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ABSTRACT

We define a set of holomorphic functions in terms of the Hauptmodul of a quotient Riemann surface and

prove that these functions are holomorphic on the upper half-plane. It is also shown that these functions are

automorphic forms of weight k with respect to a Fuchsian group.
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1 Introduction

The group SL(2,R) is defined by

SL(2,R) =

{(
a b

c d

)
: a, b, c, d ∈ R, ad− bc = 1

}

and the group

PSL(2,R) = SL(2,R)/{±I2},

where I2 is the 2×2 identity matrix (see [14, Chapter VII]). LetH denote the upper half-plane {τ ∈ C : Im τ > 0}.
The boundary of H is R ∪∞. The group PSL(2,R) acts on H as follows:

τ 7→ γ · τ =
aτ + b

cτ + d
,

where γ =

(
a b

c d

)
∈ PSL(2,R), τ ∈ H. All transformations of PSL(2,R) are conformal.

*Corresponding author. E-mail address: msalam@bu.ac.bd

36



A Fuchsian group is a discrete subgroup of PSL(2,R), i.e., it is a group of orientation-preserving isometries of

H. The study of Fuchsian group is a very interesting topic in many fields of Mathematics. Many mathematicians

studied Fuchsian group and various subgroups of Fuchsian group, for example, see [9], [13], [18] and [17]. The

Hecke group which is a subgroup of Fuchsian group is studied in [1] and [2] to investigate Ramanujan’s modular

equations.

Let γ =

(
a b

c d

)
∈ PSL(2,R) and let tr(γ) denote the trace of γ, then the element γ is said to be

� elliptic when | tr(γ)| < 2,

� parabolic when | tr(γ)| = 2,

� hyperbolic when | tr(γ)| > 2.

If Γ ⊂ PSL(2,R) is a Fuchsian group and γ ∈ Γ is an elliptic element, then a point τ ∈ H is called an elliptic

point of Γ if γ(τ) = τ . Also, for a parabolic element σ ∈ Γ, a point x ∈ R∪{∞} is called a cusp of Γ if σ(x) = x.

If a Fuchsian group Γ acts on H properly discontinuously, then we have the quotient Riemann surface Γ\H. For

a detailed discussion, see [3] and [11].

Let H∗ denote the union of the upper half-plane H and the set of cusps of a Fuchsian group Γ. Suppose(
a b

c d

)
∈ Γ, τ ∈ H and f : H → C is a holomorphic function. Then the function f is called an automorphic

form of weight k with respect to Γ if

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ).

If k = 0, then

f

(
aτ + b

cτ + d

)
= f(τ)

and f is called an automorphic function. When the genus of the quotient Riemann surface Γ\H∗ is zero, an

automorphic function is called a Hauptmodul. If an automorphic function has no poles, then it is constant

according to the consequence of maximum modulus principle. For details, we refer the reader to [6], [7], [10],

and [12].

In many areas of mathematics, especially in number theory, automorphic forms are studied extensively. In [5],

automorphic forms for Schottky groups are studied. In [8], the authors have established various results related

to automorphic forms of triangle groups. The famous mathematician Goro Shimura extensively investigated

many arithmetic properties of automorphic forms (see [15] and [16]). Motivated by these works, we study the

automorphic forms of weight k with respect to the Fuchsian group Γ with signature (0;n1, . . . , nr). In the

previous works mentioned above, the explicit forms of the holomorphic functions on the upper half-plane are

not defined. In this work, we explicitly define a set of functions which are holomorphic on the upper half-plane

H. These holomorphic functions are expressed in terms of the Hauptmodul of the quotient Riemann surface

Γ\H∗ and are automorphic forms of weight k with respect to Γ.

Let F be the fundamental domain for the Fuchsian group Γ. Let X and X̂ denote the quotient Riemann

surfaces Γ\H and Γ\H∗, respectively. If F is compact, then it has finitely many vertices which are elliptic points

and cusps of X̂ = Γ\H∗. Let P1, . . . , Pr be the vertices whose orders are n1, n2, . . . , nr, respectively. If the

number of elliptic elements and cusps of Γ are m and l, respectively, then m+ l = r. If g is the genus of X̂, then

we say that Γ has signature (g;n1, . . . , nr). For a more detailed discussion, the reader may consult Section 2.1

of [4], Chapter 4 of [11], and Section 2 of [18]. Let us denote by Ak the space of automorphic forms of weight
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k with respect to Γ. The basis for Ak on a Shimura curve X with genus 0 is determined in Theorem 4 of [19].

The following theorem is written according to Theorem 2.23 of [15] to determine the dimension of Ak.

Theorem 1 ([15, Theorem 2.23]). For a Fuchsian group Γ with signature (g;n1, . . . , nr), let g be the genus of

the compact quotient Riemann surface X̂ = Γ\H∗. Then, the dimension, dimAk, of Ak for an even integer k

is given by

dimAk =



0 if k < 0,

1 if k = 0,

g if k = 2,

(g − 1)(k − 1) +

r∑
i=1

⌊
k

2

(
1− 1

ni

)⌋
if k ≥ 4.

In the following section, we present our main results and their proofs.

2 Main Results

Let (0;n1, . . . , nr) be the signature of a Fuchsian group Γ, i.e., the genus of the quotient Riemann surface

X̂ = Γ\H∗ is 0 and let d = dimAk. Then, for an even integer k ≥ 4, we have from Theorem 1

d = 1− k +

r∑
i=1

⌊
k

2

(
1− 1

ni

)⌋
.

In the following theorem, we define the functions hj for j = 0, . . . , d−1 so that the functions are holomorphic

on H. Also, these functions are automorphic forms of weight k with respect to Γ.

Theorem 2. Consider the Fuchsian group Γ with signature (0;n1, . . . , nr) and the compact quotient Riemann

surface X̂ = Γ\H∗. Let τ1, . . . , τr be the inequivalent vertices (elliptic points or cusps of X̂) of the fundamental

domain of Γ of orders n1, . . . , nr, respectively, and let w(τ) be a Hauptmodul of X̂. For an even integer k ≥ 4,

let

ai =
⌊k
2

(
1− 1

ni

)⌋
and

d = dimAk = 1− k +

r∑
i=1

ai.

If w(τi) = wi for i = 1, . . . , r and the functions hj(τ) are defined by

hj(τ) =

(
w′(τ)

)k/2(
w(τ)

)j
r∏

i=1,wi ̸=∞

(
w(τ)− wi

)ai

(2.1)

for j = 0, . . . , d− 1 and τ ∈ H, then the functions hj(τ) are holomorphic on H.

Proof. We need to consider the following three cases:
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1. the Hauptmodul w(τ) does not have any pole at the points τi for i = 1, . . . , r;

2. the Hauptmodul w(τ) has a pole at one of the points τi for i = 1, . . . , r;

3. the Hauptmodul w(τ) has a pole at another point, say τ = τ0, except the points τ1, . . . , τr.

If a function has a zero of order ≥ 0 and has a pole of order ≤ 0 at a point, then there is no principal part in

the expansion of the function at that point, i.e., the function is holomorphic. Thus, we have to show that the

functions hj have

� a zero of order ≥ 0 at τ = τi for Case 1,

� a pole of order ≤ 0 at τ = τi for Case 2,

� a pole of order ≤ 0 at τ = τ0 for Case 3.

Case 1: If w(τ) does not have any pole at τi, then w(τi) = wi ̸= ∞ for i = 1, . . . , r. Since τi is a vertex of

order ni, in a neighbourhood of τ = τi, we have

w(τ)− w(τi) = bi(τ − τi)
ni +O

(
(τ − τi)

ni+1
)

(2.2)

or,

w(τ)− wi = (τ − τi)
niw∗(τ), (2.3)

where bi ∈ C \ {0}, w∗(τ) is analytic in a neighbourhood of τ = τi and w∗(τi) ̸= 0 for i = 1, . . . , r. Therefore, in

a neighbourhood of τ = τi, one can define a single-valued analytic ni-th root of (w − wi) and this can be done

at all points which are equivalent to τi under the action of the Fuchsian group Γ. Since w(τ)−wi ̸= 0 for τ ̸= τi
and (w − wi) is analytic on the other part of H, its ni-th root is analytic at each point of the remainder of H.

As (w(τ) − wi)
ni is locally analytic and single-valued at each τ ∈ H, so it follows from monodromy theorem

that a single-valued and analytic ni-th root of (w − wi) can be defined on the whole H.

From (2.3), we observe that
(
w(τ)− wi

)
has a zero of order ni at τ = τi and

r∏
i=1,wi ̸=∞

(
w(τ)− wi

)ai

has a zero of order niai = ni

⌊k
2

(
1− 1

ni

)⌋
at τ = τi. Also, we have from (2.2)

w′(τ) = bini(τ − τi)
ni−1 +O

(
(τ − τi)

ni
)
. (2.4)

Consequently, at τ = τi,
(
w′(τ)

)k/2
has a zero of order

k

2
(ni − 1). Since

k

2
(ni − 1)− ni

⌊k
2

(
1− 1

ni

)⌋
≥ 0,

we conclude from (2.1) that the functions hj have a zero of order ≥ 0 at τ = τi. Hence, the functions hj are

holomorphic on H.

Case 2: Assume that w(τ) has a pole at one of the points τi for i = 1, . . . , r. Without loss of generality,
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suppose w(τ) has a pole at τ1, i.e., w(τ1) = w1 = ∞. Since τ1 is a vertex of order n1, it follows that

w(τ) =
b1

(τ − τ1)n1
+O

(
(τ − τ1)

1−n1
)
, b1 ∈ C \ {0}

and

w′(τ) = − b1n1

(τ − τ1)n1+1
+O

(
(τ − τ1)

−n1
)
.

In this case, from (2.1) we have

hj(τ) =

(
w′(τ)

)k/2(
w(τ)

)j
r∏

i=2,wi ̸=∞

(
w(τ)− wi

)ai

. (2.5)

Now, suppose that the functions hj(τ) defined in (2.5) have a pole of order N at τ = τ1. Since w(τ) has a pole

of order n1 at τ = τ1,
(
w′(τ)

)k/2
has a pole of order

k

2
(n1 + 1) and

r∏
i=2,wi ̸=∞

(
w(τ)− wi

)ai

has a pole of order n1

r∑
i=2

ai at τ = τ1. As j varies from 0 to d−1, so the maximum value of j is d−1 =

r∑
i=1

ai−k.

Hence,
(
w(τ)

)j
has a pole of order at most n1

( r∑
i=1

ai − k
)
at τ = τ1 and we have

N ≤ k

2
(n1 + 1) + n1

( r∑
i=1

ai − k
)
− n1

r∑
i=2

ai

=
k

2
(n1 + 1) + n1

( r∑
i=1

⌊k
2

(
1− 1

ni

)⌋
− k
)
− n1

r∑
i=2

⌊k
2

(
1− 1

ni

)⌋
= −k

2

(
n1 − 1

)
+ n1

⌊k
2

(
1− 1

n1

)⌋
≤ 0.

Since N ≤ 0, it follows that there are no principal parts in the expansions of the functions hj . Therefore, the

functions hj are holomorphic on H.

Case 3: Suppose that w(τ) has the value ∞ at the point τ = τ0 and w(τi) ̸= ∞ for i = 1, . . . , r. Therefore,

w(τ) has a simple pole at τ0 and we have

w(τ) =
b0

(τ − τ0)
+O(1), b0 ∈ C \ {0} (2.6)

and

w′(τ) = − b0
(τ − τ0)2

+O(1). (2.7)

Let N0 be the order of the pole of hj defined in (2.1) at τ = τ0. From (2.6) and (2.7), we observe that
(
w′(τ)

)k/2
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has a pole of order k,
r∏

i=1,wi ̸=∞

(
w(τ)− wi

)ai

has a pole of order

r∑
i=1

ai and wj has a pole of order at most d− 1 =

r∑
i=1

ai−k. Therefore, from (2.1), it follows

that

N0 ≤ k +

r∑
i=1

ai − k −
r∑

i=1

ai = 0,

which implies that the functions hj are holomorphic on H in this case also.

Lemma 1. The functions hj for j = 0, . . . , d−1 defined in (2.1) are automorphic forms of weight k with respect

to the Fuchsian group Γ.

Proof. For j = 0, . . . , d− 1 and ai =
⌊
k
2

(
1− 1

ni

)⌋
, we have to show that

hj

(aτ + b

cτ + d

)
= (cτ + d)khj(τ),

where

(
a b

c d

)
∈ Γ and τ ∈ H. Since w(τ) is a Hauptmodul of X̂, i.e., w(τ) is an automorphic function, thus

we have

w
(aτ + b

cτ + d

)
= w(τ)

and

w′
(aτ + b

cτ + d

)
= (cτ + d)1/2w′(τ).

Now,

hj

(aτ + b

cτ + d

)
=

(
w′
(aτ + b

cτ + d

))k/2(
w
(aτ + b

cτ + d

))j

r∏
i=1,wi ̸=∞

(
w
(aτ + b

cτ + d

)
− wi

)ai

=
(cτ + d)k

(
w′(τ)

)k/2(
w(τ)

)j
r∏

i=1,wi ̸=∞

(
w(τ)− wi

)ai

= (cτ + d)khj(τ).

Thus, the functions hj are automorphic forms of weight k with respect to Γ.

Example 1. Let Γ1 be the triangle group (0; 4, 6, 6) which is a subgroup of the Fuchsian group Γ. Thus,

g = 0, n1 = 4, n2 = 6, n3 = 6.

If τ1, τ2, τ3 are the elliptic points of orders 4, 6, 6, respectively, and w(τ) is the Hauptmodul of the quotient

Riemann surface X̂ = Γ\H∗, then according to Theorem 2

w(τ1) = w1, w(τ2) = w2, w(τ3) = w3.

41



We consider the cases k = 6 and k = 8. For k = 6, we have

a1 =

⌊
6

2

(
1− 1

4

)⌋
= 2, a2 = a3 =

⌊
6

2

(
1− 1

6

)⌋
= 2.

and

d = dimA6 = 1− 6 +

3∑
i=1

ai = 1.

Therefore, we have the holomorphic function h0(τ) on H defined by

h0(τ) =

(
w′(τ)

)3
(w(τ)− w1)2(w(τ)− w2)2(w(τ)− w3)2

.

If we normalize w(τ) such that

w(τ1) = 0, w(τ2) = 1, w(τ3) = ∞,

then

h0 =

(
w′(τ)

)3
(w(τ))2(w(τ)− 1)2

.

For the case k = 8, we have

a1 =

⌊
8

2

(
1− 1

4

)⌋
= 3, a2 = a3 =

⌊
8

2

(
1− 1

6

)⌋
= 3

and

d = dimA8 = 1− 8 +

3∑
i=1

ai = 2.

In this case, we have the holomorphic functions h0(τ) and h1(τ) on H defined by

h0(τ) =

(
w′(τ)

)4
(w(τ)− w1)3(w(τ)− w2)3(w(τ)− w3)3

and

h1(τ) =

(
w′(τ)

)4
w(τ)

(w(τ)− w1)3(w(τ)− w2)3(w(τ)− w3)3
,

respectively. For the following normalization

w(τ1) = 0, w(τ2) = 1, w(τ3) = ∞,

we have

h0 =

(
w′(τ)

)4
(w(τ))3(w(τ)− 1)3

and

h1 =

(
w′(τ)

)4
w(τ)

(w(τ))3(w(τ)− 1)3
.
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3 Conclusion

In this study, a set of functions has been defined explicitly in terms of the Hauptmodul w of the quotient

Riemann surface X̂ = Γ\H∗ for the Fuchsian group Γ with signature (0;n1, . . . , nr). The holomorphicity of

these functions on the upper half-plane H has been investigated. Also, it has been shown that these holomorphic

functions are automorphic forms of weight k with respect to the Fuchsian group Γ. Finally, an example has

been given as an application of Theorem 2 for the triangle group Γ1 = (0; 4, 6, 6) which is a subgroup of the

Fuchsian group Γ.
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