.FwMwN                                                                            (4.11) 

 

Equation (4.11) is a first-order differential equation which is solved to get the solution. To solve (4.11), we 

use backward FDM [5]. That is, we take backward difference (i.e. backward Euler method) [33, 56] in time 

  to approximate the time derivative
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The above system of equations (4.12) is computed for each mi ,,3,2  . For 1i , we get the 

approximation (
jw1 ) for the initial time 

1 . For this problem, the approximate solution ),( xuu   is defined 

for the domain for x  and  ba  ,  [50, 51]. 

 

The error of order for finite element method is ),( 2xO   that is less than that of finite difference method 

(CN). 

 

The conditions [5] for European call and put option are as follows. 
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European Put option 
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5. Stability and Error Analysis of Black-Scholes Model 

For error analysis of FEM in case of heat equation (4.2), we assume that   is the domain in d  and   

 is the smooth boundary for heat equation [54,55]. Next, we multiply the heat equation (4.2) by a smooth 
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function   (where 
1
0

H ), integrate over  , apply Green’s theorem and thus we obtain the following 

weak formulation [54,55] 

 

      ,,, futu  .                                                                           (5.1) 

 

After that we consider a linear space hS  of functions of x  which is finite dimensional. We impose the 

following condition on the weak formulation (5.1) and we get [54, 55] 

 

       thuthuhSfhuthu ,)(,,,,,   .                                              (5.2) 

 

We consider the 2L  error between (5.2) and (4.2). If hu  and v  are the solutions of (5.2) and (4.2) 

respectively, then [54] 
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where vhPhv  . Here hP  is the orthogonal projection of v  onto hS  and ||.||  is the norm in   22 LL . 

The proof of (5.3) is very straightforward and one may consult with [54] for detail information. 

 

We have applied FDM in convection-diffusion equation (3.2) and the stability, convergence of FDM can be 

analyzed through various methods, such as Von Neumann method, discrete perturbation method, matrix 

method etc [38, 39, 56]. FDM will converge if the approximate solution approaches to exact solution when 

the size of the grid becomes very small, i.e.   0
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stands for exact solution and approximate solution respectively [56, 39]. For equation (3.2), the above 

statement is true which establishes the convergence of nonlinear Black-Scholes model with FDM. On the other 

hand, we get 1
||






x

u 
 for (3.2) which guarantees the stability of (3.2) with FDM [57].  

 

If we apply finite element method in (3.2), it will be also be stable [58, 59, 54]. Let the domain d  and 

)(1 HhW  where hW  is a finite dimensional space [58]. We assume )(1
0
 HhWhV  and   is a 

bilinear form which is defined as  hWhW  [58]. Then we have 

 

  hVhvhvhChvhv 
2

)(,                                                               (5.4) 

 

where C  is assumed as a positive constant[58,59].  Equation (5.4) establishes the stability and uniqueness of 

solution of (3.2) [58, 59]. The detail description of (5.4) can be found in [58, 59]. So we can guarantee that if 

we attempt to apply FEM in nonlinear BS model, it will definitely be stable.  

 

6. Numerical Illustration for the Nonlinear Model 

We take the inputs as follows to solve nonlinear Black-Scholes model for European call option.   

 

.01.0,2,6.0,02.0,1.0,001.0,1,1,75,1.0,2.0  CMLeaxRTEr   
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6.1(a). RAPM Model 

 
6.1(b). Leland’s Model 

 
6.1(c). Barles’-Soner’s (Identity) 

Model 
 

Fig. 6.1. Different Types of Volatility Models 

In figure 6.1, we have tried to plot different types of volatility models (nonlinear BS model) for European call 

option and we observe that the graphical shapes for all the models are almost same. 

 

 

 
6.2(a). RAPM Model against Linear 

Model 

 
6.2(b). Leland’s Model against 

Linear Model 

 
6.2(c). Barles’-Soner’s (Identity) 

Model against Linear Model 
 

Fig. 6.2. Volatility Models against Linear BS Model 

In figure 6.2, we compare solutions between volatility models (transaction cost models) and linear BS model. 

From figure 6.2, we observe that the difference is significant when the time to expiration is 1 year (i.e. 0t ) 

for all the volatility models [23, 52] where the stock price approximately lies between 50S  to 130S . 

That is, nonlinear price (model with transaction cost) is significantly bigger than the linear price (model 

without transaction cost) at the very beginning of the time (i.e. 0t  or time to expiration 1  year) [23, 52]. 

But we note from the figure that the difference decreases when the time to expiration decreases (i.e. t  

increases) [52]. 
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 Fig. 6.3. Solution of Transaction Models along with Linear Model at Time 0t  

 

From figure 6.3, we note that the highest price is presented by Leland’s model, after that RAPM model, next 

Barles’-Soner’s (Identity) model, followed by Barles’-Soner’s model and finally linear model at the time to 

expiration 1 year (i.e. 0t ). 

 

7. Numerical Discussion on Linear Model 

From We take the inputs as 
2

0,1to1,10,2.0,1.0year, 1
2T

xxErT ba


  , 

number of spatial points, 100n , number of temporal points, 100m .  

 

 

7.1(a).  Linear Black-Scholes Model with FDM 

 

7.1(b).  Linear Black-Scholes Model with FEM 

Fig. 7.1. Linear Black-Scholes Model 
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In figure 7.1, we have attempted to present the graphical mapping of linear BS model through the well-

established models finite difference scheme (CN) and Galerkin’s finite element method (FEM) for European 

call option. 

 

 
 

Fig. 7.2.  2-D Plot of Linear Black-Scholes Model with FDM and FEM 

 

Figure 7.2 is shown for the issued time 0t . From this figure we observe that both FEM and FDM 

approximate values that are very close to the exact values. That’s why we can say that both FDM and FEM 

both are very strong schemes on option pricing. 

Table 7.1 is shown for the issued time 0t , Error=| Exact Value – Approximate Value|. From the table, we 

note that the error for FEM scheme is significantly lower than FDM method. We can conclude that, for this 

particular problem, FEM is approximating better than FDM scheme. 

 

 

Table 7.1: Numerical Results of Linear Black-Scholes Model with FDM and FEM 

 
Stock Price, 

S  
Exact Value FEM 

Value 
Error FDM 

Value 
Error 

4.98092 0.00054 0.00062 0.00009 0.00071 0.00017 

5.18629 0.00110 0.00124 0.00014 0.00138 0.00028 

5.29213 0.00155 0.00173 0.00018 0.00190 0.00035 

5.40013 0.00217 0.00239 0.00022 0.00260 0.00044 

5.62279 0.00412 0.00445 0.00033 0.00477 0.00065 

5.73753 0.00561 0.00600 0.00039 0.00639 0.00078 

5.85462 0.00757 0.00804 0.00047 0.00849 0.00092 

5.97410 0.01013 0.01068 0.00055 0.01121 0.00108 

6.09602 0.01344 0.01408 0.00064 0.01469 0.00125 

6.22042 0.01768 0.01842 0.00073 0.01912 0.00143 

6.34736 0.02308 0.02391 0.00083 0.02470 0.00162 

6.47690 0.02988 0.03081 0.00093 0.03169 0.00181 

6.60907 0.03836 0.03940 0.00103 0.04036 0.00200 

6.74395 0.04887 0.05000 0.00113 0.05105 0.00218 

6.88158 0.06176 0.06298 0.00122 0.06410 0.00234 

7.02201 0.07745 0.07875 0.00130 0.07994 0.00249 
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8. Conclusion 

In this paper, we have mainly attempted to solve the widely applied option model (Black-Scholes equation) 

numerically. We have discussed the solving procedure both for linear and nonlinear BS model in detail. The 

solution procedure was used only in the European option settings. We have advanced numerical approximation 

of nonlinear Black-Scholes model with the help of Crank-Nicolson finite difference method where different 

types of volatility models are compared to each other. Though finite element method and finite difference 

method (CN) are well-established and very good numerical methods, in case of linear Black-Scholes model, 

we have discovered that finite element method (FEM) approximates better than finite difference method 

(FDM). We would also like to pursue our work on both linear and nonlinear settings for European and 

American options by applying Rigel Compact and differential quadrature methods. 
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