

Available online at https://ganitjournal.bdmathsociety.org/

GANIT: Journal of Bangladesh Mathematical Society

GANIT J. Bangladesh Math. Soc. 43.1 (2023) 36–44 DOI: https://doi.org/10.3329/ganit.v43i1.67857

Automorphic Forms and Holomorphic Functions on the Upper Half-plane

Md. Shafiul Alam *a

^aDepartment of Mathematics, University of Barishal, Barishal-8254, Bangladesh

ABSTRACT

We define a set of holomorphic functions in terms of the Hauptmodul of a quotient Riemann surface and prove that these functions are holomorphic on the upper half-plane. It is also shown that these functions are automorphic forms of weight k with respect to a Fuchsian group.

© 2023 Published by Bangladesh Mathematical Society

Received: Oct 30, 2022 Accepted: June 24, 2023 Published Online: July 15, 2023

Keywords: Automorphic form; Holomorphic function; Fuchsian group; Hauptmodul *AMS Subject Classifications 2020:* 30F35; 11F12; 30C15.

1 Introduction

The group $SL(2,\mathbb{R})$ is defined by

$$\mathrm{SL}(2,\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a,b,c,d \in \mathbb{R}, \ ad-bc = 1 \right\}$$

and the group

$$PSL(2,\mathbb{R}) = SL(2,\mathbb{R})/\{\pm I_2\},\,$$

where I_2 is the 2×2 identity matrix (see [14, Chapter VII]). Let \mathbb{H} denote the upper half-plane $\{\tau \in \mathbb{C} : \operatorname{Im} \tau > 0\}$. The boundary of \mathbb{H} is $\mathbb{R} \cup \infty$. The group $\operatorname{PSL}(2,\mathbb{R})$ acts on \mathbb{H} as follows:

$$\tau \mapsto \gamma \cdot \tau = \frac{a\tau + b}{c\tau + d},$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{PSL}(2,\mathbb{R}), \ \tau \in \mathbb{H}$. All transformations of $\mathrm{PSL}(2,\mathbb{R})$ are conformal.

^{*}Corresponding author. E-mail address: msalam@bu.ac.bd

A Fuchsian group is a discrete subgroup of $PSL(2, \mathbb{R})$, i.e., it is a group of orientation-preserving isometries of \mathbb{H} . The study of Fuchsian group is a very interesting topic in many fields of Mathematics. Many mathematicians studied Fuchsian group and various subgroups of Fuchsian group, for example, see [9], [13], [18] and [17]. The Hecke group which is a subgroup of Fuchsian group is studied in [1] and [2] to investigate Ramanujan's modular equations.

Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{PSL}(2,\mathbb{R})$ and let $\mathrm{tr}(\gamma)$ denote the trace of γ , then the element γ is said to be

- elliptic when $|\operatorname{tr}(\gamma)| < 2$,
- parabolic when $|\operatorname{tr}(\gamma)| = 2$,
- hyperbolic when $|\operatorname{tr}(\gamma)| > 2$.

If $\Gamma \subset \mathrm{PSL}(2,\mathbb{R})$ is a Fuchsian group and $\gamma \in \Gamma$ is an elliptic element, then a point $\tau \in \mathbb{H}$ is called an elliptic point of Γ if $\gamma(\tau) = \tau$. Also, for a parabolic element $\sigma \in \Gamma$, a point $x \in \mathbb{R} \cup \{\infty\}$ is called a cusp of Γ if $\sigma(x) = x$. If a Fuchsian group Γ acts on \mathbb{H} properly discontinuously, then we have the quotient Riemann surface $\Gamma \setminus \mathbb{H}$. For a detailed discussion, see [3] and [11].

Let \mathbb{H}^* denote the union of the upper half-plane \mathbb{H} and the set of cusps of a Fuchsian group Γ . Suppose $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, $\tau \in \mathbb{H}$ and $f : \mathbb{H} \to \mathbb{C}$ is a holomorphic function. Then the function f is called an automorphic form of weight k with respect to Γ if

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau).$$

If k = 0, then

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = f(\tau)$$

and f is called an automorphic function. When the genus of the quotient Riemann surface $\Gamma \backslash \mathbb{H}^*$ is zero, an automorphic function is called a Hauptmodul. If an automorphic function has no poles, then it is constant according to the consequence of maximum modulus principle. For details, we refer the reader to [6], [7], [10], and [12].

In many areas of mathematics, especially in number theory, automorphic forms are studied extensively. In [5], automorphic forms for Schottky groups are studied. In [8], the authors have established various results related to automorphic forms of triangle groups. The famous mathematician Goro Shimura extensively investigated many arithmetic properties of automorphic forms (see [15] and [16]). Motivated by these works, we study the automorphic forms of weight k with respect to the Fuchsian group Γ with signature $(0; n_1, \ldots, n_r)$. In the previous works mentioned above, the explicit forms of the holomorphic functions on the upper half-plane are not defined. In this work, we explicitly define a set of functions which are holomorphic on the upper half-plane \mathbb{H} . These holomorphic functions are expressed in terms of the Hauptmodul of the quotient Riemann surface $\Gamma \backslash \mathbb{H}^*$ and are automorphic forms of weight k with respect to Γ .

Let F be the fundamental domain for the Fuchsian group Γ . Let X and \hat{X} denote the quotient Riemann surfaces $\Gamma \backslash \mathbb{H}$ and $\Gamma \backslash \mathbb{H}^*$, respectively. If F is compact, then it has finitely many vertices which are elliptic points and cusps of $\hat{X} = \Gamma \backslash \mathbb{H}^*$. Let P_1, \ldots, P_r be the vertices whose orders are n_1, n_2, \ldots, n_r , respectively. If the number of elliptic elements and cusps of Γ are m and l, respectively, then m+l=r. If g is the genus of \hat{X} , then we say that Γ has signature $(g; n_1, \ldots, n_r)$. For a more detailed discussion, the reader may consult Section 2.1 of [4], Chapter 4 of [11], and Section 2 of [18]. Let us denote by A_k the space of automorphic forms of weight

k with respect to Γ . The basis for A_k on a Shimura curve X with genus 0 is determined in Theorem 4 of [19]. The following theorem is written according to Theorem 2.23 of [15] to determine the dimension of A_k .

Theorem 1 ([15, Theorem 2.23]). For a Fuchsian group Γ with signature $(g; n_1, \ldots, n_r)$, let g be the genus of the compact quotient Riemann surface $\hat{X} = \Gamma \backslash \mathbb{H}^*$. Then, the dimension, dim A_k , of A_k for an even integer k is given by

$$\dim A_k = \begin{cases} 0 & \text{if } k < 0, \\ 1 & \text{if } k = 0, \\ g & \text{if } k = 2, \\ (g-1)(k-1) + \sum_{i=1}^r \left\lfloor \frac{k}{2} \left(1 - \frac{1}{n_i}\right) \right\rfloor & \text{if } k \ge 4. \end{cases}$$

In the following section, we present our main results and their proofs.

2 Main Results

Let $(0; n_1, ..., n_r)$ be the signature of a Fuchsian group Γ , i.e., the genus of the quotient Riemann surface $\hat{X} = \Gamma \backslash \mathbb{H}^*$ is 0 and let $d = \dim A_k$. Then, for an even integer $k \geq 4$, we have from Theorem 1

$$d = 1 - k + \sum_{i=1}^{r} \left\lfloor \frac{k}{2} \left(1 - \frac{1}{n_i} \right) \right\rfloor.$$

In the following theorem, we define the functions h_j for j = 0, ..., d-1 so that the functions are holomorphic on \mathbb{H} . Also, these functions are automorphic forms of weight k with respect to Γ .

Theorem 2. Consider the Fuchsian group Γ with signature $(0; n_1, \ldots, n_r)$ and the compact quotient Riemann surface $\hat{X} = \Gamma \backslash \mathbb{H}^*$. Let τ_1, \ldots, τ_r be the inequivalent vertices (elliptic points or cusps of \hat{X}) of the fundamental domain of Γ of orders n_1, \ldots, n_r , respectively, and let $w(\tau)$ be a Hauptmodul of \hat{X} . For an even integer $k \geq 4$, let

$$a_i = \left\lfloor \frac{k}{2} \left(1 - \frac{1}{n_i} \right) \right\rfloor$$

and

$$d = \dim A_k = 1 - k + \sum_{i=1}^{r} a_i.$$

If $w(\tau_i) = w_i$ for i = 1, ..., r and the functions $h_j(\tau)$ are defined by

$$h_j(\tau) = \frac{\left(w'(\tau)\right)^{k/2} \left(w(\tau)\right)^j}{\prod_{i=1, w_i \neq \infty} \left(w(\tau) - w_i\right)^{a_i}}$$

$$(2.1)$$

for j = 0, ..., d-1 and $\tau \in \mathbb{H}$, then the functions $h_j(\tau)$ are holomorphic on \mathbb{H} .

Proof. We need to consider the following three cases:

- 1. the Hauptmodul $w(\tau)$ does not have any pole at the points τ_i for $i=1,\ldots,r$;
- 2. the Hauptmodul $w(\tau)$ has a pole at one of the points τ_i for $i = 1, \ldots, r$;
- 3. the Hauptmodul $w(\tau)$ has a pole at another point, say $\tau = \tau_0$, except the points τ_1, \ldots, τ_r .

If a function has a zero of order ≥ 0 and has a pole of order ≤ 0 at a point, then there is no principal part in the expansion of the function at that point, i.e., the function is holomorphic. Thus, we have to show that the functions h_j have

- a zero of order ≥ 0 at $\tau = \tau_i$ for Case 1,
- a pole of order ≤ 0 at $\tau = \tau_i$ for Case 2,
- a pole of order ≤ 0 at $\tau = \tau_0$ for Case 3.

Case 1: If $w(\tau)$ does not have any pole at τ_i , then $w(\tau_i) = w_i \neq \infty$ for i = 1, ..., r. Since τ_i is a vertex of order n_i , in a neighbourhood of $\tau = \tau_i$, we have

$$w(\tau) - w(\tau_i) = b_i(\tau - \tau_i)^{n_i} + O((\tau - \tau_i)^{n_i+1})$$
(2.2)

or,

$$w(\tau) - w_i = (\tau - \tau_i)^{n_i} w^*(\tau), \tag{2.3}$$

where $b_i \in \mathbb{C} \setminus \{0\}$, $w^*(\tau)$ is analytic in a neighbourhood of $\tau = \tau_i$ and $w^*(\tau_i) \neq 0$ for i = 1, ..., r. Therefore, in a neighbourhood of $\tau = \tau_i$, one can define a single-valued analytic n_i -th root of $(w - w_i)$ and this can be done at all points which are equivalent to τ_i under the action of the Fuchsian group Γ . Since $w(\tau) - w_i \neq 0$ for $\tau \neq \tau_i$ and $(w - w_i)$ is analytic on the other part of \mathbb{H} , its n_i -th root is analytic at each point of the remainder of \mathbb{H} . As $(w(\tau) - w_i)^{n_i}$ is locally analytic and single-valued at each $\tau \in \mathbb{H}$, so it follows from monodromy theorem that a single-valued and analytic n_i -th root of $(w - w_i)$ can be defined on the whole \mathbb{H} .

From (2.3), we observe that $(w(\tau) - w_i)$ has a zero of order n_i at $\tau = \tau_i$ and

$$\prod_{i=1}^{r} \left(w(\tau) - w_i \right)^{a_i}$$

has a zero of order $n_i a_i = n_i \left\lfloor \frac{k}{2} \left(1 - \frac{1}{n_i} \right) \right\rfloor$ at $\tau = \tau_i$. Also, we have from (2.2)

$$w'(\tau) = b_i n_i (\tau - \tau_i)^{n_i - 1} + O((\tau - \tau_i)^{n_i}).$$
(2.4)

Consequently, at $\tau = \tau_i$, $(w'(\tau))^{k/2}$ has a zero of order $\frac{k}{2}(n_i - 1)$. Since

$$\frac{k}{2}(n_i - 1) - n_i \left\lfloor \frac{k}{2} \left(1 - \frac{1}{n_i} \right) \right\rfloor \ge 0,$$

we conclude from (2.1) that the functions h_j have a zero of order ≥ 0 at $\tau = \tau_i$. Hence, the functions h_j are holomorphic on \mathbb{H} .

Case 2: Assume that $w(\tau)$ has a pole at one of the points τ_i for $i=1,\ldots,r$. Without loss of generality,

suppose $w(\tau)$ has a pole at τ_1 , i.e., $w(\tau_1) = w_1 = \infty$. Since τ_1 is a vertex of order n_1 , it follows that

$$w(\tau) = \frac{b_1}{(\tau - \tau_1)^{n_1}} + O((\tau - \tau_1)^{1 - n_1}), \quad b_1 \in \mathbb{C} \setminus \{0\}$$

and

$$w'(\tau) = -\frac{b_1 n_1}{(\tau - \tau_1)^{n_1 + 1}} + O((\tau - \tau_1)^{-n_1}).$$

In this case, from (2.1) we have

$$h_j(\tau) = \frac{\left(w'(\tau)\right)^{k/2} \left(w(\tau)\right)^j}{\prod_{i=2, w_i \neq \infty}^r \left(w(\tau) - w_i\right)^{a_i}}.$$
(2.5)

Now, suppose that the functions $h_j(\tau)$ defined in (2.5) have a pole of order N at $\tau = \tau_1$. Since $w(\tau)$ has a pole of order n_1 at $\tau = \tau_1$, $(w'(\tau))^{k/2}$ has a pole of order $\frac{k}{2}(n_1 + 1)$ and

$$\prod_{i=2, w_i \neq \infty}^r \left(w(\tau) - w_i \right)^{a_i}$$

has a pole of order $n_1 \sum_{i=2}^r a_i$ at $\tau = \tau_1$. As j varies from 0 to d-1, so the maximum value of j is $d-1 = \sum_{i=1}^r a_i - k$.

Hence, $(w(\tau))^j$ has a pole of order at most $n_1(\sum_{i=1}^r a_i - k)$ at $\tau = \tau_1$ and we have

$$N \leq \frac{k}{2}(n_1+1) + n_1 \left(\sum_{i=1}^r a_i - k\right) - n_1 \sum_{i=2}^r a_i$$

$$= \frac{k}{2}(n_1+1) + n_1 \left(\sum_{i=1}^r \left\lfloor \frac{k}{2} \left(1 - \frac{1}{n_i}\right) \right\rfloor - k\right) - n_1 \sum_{i=2}^r \left\lfloor \frac{k}{2} \left(1 - \frac{1}{n_i}\right) \right\rfloor$$

$$= -\frac{k}{2} \left(n_1 - 1\right) + n_1 \left\lfloor \frac{k}{2} \left(1 - \frac{1}{n_1}\right) \right\rfloor$$

$$< 0$$

Since $N \leq 0$, it follows that there are no principal parts in the expansions of the functions h_j . Therefore, the functions h_j are holomorphic on \mathbb{H} .

Case 3: Suppose that $w(\tau)$ has the value ∞ at the point $\tau = \tau_0$ and $w(\tau_i) \neq \infty$ for i = 1, ..., r. Therefore, $w(\tau)$ has a simple pole at τ_0 and we have

$$w(\tau) = \frac{b_0}{(\tau - \tau_0)} + O(1), \quad b_0 \in \mathbb{C} \setminus \{0\}$$
 (2.6)

and

$$w'(\tau) = -\frac{b_0}{(\tau - \tau_0)^2} + O(1). \tag{2.7}$$

Let N_0 be the order of the pole of h_j defined in (2.1) at $\tau = \tau_0$. From (2.6) and (2.7), we observe that $(w'(\tau))^{k/2}$

has a pole of order k,

$$\prod_{i=1}^{r} \left(w(\tau) - w_i \right)^{a_i}$$

has a pole of order $\sum_{i=1}^{r} a_i$ and w^j has a pole of order at most $d-1 = \sum_{i=1}^{r} a_i - k$. Therefore, from (2.1), it follows that

$$N_0 \le k + \sum_{i=1}^r a_i - k - \sum_{i=1}^r a_i = 0,$$

which implies that the functions h_j are holomorphic on \mathbb{H} in this case also.

Lemma 1. The functions h_j for j = 0, ..., d-1 defined in (2.1) are automorphic forms of weight k with respect to the Fuchsian group Γ .

Proof. For j = 0, ..., d-1 and $a_i = \left\lfloor \frac{k}{2} \left(1 - \frac{1}{n_i}\right) \right\rfloor$, we have to show that

$$h_j\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k h_j(\tau),$$

where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $\tau \in \mathbb{H}$. Since $w(\tau)$ is a Hauptmodul of \hat{X} , i.e., $w(\tau)$ is an automorphic function, thus we have

 $w\left(\frac{a\tau+b}{c\tau+d}\right) = w(\tau)$

and

$$w'\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^{1/2}w'(\tau).$$

Now,

$$h_{j}\left(\frac{a\tau+b}{c\tau+d}\right) = \frac{\left(w'\left(\frac{a\tau+b}{c\tau+d}\right)\right)^{k/2} \left(w\left(\frac{a\tau+b}{c\tau+d}\right)\right)^{j}}{\prod_{i=1,w_{i}\neq\infty}^{r} \left(w\left(\frac{a\tau+b}{c\tau+d}\right)-w_{i}\right)^{a_{i}}}$$
$$= \frac{(c\tau+d)^{k} \left(w'(\tau)\right)^{k/2} \left(w(\tau)\right)^{j}}{\prod_{i=1,w_{i}\neq\infty}^{r} \left(w(\tau)-w_{i}\right)^{a_{i}}}$$
$$= (c\tau+d)^{k} h_{j}(\tau).$$

Thus, the functions h_i are automorphic forms of weight k with respect to Γ .

Example 1. Let Γ_1 be the triangle group (0; 4, 6, 6) which is a subgroup of the Fuchsian group Γ . Thus,

$$g = 0$$
, $n_1 = 4$, $n_2 = 6$, $n_3 = 6$.

If τ_1 , τ_2 , τ_3 are the elliptic points of orders 4, 6, 6, respectively, and $w(\tau)$ is the Hauptmodul of the quotient Riemann surface $\hat{X} = \Gamma \backslash \mathbb{H}^*$, then according to Theorem 2

$$w(\tau_1) = w_1, \quad w(\tau_2) = w_2, \quad w(\tau_3) = w_3.$$

We consider the cases k = 6 and k = 8. For k = 6, we have

$$a_1 = \left\lfloor \frac{6}{2} \left(1 - \frac{1}{4} \right) \right\rfloor = 2, \quad a_2 = a_3 = \left\lfloor \frac{6}{2} \left(1 - \frac{1}{6} \right) \right\rfloor = 2.$$

and

$$d = \dim A_6 = 1 - 6 + \sum_{i=1}^{3} a_i = 1.$$

Therefore, we have the holomorphic function $h_0(\tau)$ on \mathbb{H} defined by

$$h_0(\tau) = \frac{\left(w'(\tau)\right)^3}{(w(\tau) - w_1)^2 (w(\tau) - w_2)^2 (w(\tau) - w_3)^2}.$$

If we normalize $w(\tau)$ such that

$$w(\tau_1) = 0$$
, $w(\tau_2) = 1$, $w(\tau_3) = \infty$,

then

$$h_0 = \frac{(w'(\tau))^3}{(w(\tau))^2 (w(\tau) - 1)^2}.$$

For the case k = 8, we have

$$a_1 = \left| \frac{8}{2} \left(1 - \frac{1}{4} \right) \right| = 3, \quad a_2 = a_3 = \left| \frac{8}{2} \left(1 - \frac{1}{6} \right) \right| = 3$$

and

$$d = \dim A_8 = 1 - 8 + \sum_{i=1}^{3} a_i = 2.$$

In this case, we have the holomorphic functions $h_0(\tau)$ and $h_1(\tau)$ on \mathbb{H} defined by

$$h_0(\tau) = \frac{\left(w'(\tau)\right)^4}{(w(\tau) - w_1)^3 (w(\tau) - w_2)^3 (w(\tau) - w_3)^3}$$

and

$$h_1(\tau) = \frac{\left(w'(\tau)\right)^4 w(\tau)}{(w(\tau) - w_1)^3 (w(\tau) - w_2)^3 (w(\tau) - w_3)^3},$$

respectively. For the following normalization

$$w(\tau_1) = 0$$
, $w(\tau_2) = 1$, $w(\tau_3) = \infty$,

we have

$$h_0 = \frac{(w'(\tau))^4}{(w(\tau))^3 (w(\tau) - 1)^3}$$

and

$$h_1 = \frac{(w'(\tau))^4 w(\tau)}{(w(\tau))^3 (w(\tau) - 1)^3}.$$

3 Conclusion

In this study, a set of functions has been defined explicitly in terms of the Hauptmodul w of the quotient Riemann surface $\hat{X} = \Gamma \backslash \mathbb{H}^*$ for the Fuchsian group Γ with signature $(0; n_1, \ldots, n_r)$. The holomorphicity of these functions on the upper half-plane \mathbb{H} has been investigated. Also, it has been shown that these holomorphic functions are automorphic forms of weight k with respect to the Fuchsian group Γ . Finally, an example has been given as an application of Theorem 2 for the triangle group $\Gamma_1 = (0; 4, 6, 6)$ which is a subgroup of the Fuchsian group Γ .

Acknowledgments

The author is very grateful to the anonymous referees for their valuable suggestions and comments.

References

- [1] Md. S. Alam, On Ramanujan's modular equations and Hecke groups, *Preprint*, arXiv:2105.13152.
- [2] Md. S. Alam and T. Sugawa, Geometric deduction of the solutions to modular equations, *The Ramanujan Journal*, 59(2): 459–477 (2022).
- [3] A. F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics, Vol. 91, Springer-Verlag, New York, 1983.
- [4] L. Bers, Uniformization by Beltrami equations, Communications on Pure and Applied Mathematics, 14(3): 215–228 (1961).
- [5] L. Bers, Automorphic forms for Schottky groups, Advances in Math., 16: 332–361 (1975).
- [6] D. Bump, Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics, Vol. 55, Cambridge University Press, Cambridge, 1997.
- [7] F. Diamond and J. Shurman, A First Course in Modular Forms, Graduate Texts in Mathematics, Vol. 228, Springer-Verlag, New York, 2005.
- [8] C. F. Doran, T. Gannon, H. Movasati and K. M. Shokri, Automorphic forms for triangle groups, *Communications in Number Theory and Physics*, 7(4): 689–737 (2013).
- [9] D. Gabai, Convergence groups are Fuchsian groups, Annals of Mathematics, 136(3): 447–510 (1992).
- [10] H. Iwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Mathematics, Vol. 17, American Mathematical Society, 1997.
- [11] S. Katok, Fuchsian Groups, The University of Chicago Press, Chicago and London, 1992.
- [12] T. Miyake, Modular Forms, Springer-Verlag, Berlin, 1989.
- [13] S. J. Patterson, The limit set of a Fuchsian group, Acta Mathematica, 136: 241-273 (1976).
- [14] J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, Vol. 7, Springer-Verlag, New York, 1973.
- [15] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, Princeton, New Jersey, 1971.

- [16] G. Shimura, Automorphic forms and the periods of abelian varieties, Journal of the Mathematical Society of Japan, 31(3): 561–592 (1979).
- [17] D. Singerman, Subgroups of Fuchsian groups and finite permutation groups, Bulletin of the London Mathematical Society, 2(3): 319–323 (1970).
- [18] D. Singerman, Finitely maximal Fuchsian groups, *Journal of the London Mathematical Society*, 2(1): 29–38 (1972).
- [19] Y. Yang, Schwarzian differential equations and Hecke eigenforms on Shimura curves, *Compositio Mathematica*, 149(1): 1–31 (2013).