
 Available online at https://ganitjournal.bdmathsociety.org/

GANIT: Journal of Bangladesh Mathematical Society

GANITJ. Bangladesh Math. Soc. 43.1 (2023) 17–35

DOI: https://doi.org/10.3329/ganit.v43i1.67856

17

Auto Mesh generation algorithm for the convex domain
with the triangular elements

 Syeda Sabikun Nahar
a
, Md. Sadekur Rahman

 a
, Md. Shajedul Karim

 a,*

a
Department of Mathematics, Shahjalal University of Science and Technology,Sylhet, Bangladesh

ABSTRACT

Mesh creation is one of the primary tasks in implementing the Finite Element Method (FEM) to solve two - and

three-dimensional boundary value problems. However, the whole procedure becomes tedious and problematic when

higher-order finite elements are employed to construct mesh and prepare corresponding element data.

In this study, we strive to develop a versatile algorithm for discretizing the two -dimensional domain using linear,

quadratic, and cubic triangular finite elements. The algorithm is developed based on n vertices (actual or more in

number) that constitute the boundary of the domain, along with a computed (n+1) -th point such as the centroid. The

algorithm, using this input, generates an initial mesh consisting of n triangular elements. Then, in every subsequent

step, the algorithm increases the number of triangles in the mesh fourfold compared to the previous step.

The algorithm we present here can employ (a) straight-sided (linear, quadratic, and cubic) triangular elements to

generate the mesh for domains with polygonal boundaries and (b) both straight-sided and curved (quadratic and

cubic) triangular elements with two straight sides and one curved side to generate meshes for domains with curved

boundaries.

Thus, the algorithm generates the desired meshes if the vertices are specified once at the initial step. Additionally,

the inclusion of the mathematical expression of the curved boundary enables the algorithm to generate the fine

mesh for the curved domain utilizing higher-order curved and straight-sided triangular elements. We also present a

computer code in MATLAB incorporating the algorithm to create the mesh, prepare the element's data, and

determine the element's connectivity.

© 2023 Published by Bangladesh Mathematical Society

Received: April 26, 2023 Accepted: May 25, 2023 Published Online: July 15, 2023

Keywords: Auto Mesh; convex; polygon; curve; boundaries; code

1. Introduction

The finite element method (FEM) is a powerful numerical technique widely implemented as an analytical tool in many

branches of science and engineering. The versatility and popularity of the method are well established. An excellent

overview of the method's utility for one-dimensional problems, often encountered in the real world, can be readily seen

*Corresponding Author. Email Address:msk-mat@sust.edu

18 Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35

in [1–2]. In applied mathematics, for two-dimensional problems, researchers thoroughly investigated the stability,

discretization errors, and convergence rates of the FEM. It has been a very active field of research ever since. The

standard way, in FEM, to achieve the desired accuracy of the approximate solution is to refine the triangulation of the

computational domain, which introduces more degrees of freedom. A vast number of publications deal with this so-

called h-version. An alternative way of increasing the number of unknowns is to increase the polynomial degree of

finite elements. This alternative way is commonly known as the p-version, which is less common, and its convergence

speed strongly depends on the regularity of the solution to the PDE [3]. The FEA solution procedure comprises three

phases: domain discretization, equation solving, and error analysis. The mesh generation of the domain is a prime task

for the pre-processing phase and plays a vital role in obtaining accurate solutions.

A fine mesh of the domain in the FEM solution procedure is one of the main ingredients for obtaining the solutions with

the desired accuracy. The versatile mesh generator scheme and the mesh adaptive technique or procedure now turns out

to be the prime requirements for creating such adequate meshes. Consequently, automatic mesh generation has received

much attention to minimize manual intervention, improve mesh quality, and obtain more efficient procedures.

Moreover, unstructured mesh generation methodologies are the predominant technique due to their ability to model

geometrically complex designs. Since these are the natural environments for adaptivity, they may be the only hope for

resolving very small-scale features. Most of the FEM and FVM codes use unstructured triangulations due to their

geometrical flexibility and the low cost of the linear triangular elements [3–5].

Recent studies [3, 6] have discussed and provided detailed information on the necessity of automatic mesh generation as

well as the advantages, disadvantages, and mesh refinement strategies. In [6], the mesh generation scheme is developed

based on the following steps: (a) First of all, triangulate the linear convex polygonal domain; (b) divide each triangle

into m
2
 smaller triangles by dividing each of its sides into m equal parts; and finally, (c) each triangle into three special

quadrilaterals and further each quadrilateral into 4 (four) quadrilaterals. In [3], an automatic triangular mesh generator

has been developed utilizing the advancing front technique as the prime or main building block of a computational

system for mesh generation that builds triangular and quadrilateral meshes over arbitrary domains. More specifically,

this technique generates a quadrilateral mesh from the created triangular mesh using the specific process of splitting

each triangle into quadrilaterals.

A general algorithm and computer code have been presented in [4] for creating h- and p-version meshes directly using

quadrilaterals for a convex domain with a polygonal or curved boundary. The (developed) computer code also allows

the generation of the p-version meshes using both the Lagrange and serendipity type (higher-order) quadrilateral

elements. We believe that the computer programs developed in [3, 4, 6] can be implemented to automatically create

meshes of the domain, prepare element data, and display corresponding quadrilateral meshes.

The unstructured triangulations, as mentioned above, due to their geometrical flexibility and the low cost of the linear

triangular elements, are utilized almost in all the commercial FEM and FVM codes. So, it is clearly apparent that the

automatic mesh generator uses linear triangular elements to generate only the h-version meshes. Usually, in practical

situations, numerous linear triangular elements are required to mesh the domain, resulting in triangles with smaller

areas.

Then, at this stage, a genuine question arises as to whether it is logical to split each of these smaller triangles into three

quadrilaterals and then further split each quadrilateral into four quadrilaterals. The only possible answer to this genuine

question is to triangulate the domain with fewer triangular elements and then again split each of these triangles into

three quadrilaterals. Therefore, this entails attention to generating the refined mesh and causes difficulties for automatic

mesh generation. Instead, a better possible alternative procedure is to generate first a p-version mesh for the domain

with fewer triangular elements and then split these triangles further with the triangles if necessary.

The suitability, geometrical flexibility, advantages, disadvantages, and usefulness of the triangular elements (both lower

and higher order) have been extensively explained in detail in several studies, and for ready references, one can turn to

[7–10]. Integration schemes (analytical and numerical) for the triangular domain integrals have been developed in [8,

10-13]. Still, research is going on to mitigate the drawbacks or disadvantages relevant to the p-version triangular mesh

generations. On the same line, we have attempted to develop a general algorithm and a complete computer code for

automatic (h- and p-versions) mesh generation using triangular elements for the convex domain having polygonal or

curved boundaries.

This piece of writing is structured as follows: Section 2 contains (1) the algorithm for triangulating complex

domains with polygonal and non-polygonal boundaries; (2) code-generated meshes and element data outputs that

are suitable for human verifications; and (3) meshes with more (linear, quadratic, and cubic) triangular elements.

Necessary and important conclusions are discussed concisely in Section 3. Finally, references are listed, and the

developed computer code is provided as an appendix.

2. Triangulation of the convex domain with polygonal and non-polygonal boundaries

In this section, we wish to present an algorithm and code for generating a mesh of a convex domain with (a) a

Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35 19

polygonal boundary using the actual number of vertices on the boundary and (b) a non-polygonal boundary using more

nodes on the curve boundary either by selecting more nodes on the curve or computing the required nodal coordinates

using the curve's equation. The code needs three inputs: n (number of vertices), coordinates of vertices, and the order of

triangular elements.

With these given inputs, the program creates an initial mesh consisting of n triangles. Subsequently, if desired, each

triangle will be divided into four triangles of equal area. So, this quadruples the number of triangular elements in each

subsequent step. The output will be an array of the relations between local and global nodes and another of nodal

coordinates. These outputs are indeed very essential element data needed to compute the components of element

matrices and assemble element matrices to form the global system of equations.

2.1 Algorithm

For the known values of N (the number of vertices), Nodes (nodal coordinates of the vertices), NE (number of

elements), and OE (the order of element under consideration) desired mesh will be generated by the following

algorithm. The algorithm will generate two dynamic arrays Tri (for element-wise relation between the local and global

nodes) of size and Nodes (coordinates of global nodes of the mesh) of size for outputs of essential data.

Step 1: Calculate (N+1)th node by arithmetic mean of coordinates of N vertices.

Step 2: Use the procedure mesh1 (Tri, Nodes, NE, n, curve, cs)

 If OE=2 use procedure mesh2, if OE=3 use procedure mesh3

Step 3: Print Tri and Nodes array

Step 4: Draw the created mesh of the domain by using data of Tri and Nodes arrays.

Procedure mesh1(Tri, Nodes, NE, n, curve, cs):

Step 1: Compute noTri (row of dynamic Tri array) and LastNode (row number of dynamic array Nodes)

Step 2: Repeat step 3 to 5 for I=1 to noTri

Step 3: Calculate Ith mid nodes for Tri and compare with coordinates of Nodes array.

Step 4: Calculate nodal coordinates without repetition that is for non-repeating case increase the index of array Nodes

by one.

Step 5: based on calculated nodes spilt Ith Tri element into four elements.

Step 6: If row of Tri is less than NE go to step 1

Step 7: Print Tri and Nodes arrays

Step 8: Draw the figure of the discretized domain

Procedures mesh2 and mesh3 are same to the procedure mesh1 and hence their steps are not written. Based on the

above algorithm “mesh1.m”, "mesh2.m" and "mesh3.m", three separate independent function programs have been

developed for calling them by the main function "twoDimMesh.m". The computer code in MATLAB (appended in the

appendix) is self-explanatory, and therefore we avoided duplications of mathematical expressions.

2.2 Test Examples for automatic mesh generation of polygonal domain

For easy (manual) verification and clear understanding, we consider a simple polygonal domain with vertices. We wish

to discretize the domain by using linear, quadratic, and cubic triangular elements.

2.2.1 Mesh using linear triangular elements

Case 1: Discretizing the domain with vertices NE=3 and OE=1

Figure 2.1: Mesh of the domain using 3-linear triangular elements

Output of the program

Figure 2.1 displays the mesh of a triangular domain, consisting of three linear triangle elements. The mesh was created

using the code developed in accordance with the aforementioned algorithm. The computed element data for this mesh is

20 Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35

presented below:

(a) Element wise Global Nodes for element [e]:

[1] : 1, 2, 4 [2] : 2, 3, 4 [3] : 3, 1, 4

(b) Nodal Coordinates for global nodes:

1 : (0.000, 0.000) 2 : (2.000, 0.000) 3 : (1.000, 2.000) 4 : (1.000, 0.667)

Case 2: Discretizing the domain with vertices . NE=12 and OE=1

Figure 2.2: Mesh of the domain using 12-linear triangular elements

Output of the program:

Figure 2.2 showcases the mesh of a triangular domain comprising 12 linear triangular elements. The mesh was

generated using the developed code. We found the other computed element data to be accurate; it is not explicitly listed

in tabular form.

2.2.2 Mesh using quadratic triangular elements

Case 1: Discretizing the domain with vertices NE=3 and OE=2

Figure 2.3: Mesh of the domain using 3 quadratic triangular elements

Output of the code

Figure 2.3 displaces the mesh of a triangular domain consisting of three quadratic triangular elements. This mesh was

generated by the code developed in accordance with the aforesaid algorithm. The computed element data for this mesh

is as follows:

(a) Element wise Global Nodes for element [e]:

[1]: 1, 5, 2, 6, 4, 7 [2]: 2, 8, ,3 9, 4, 6 [3]: 3, 10, 1, 7, 4, 9

(a) Nodal Coordinates for global nodes:

1 : (0.000, 0.000) 2 : (2.000, 0.000) 3 : (1.000, 2.000) 4 : (1.000, 0.667) 5 : (1.000, 0.000)

6 : (1.500, 0.333) 7 : (0.500, 0.333) 8 : (1.500, 1.000) 9 : (1.000, 1.333) 10 : (0.500, 1.000)

Case 2: Discretizing the domain with vertices NE=12 and OE=2

Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35 21

Figure 2.4: Mesh of the domain using 12 quadratic triangular elements

Output of the code:

The mesh of a triangular domain consisting of 12 quadratic triangular elements is shown in Figure 2.4. The mesh is

generated using code developed in accordance with the aforementioned algorithm. The computed element data were

verified and found correct, but they are not tabulated.

2.2.3 Mesh using cubic triangular elements

Case 1: Discretizing the domain with vertices NE=1 and OE=1

Figure 2.5: Mesh of the domain using one cubic triangular element

Output of the code:

Figure 2.5 presents the mesh of a triangular domain with one cubic triangular element. The mesh is constructed by the

developed code, and the computed element data are as follows:

(a) Element wise Global Nodes for element [e]:

 [1] : 1, 4, 5, 2, 6, 7, 3, 8, 9, 10

(b) Nodal Coordinates for global nodes:

1 : (0.000, 0.000) 2 : (2.000, 0.000) 3 : (1.000, 2.000) 4 : (0.667, 0.000) 5 : (1.333, 0.000)

6 : (1.667, 0.667) 7 : (1.333, 1.333) 8 : (0.667, 1.333) 9 : (0.333, 0.667) 10 : (1.000, 0.667)

Case 2: Discretizing the domain with vertices (0, 0), (2, 0), (1, 2). NE=3 and OE=3

Figure 2.6: Mesh of the domain using 3 cubic triangular elements

Output of the code:

Figure 2.6 displaces the mesh of a triangular domain with one cubic triangular element. This mesh is created

by the developed code, and the computed element data are as follows:

(b) Element wise Global Nodes for element [e]:

 [1] : 1, 5, 6, 2, 7, 8, 4, 9, 10, 11

[2] : 2, 12, 13, 3, 14, 15, 4, 8, 7, 16

22 Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35

[3] : 3, 17, 18, 1, 10, 9, 4, 15, 14, 19

(c) Nodal Coordinates for global nodes:

1 : (0.000, 0.000) 2 : (2.000, 0.000) 3 : (1.000, 2.000) 4 : (1.000, 0.667) 5 : (0.667, 0.000)

6 : (1.333, 0.000) 7 : (1.667, 0.222) 8 : (1.333, 0.444) 9 : (0.667, 0.444) 10 : (0.333, 0.222)

11 : (1.000, 0.222) 12 : (1.667, 0.667) 13 : (1.333, 1.333) 13 : (1.333, 1.333) 15 : (1.000, 1.111)

16 : (1.333, 0.889) 17 : (0.667, 1.333) 18 : (0.333, 0.667) 19 : (0.667, 0.889)

Case 3: Discretizing the domain with vertices (0, 0), (2, 0), (1, 2). NE=12 and OE=3

Figure 2.7: Mesh of the domain using 12 cubic triangular elements

Output of the code:

Figure 2.7 exhibits the mesh of a triangular domain with 12 cubic triangular elements. This mesh is generated by the

developed code. We verified all the computed element data and found it correct. This is an illustration of a p-version

mesh employing cubic triangular elements. There are 12 triangular elements of the same size, e.g., triangles T157, T526,

T567, T647, T286, T689, T839, T694, and other triangles within the triangle T143 are all of equal size in area, and the area of

each triangle is equal to one-twelfth of the area of T123.

2.3 Test Examples for automatic mesh generation of non-polygonal domain

We consider here the domain, for clear understanding and easy manual verification, with one curved side described by

 to generate a fine mesh using the code (appended in the appendix). To describe the

domain, we give the input of eight vertices, where most of the vertices lying on the curved side, which are:

We wish to discretize the domain by using linear, quadratic, and cubic triangular elements.

2.3.1 Mesh with linear triangular elements

Case 1: Discretizing the domain with vertices
 NE=8 and OE=1.

Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35 23

Figure 2.8: Mesh of the domain using 8 linear triangular elements

Output of the code

In Figure 2.8, we present a mesh of a triangular domain with eight linear triangular elements. Notice that the domain

has a curved boundary. This mesh is generated by the developed code, and the computed element data are as follows:

(a) Element wise Global Nodes for element [e]:

[1] : 1, 2, 9 [2] : 2, 3, 9 [3] : 3, 4, 9 [4] : 4, 5, 9

[5] : 5, 6, 9 [6] : 6, 7, 9 [7] : 7, 8, 9 [8] : 8, 1, 9

(b) Nodal Coordinates of global nodes:

1 : (0.000, 0.000) 2 : (0.500, 0.000) 3 : (1.000, 0.000)

4 : (0.938, 0.348) 5 : (0.688, 0.726) 6 : (0.375, 0.927)

7 : (0.000, 1.000) 8 : (0.000, 0.500) 9 : (0.438, 0.438)

Case 2: Discretizing the domain with vertices
 NE=32 and OE=1

Figure 2.9: Mesh of the domain using 32 linear triangular elements

24 Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35

Output of the code

In Figure 2.9, we present the mesh of a curved triangular domain with 32 linear triangular elements. This mesh is

created by the developed code appended in the appendix. The computed element data is as follows:

(a) Element wise Global Nodes for element [e]:

[1] : 1, 10, 12 [2] : 10, 2, 11 [3] : 11, 9, 12 [4] : 10, 11, 12

[5] : 2, 13, 11 [6] : 13, 3, 14 [7] : 14, 9, 11 [8] : 13, 14, 11

[9] : 3, 15, 14 [10] : 15, 4, 16 [11] : 16, 9, 14 [12] : 15, 16, 14

[13] : 4, 17, 16 [14] : 17, 5, 18 [15] : 18, 9, 16 [16] : 17, 18, 16

[17] : 5, 19, 18 [18] : 19, 6, 20 [19] : 20, 9, 18 [20] : 19, 20, 18

[21] : 6, 21, 20 [22] : 21, 7, 22 [23] : 22 , 9, 20 [24] : 21, 22, 20

[25] : 7, 23, 22 [26] : 23, 8, 24 [27] : 24, 9, 22 [28] : 23, 24, 22

[29] : 8, 25, 24 [30] : 25, 1, 12 [31] : 12, 9, 24 [32] : 25, 12, 24

(a) Nodal Coordinates of global nodes:

1 : (0.000, 0.000) 2 : (0.500, 0.000) 3 : (1.000, 0.000) 4 : (0.938, 0.348) 5 : (0.688, 0.726)

6 : (0.375, 0.927) 7 : (0.000, 1.000) 8 : (0.000, 0.500) 9 : (0.438, 0.438) 10 : (0.250, 0.000)

11 : (0.469, 0.219) 12 : (0.219, 0.219) 13: (0.750, 0.000) 14 : (0.719, 0.219) 15 : (0.969, 0.247)

16 : (0.688, 0.393) 17 : (0.813, 0.582) 18 : (0.563, 0.582) 19 : (0.531, 0.847) 20 : (0.406, 0.682)

21 : (0.188, 0.982) 22 : (0.219, 0.719) 23 : (0.000, 0.750) 24 : (0.219, 0.469) 25 : (0.000, 0.250)

2.3.2 Mesh with quadratic elements

Case 1: Discretizing the domain with vertices
 NE=8 and OE=2.

Figure 2.10: Problem domain meshed with 8 quadratic triangular elements

The mesh in Figure 2.10 illustrates the importance of a higher-order (quadratic) triangular element’s implementation to

create a fine mesh of a curved domain, reducing geometrical errors. This mesh (in Figure 2.10), consisting only of 8

quadratic triangular elements, is better than the mesh (in Figure 2.9), created using 32 linear triangular elements.

Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35 25

2.3.3 Mesh with cubic elements:

Discretizing the domain with vertices
 NE=8 and OE=3.

Figure 2.11: Mesh of the domain using 8 cubic triangular elements

The mesh in Figure 2.11 illustrates the importance of a higher-order (cubic) triangular element’s employment to create a

fine mesh of a curved domain, reducing geometrical errors. This mesh (in Figure 2.11) consisting only of 8 cubic

triangular elements is better than the meshes (in Figures 2.9-2.10) created using 32 linear and 8 quadratic triangular

elements, respectively.

2.4 Test Examples for automatic mesh generation of polygonal and non-polygonal domains with more elements

In the above section, we have shown meshes with a minimum number of elements. In a practical situation, numerous

triangular elements are used in h- and p-version meshes. So, in this section, we wish to present only the (code

generated) meshes for some convex domains with more linear, quadratic, and cubic triangular elements. We have

generated fine meshes but did not include them in this article due to their visibility in printed form. The code generates

meshes as desired or required.

Example-1: Mesh of hexagonal domain

(a) (b)

26 Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35

(c) (d)

Figure 2.12: Mesh of a covex polygon; (a) domain to be meshed, (b) Mesh using 384 linear elements, (c) Mesh using

96 quadratic elements, (d) Mesh using 96 cubic elements.

The domain (shown in Figure 2.12(a)) is created by entering the coordinates of six vertices. The code then generates

meshes (shown in Figures 2.12(b)-2.12(d)) based on the order of the elements (2 for quadratic and 3 for cubic).

Example-2: Mesh of non-polygonal domain with one parabolic curve side

(a) (b)

(c) (d)

Figure 2.13: Mesh of a non-polygonal domain; (a) domain to be meshed, (b) 256 linear elements, (c) 64 quadratic

elements, (d) 16 cubic elements

The domain (shown in Figure 2.13(a)) is produced by first incorporating the mathematical expression of the curve and

then by inputting the coordinates of four vertices. The algorithm then generates meshes (shown in Figures 2.13(b)-

2.13(d)) based on the order of the elements (2 for quadratic and 3 for cubic). Notice that the domain contains two

straight sides and one curved side. Then also, the mesh using a few higher-order elements is free from geometrical

errors.

Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35 27

Example-3: Mesh of non-polygonal domain

(a) (b)

(c) (d)

Figure 2.14: Mesh of a domain bounded by two curved(parabolic) side and two staright side; (a) domain to be meshed,

(b) Mesh using 384 linear elements, (c) Mesh using 96 quadratic elements, (d) Mesh using 96 cubic elements

The domain (shown in Figure 2.14(a)) is generated by incorporating two mathematical equations for two curved sides

into the code. Then, after inputting the coordinates of six vertices; the code then generates meshes (shown in Figures

2.14(b)–2.14(d)) based on the order of the elements (2 for quadratic and 3 for cubic).

Example-4: Mesh of non-polygonal (curved) domain

(a) (b)

(c) (d)

Figure 2.15: Mesh of a domain bounded by two curved(parabolic) sides; (a) domain to be meshed,

(b) Mesh using 256 linear elements, (c) Mesh using 64 quadratic elements, and (d) Mesh using 64 cubic elements.

28 Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35

The domain (in Figure 2.15(a)) is created by including the mathematical expressions of two curves into the code. Then,

after the input of the coordinates of four vertices; the meshes (in Figures 2.15(b)–2.15(d)) are created by the code

according to the given choice of order (2 for quadratic and 3 for cubic) of the elements.

3. Conclusions

In this study, we developed a general algorithm to discretize the two-dimensional convex domain of the BVP using a

finite number of linear, quadratic, and cubic triangular elements. This mesh generation algorithm is developed based on

the n vertices (actual or more in number) that describe the boundary of the domain and the computed (n+1)-th point

(like the centroid). The algorithm generates the mesh using exactly n triangular elements in the first step. Then in every

subsequent step, it uses four times as many triangles as the previous step to generate the new mesh. Further, the

algorithms employ (a) the straight-sided triangular elements (linear, quadratic, and cubic) to generate the mesh for the

domain with a polygonal boundary and (b) the straight-sided linear and curved (quadratic and cubic) triangular elements

(with two straight sides and one curved side) to generate the mesh for the domain containing a curved boundary.

Thus, if vertices are specified once at the initial step, the algorithm generates the desired meshes. Further, the inclusion

of the mathematical expression of the curved boundary enables the algorithm to generate the fine mesh for the curved

domain utilizing the higher-order curved triangular elements. Finally, we developed the computer code in MATLAB to

create the mesh, prepare the elements' data, and determine the elements' connectivity.

We tested the program for the mesh generation of different types of convex domains with polygonal and non-polygonal

boundaries. We found correct element data and connectivity between local and global nodes. We expect that the code

can also be used to create the mesh of a concave domain by adding extra nodes on the boundary or decomposing the

domain into a few convex subdomains.

Therefore, we assert that the developed algorithm and code will mitigate the severe difficulties pertinent to automatic

mesh generation and provide an easy way for generating the p-version fine meshes with triangular (linear, quadratic,

and cubic) elements.

We also believe that the present technique will be useful in developing algorithms for constructing meshes of two-

dimensional concave as well as three-dimensional convex domains. We are intending to undertake the development of

algorithms for the two-dimensional general (convex, concave, or combination of both) domains.

Acknowledgements

We would like to express our heartfelt gratitude to all those who have contributed to this research in one way or

another. Your support and encouragement have been invaluable, and we are grateful for your contributions. We are also

thankful to authorities of SUST research center and Mathematics Department, Shahjalal University of Science and

Technology (SUST) for providing us with access to their resources and facilities.

Funding

We appreciate the financial support provided by BANBEIS, Education Ministry of Bangladesh, which enabled us to

conduct this research. We are also thankful to authority of central library, SUST for providing us with access to their

resources and facilities.

References

[1] Hazrat Ali, Md. Kamrujjaman, Numerical solutions of nonlinear parabolic equations with robin condition: Galerkin

approach, TWMS Journal of Applied and Engineering Mathematics, Volume 12 (3), 2022, 851- 863.

[2] Hazrat Ali, Md. Kamrujjaman, and Md. Shafiqul Islam, Numerical computation of Fitzhugh-Nagumo equation: A

novel Galerkin finite element method approach, International Journal of Mathematical Research, Volume 1, 2020,

20-27.

[3] H.T. Rathod, Bharat Rathod, A new approach to Automesh Generation of all β graded triangular and quadrilateral

Finite Elements over Analytical Surfaces by using the parabolic Arcs passing through four points on the boundary

curve, International Journal of Engineering and Computer Science, Volume 7, Issue 9, 2018, 24214-24310

[4] Rina Paul, M.S. Karim, Md. Sadekur Rahman, Side based Automatic Mesh generation scheme for a general convex

domain with quadrilaterals, IOSR Journal of Mathematics (IOSR-JM), Volume 15, Issue 6, 2019, 65-75

[5] Szabo. B.A. and Metha. A.K., p-Convergent Finite Element Approximations in Fructure Mechanics, International

Journal for Numerical Methods in Engineering, 12, 551-560, 1978

[6] H.T. Rathod, K.Sugantha Devi, A New Approach To Automatic Generation Of All Quadrilateral Meshes Over A

Linear Convex Polygon With H-Refinements For Finite Element Analysis, Volume 5, Issue 7, 2016, 17172-17238

Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35 29

[7] H.T. Rathod and M.S. Karim, Synthetic division based integration of rational function of bivariate polynomial

numerators with linear denominators over a unit triangle. Computers Methods in Applied Mechanics and

Engineering, 181:191-235, 2000.10, 28

[8] M.S. Karim, Integration of some Bivariate Polynomial with Rational Denominators- An Application to finite

element method. A Ph.D. Thesis, Department of Mathematics, Bangalore University, Bangalore, India. 2001.

[9] H.T. Rathod and M.S. Karim, An explicit integration scheme based on recursion for the curved triangular finite

elements. Computer and Structures, 80(1):73-93, 2001, 243,244,245

[10] O.C. Zienkiewicz and Y.K. Cheung, Finite elements in the solution of field problems. The Engineers, 220:507-

510, 1965, 19

[11] Farzana Hussain, Efficient Integration Schemes and Algorithms for Finite Element Domain Integrals- An

Application to Computational Engineering Science, A Ph.D. Thesis, Department of Mathematics, Shahjalal

University of Science and Technology, Sylhet, Bangladesh, January 2014.

[12] O.C. Zienkiewicz and R.L Taylor, The Finite element method. Maidenhead, Mc Graw Hill, U.K. 1989. 20,42, 55,

67, 101

[13] G.R Cowper, Gaussian quadrature formulas for triangles. International journal of numerical methods and

engineering, 7: 405-408, 1973. 6,9, 42, 56, 67, 100, 129

APPENDIX A: Computer code in MATLAB

function twoDimMesh

format short

n=input('Enter no of Vertices of the Domain : ');

x=[0 0];

disp('Enter coordinates of the vertices in format [a b]');

for i=1:n

 fprintf('Node %i: ', i);

 node(i, :) = input('');

 x=x+node(i,:);

end

%1st triangulation by using centroid

x=x./n;

node(i+1,:)=x;

lastNode=i+1;

 for j=1:n

 m=j+1;

 if j==n

 m=1;

 end

 tri(j,:)=[j m lastNode];

 end

%curve domain information

cs=input('Is there any curve side for yes enter 1 or 0 for no:')

if cs==1

 %func of curve side (here,1st quater of unit circle)

 curve=@(x) sqrt(1-x.^2)

else

 curve=@(x)999;

end

% info for elements

30 Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35

 fprintf('Enter Number of Elements: 1 0r %i or %i or %i or %i and so',n,4*n,4*4*n,4*4*4*n);

 ne=input('elements?:');

 oe=input('Enter order of element(1 or 2 or 3):');

 if oe==1

 [nodeCord triNode]=mesh1(tri,node,ne,n,curve,cs);

 tri=triNode

 node=nodeCord

 [nodeCord triNode]=mesh1(tri,node,ne,n,curve,cs);

 print(triNode,nodeCord);

 drawDomain(tri,triNode,nodeCord,cs,curve);

 elseif oe==2

 [nodeCord triNode]=mesh1(tri,node,ne,n,curve,cs);

 tri=triNode;

 node=nodeCord;

 [nodecord triNode]=mesh2(tri,node,curve,cs);

 print(triNode,nodecord);

 drawDomain(tri,triNode,nodecord,cs,curve);

 else if oe==3

 [nodeCord triNode]=mesh1(tri,node,ne,n,curve,cs);

 tri=triNode;

 node=nodeCord;

 [nodecord triNode]=mesh3(tri,node,curve,cs);

 print(triNode,nodecord);

 drawDomain(tri,triNode,nodecord,cs,curve);

 end

 end

end

function [node tri]= mesh1(tri,node,ne,n,gg,cs)

if ne==1

 return;

else

 x=[0 0];

 for i=1:n

 x=x+node(i,:);

 end

 x=x./n;

 node(i+1,:)=x;

 lastNode=i+1;

 for j=1:n

 m=j+1;

 if j==n

 m=1;

 end

 tri(j,:)=[j m lastNode];

 end

end

if ne==n

 return;

else

Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35 31

 for l=1:10

 [noTri g]=size(tri);

 [lastNode g]=size(node);

 if noTri==ne

 break;

 end

 elementsFlag=1;

 tempNode=zeros(1,3);

 for i=1:noTri

 for j=1:3

 m=j+1;

 if j==3

 m=1;

 end

 if cs==1 && (abs(gg(node(tri(i,j),1))-node(tri(i,j),2))<=0.01 && abs(gg(node(tri(i,m),1))-

 node(tri(i,m),2))<=0.01)

 x(1)=(node(tri(i,j),1)+node(tri(i,m),1))/2;

 x(2)=gg(x(1));

 else

 x(1)=(node(tri(i,j),1)+node(tri(i,m),1))/2;

 x(2)=(node(tri(i,j),2)+node(tri(i,m),2))/2;

 end

 temp=find(ismember(node,x,'rows'));

 if temp<=lastNode

 tempNode(j)=temp;

 else

 node(lastNode+1,:)=x;

 lastNode=lastNode+1;

 tempNode(j)=lastNode;

 end

 end

 elements(elementsFlag,:)=[tri(i,1) tempNode(1) tempNode(3)];

 elements(elementsFlag+1,:)=[tempNode(1) tri(i,2) tempNode(2)];

 elements(elementsFlag+2,:)=[tempNode(2) tri(i,3) tempNode(3)];

 elements(elementsFlag+3,:)=[tempNode(1) tempNode(2) tempNode(3)];

 elementsFlag=elementsFlag+4;

 end

 tri=elements;

 end

end

end

function [node tri]= mesh2(tri,node,gg,cs)

[ne tem]=size(tri);

[l temp2]=size(node);

for e=1:ne

 if cs==1 && (abs(gg(node(tri(e,1),1))-node(tri(e,1),2))<=0.01 && abs(gg(node(tri(e,2),1))-node(tri(e,2),2))<=0.01)

 x(1)=(node(tri(e,1),1)+node(tri(e,2),1))/2;

 x(2)=gg(x(1));

32 Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35

 temp=x;

 else

 temp=(node(tri(e,1),:)+node(tri(e,2),:))/2;

 end

 t=find(ismember(node,temp,'rows'));

 if t<=l

 t1=t;

 else

 t1=l+1;

 l=l+1;

 node(l,:)=temp;

 end

 if cs==1 && (abs(gg(node(tri(e,2),1))-node(tri(e,2),2))<=0.01 && abs(gg(node(tri(e,3),1))-node(tri(e,3),2))<=0.01)

 x(1)=(node(tri(e,2),1)+node(tri(e,3),1))/2;

 x(2)=gg(x(1));

 temp=x;

 else

 temp=(node(tri(e,2),:)+node(tri(e,3),:))/2;

 end

 t=find(ismember(node,temp,'rows'));

 if t<=l

 t2=t;

 else

 t2=l+1;

 l=l+1;

 node(l,:)=temp;

 end

 if cs==1 && (abs(gg(node(tri(e,1),1))-node(tri(e,1),2))<=0.01 && abs(gg(node(tri(e,3),1))-node(tri(e,3),2))<=0.01)

 x(1)=(node(tri(e,3),1)+node(tri(e,3),1))/2;

 x(2)=gg(x(1));

 temp=x;

 else

 temp=(node(tri(e,1),:)+node(tri(e,3),:))/2;

 end

 t=find(ismember(node,temp,'rows'));

 if t<=l

 t3=t;

 else

 t3=l+1;

 l=l+1;

 node(l,:)=temp;

 end

 newtri(e,:)=[tri(e,1) t1 tri(e,2) t2 tri(e,3) t3];

end

tri=newtri;

return;

end

function [node tri]= mesh3(tri,node,gg,cs)

[ne tem]=size(tri);

[l temp2]=size(node);

for e=1:ne

 if cs==1 && (abs(gg(node(tri(e,1),1))-node(tri(e,1),2))<=0.1 && abs(gg(node(tri(e,2),1))-node(tri(e,2),2))<=0.1)

 x(1)=(2*node(tri(e,1),1)+node(tri(e,2),1))/3;

Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35 33

 x(2)=gg(x(1));

 temp=x;

 else

 temp=(2*node(tri(e,1),:)+node(tri(e,2),:))/3;

 end

 t=find(ismember(node,temp,'rows'));

 if t<=l

 t1=t;

 else

 t1=l+1;

 l=l+1;

 node(l,:)=temp;

 end

 if cs==1 && (abs(gg(node(tri(e,1),1))-node(tri(e,1),2))<=0.01 && abs(gg(node(tri(e,2),1))-

node(tri(e,2),2))<=0.01)

 x(1)=(node(tri(e,1),1)+2*node(tri(e,2),1))/3;

 x(2)=gg(x(1));

 temp=x;

 else

 temp=(node(tri(e,1),:)+2*node(tri(e,2),:))/3;

 end

 t=find(ismember(node,temp,'rows'));

 if t<=l

 t2=t;

 else

 t2=l+1;

 l=l+1;

 node(l,:)=temp;

 end

 if cs==1 && (abs(gg(node(tri(e,2),1))-node(tri(e,2),2))<=0.01 && abs(gg(node(tri(e,3),1))-node(tri(e,3),2))<=0.01)

 x(1)=(2*node(tri(e,2),1)+node(tri(e,3),1))/3;

 x(2)=gg(x(1));

 temp=x;

 else

 temp=(2*node(tri(e,2),:)+node(tri(e,3),:))/3;

 end

 t=find(ismember(node,temp,'rows'));

 if t<=l

 t3=t;

 else

 t3=l+1;

 l=l+1;

 node(l,:)=temp;

 end

 if cs==1 && (abs(gg(node(tri(e,2),1))-node(tri(e,2),2))<=0.01 && abs(gg(node(tri(e,3),1))-node(tri(e,3),2))<=0.01)

 x(1)=(node(tri(e,2),1)+2*node(tri(e,3),1))/3;

 x(2)=gg(x(1));

 temp=x;

 else

 temp=(node(tri(e,2),:)+2*node(tri(e,3),:))/3;

 end

 t=find(ismember(node,temp,'rows'));

 if t<=l

 t4=t;

34 Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35

 else

 t4=l+1;

 l=l+1;

 node(l,:)=temp;

 end

 if cs==1 && (abs(gg(node(tri(e,3),1))-node(tri(e,3),2))<=0.01 && abs(gg(node(tri(e,1),1))-node(tri(e,1),2))<=0.01)

 x(1)=(node(tri(e,1),1)+2*node(tri(e,3),1))/3;

 x(2)=gg(x(1));

 temp=x;

 else

 temp=(2*node(tri(e,3),:)+node(tri(e,1),:))/3;

 end

 t=find(ismember(node,temp,'rows'));

 if t<=l

 t5=t;

 else

 t5=l+1;

 l=l+1;

 node(l,:)=temp;

 end

 if cs==1 && (abs(gg(node(tri(e,3),1))-node(tri(e,3),2))<=0.01 && abs(gg(node(tri(e,1),1))-node(tri(e,1),2))<=0.01)

 x(1)=(2*node(tri(e,1),1)+node(tri(e,3),1))/3;

 x(2)=gg(x(1));

 temp=x;

 else

 temp=(2*node(tri(e,1),:)+node(tri(e,3),:))/3;

 end

 t=find(ismember(node,temp,'rows'));

 if t<=l

 t6=t;

 else

 t6=l+1;

 l=l+1;

 node(l,:)=temp;

 end

 node(l+1,:)=(node(tri(e,1),:)+node(tri(e,2),:)+node(tri(e,3),:))/3;

 l=l+1;

 t7=l;

 newtri(e,:)=[tri(e,1) t1 t2 tri(e,2) t3 t4 tri(e,3) t5 t6 t7];

end

tri=newtri;

return;

end

function print(tri,node)

[m n]=size(tri);

[k l]=size(node);

disp('Global and local Nodes relationship matrix:');

for i=1:m

 fprintf('\n[%3i] :',i);

 for j=1:n

 fprintf('%3i ',tri(i,j));

 end

Nahar et al/ GANIT J. Bangladesh Math. Soc. 43.1 (2023) 17–35 35

end

fprintf('\n');

disp('Cordinates:');

for i=1:k

 fprintf('%3i : %0.3f %0.3f\n',i,node(i,1),node(i,2));

end

end

 function drawDomain(t,ht,c,cs,gg)

[k l]=size(t);

 xmin = min(c(:,1)) ;

 ymin = min(c(:,2));

 xmax = max(c(:,1)) ;

 ymax = max(c(:,2));

 figure

 xlim([xmin-0.1, xmax+0.1]); ylim([ymin-0.1, ymax+0.1]);

 hold on ;

 if cs==1

 p=[0:0.01:1]

 y=gg(p)

 plot(p,y)

 hold on

end

for i=1:k

 cx = sum(c(t(i,:), 1))/l;

 cy = sum(c(t(i,:), 2))/l;

 cx=(c(t(i,1), 1)+3*cx)/4;

 cy=(c(t(i,1), 2)+3*cy)/4;

 text(cx,cy,['[',int2str(i),']']);

 hold on

 for j=1:3

 m=j+1;

 if j==3

 m=1;

 end

 if abs(gg(c(t(i,j),1))-c(t(i,j),2))<=0.01 && abs(gg(c(t(i,m),1))-c(t(i,m),2))<=0.01

 continue

 end

 x=[c(t(i,j),1) c(t(i,m),1)];

 y=[c(t(i,j),2) c(t(i,m),2)];

 plot(x,y);

 hold on;

 end

end

[k l]=size(ht);

for i=1:k

 for j=1:l

 plot(c(ht(i,j),1),c(ht(i,j),2), 'Marker', 'O', 'MarkerFaceColor', 'blue');

 hold on

 text(c(ht(i,j),1)-0.02, c(ht(i,j),2)-0.02, int2str(ht(i,j)));

 hold on

 end

end

end

