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ABSTRACT

We define a set of holomorphic functions in terms of the Hauptmodul of a quotient Riemann surface and
prove that these functions are holomorphic on the upper half-plane. It is also shown that these functions are
automorphic forms of weight k with respect to a Fuchsian group.
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1 Introduction

The group SL(2,R) is defined by

SL(z,R){ (“ 2) ca,b,c,d € R, adbcl}
C

PSL(2,R) = SL(2, R) /{1, },

and the group

where I is the 2x 2 identity matrix (see [14, Chapter VII]). Let H denote the upper half-plane {7 € C : Im 7 > 0}.
The boundary of H is R U oco. The group PSL(2,R) acts on H as follows:

ar +b

ey =
T cr+d’

b
where v = <a d> € PSL(2,R), 7 € H. All transformations of PSL(2,R) are conformal.
c
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A Fuchsian group is a discrete subgroup of PSL(2, R), i.e., it is a group of orientation-preserving isometries of
H. The study of Fuchsian group is a very interesting topic in many fields of Mathematics. Many mathematicians
studied Fuchsian group and various subgroups of Fuchsian group, for example, see [9], [13], [18] and [17]. The
Hecke group which is a subgroup of Fuchsian group is studied in [1] and [2] to investigate Ramanujan’s modular

equations.

b
Let v = (a d) € PSL(2,R) and let tr(y) denote the trace of +, then the element ~ is said to be
c

e clliptic when |tr(y)| < 2,
e parabolic when |tr(v)| = 2,
e hyperbolic when |tr(y)| > 2.

If T' € PSL(2,R) is a Fuchsian group and v € T is an elliptic element, then a point 7 € H is called an elliptic
point of " if 4(7) = 7. Also, for a parabolic element o € T', a point € RU{o0o} is called a cusp of T if o(z) = z.
If a Fuchsian group I" acts on H properly discontinuously, then we have the quotient Riemann surface T'\H. For
a detailed discussion, see [3] and [11].

Let H* denote the union of the upper half-plane H and the set of cusps of a Fuchsian group I'. Suppose

a b
c d
form of weight k£ with respect to I' if

el', re Hand f: H — C is a holomorphic function. Then the function f is called an automorphic

f(ZZiS) — (er + ) f(7).

If k = 0, then

f(a7+b) 1)

ct +d

and f is called an automorphic function. When the genus of the quotient Riemann surface I'\H* is zero, an
automorphic function is called a Hauptmodul. If an automorphic function has no poles, then it is constant
according to the consequence of maximum modulus principle. For details, we refer the reader to [6], [7], [10],
and [12].

In many areas of mathematics, especially in number theory, automorphic forms are studied extensively. In [5],
automorphic forms for Schottky groups are studied. In [8], the authors have established various results related
to automorphic forms of triangle groups. The famous mathematician Goro Shimura extensively investigated
many arithmetic properties of automorphic forms (see [15] and [16]). Motivated by these works, we study the
automorphic forms of weight k& with respect to the Fuchsian group I' with signature (0;n1,...,n,). In the
previous works mentioned above, the explicit forms of the holomorphic functions on the upper half-plane are
not defined. In this work, we explicitly define a set of functions which are holomorphic on the upper half-plane
H. These holomorphic functions are expressed in terms of the Hauptmodul of the quotient Riemann surface
M\H* and are automorphic forms of weight k with respect to I

Let F be the fundamental domain for the Fuchsian group I'. Let X and X denote the quotient Riemann
surfaces I'\H and I"'\H*, respectively. If F' is compact, then it has finitely many vertices which are elliptic points
and cusps of X = I'\H*. Let Py,...,P. be the vertices whose orders are ni,na,...,n,, respectively. If the
number of elliptic elements and cusps of I' are m and [, respectively, then m+1 = r. If g is the genus of X, then
we say that I' has signature (g;nq,...,n,). For a more detailed discussion, the reader may consult Section 2.1
of [4], Chapter 4 of [11], and Section 2 of [18]. Let us denote by A the space of automorphic forms of weight
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k with respect to I'. The basis for Ay on a Shimura curve X with genus 0 is determined in Theorem 4 of [19].
The following theorem is written according to Theorem 2.23 of [15] to determine the dimension of Ay.

Theorem 1 ([15, Theorem 2.23]). For a Fuchsian group T' with signature (g;ni,...,n,), let g be the genus of
the compact quotient Riemann surface X = T\H*. Then, the dimension, dim Ay, of Ay for an even integer k

1s given by
0 if k<0,
1 if k=0,
dim Ay, = g if k=2,
~ | k 1
—1(k-1 —(1—-— if k> 4.
0D+ |50 )] ke

In the following section, we present our main results and their proofs.

2 Main Results

Let (0;n4,...,n,) be the signature of a Fuchsian group T, i.e., the genus of the quotient Riemann surface
X = I'\H* is 0 and let d = dim A;. Then, for an even integer k > 4, we have from Theorem 1

d—1k+;g(1nli)J.

In the following theorem, we define the functions h; for j = 0,...,d—1 so that the functions are holomorphic
on H. Also, these functions are automorphic forms of weight & with respect to I'.

Theorem 2. Consider the Fuchsian group T with signature (0;n1,...,n,) and the compact quotient Riemann
surface X = C\H*. Let 71,...,7 be the inequivalent vertices (elliptic points or cusps of X) of the fundamental
domain of T' of orders ny,...,n,, respectively, and let w(7) be a Hauptmodul of X. For an even integer k > 4,
let

w=[50-3)]

and

d:dimAkzl—kz—i—Zai.

i=1

If w(n) = w; fori=1,...,r and the functions h;(T) are defined by

w' (T k/2 w(r))’
hj(7) = (W) (w(n) (2.1)

T

II () —w)™

i=1,w;#00

forj=0,...,d—1 and 7 € H, then the functions h;(T) are holomorphic on H.

Proof. We need to consider the following three cases:
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1. the Hauptmodul w(7) does not have any pole at the points 7; for i = 1,...,r;
2. the Hauptmodul w(7) has a pole at one of the points 7; for i =1,...,r;
3. the Hauptmodul w(7) has a pole at another point, say 7 = 79, except the points 7,..., 7.

If a function has a zero of order > 0 and has a pole of order < 0 at a point, then there is no principal part in
the expansion of the function at that point, i.e., the function is holomorphic. Thus, we have to show that the
functions h; have

e a zero of order > 0 at 7 = 7; for Case 1,
e a pole of order < 0 at 7 = 7; for Case 2,
e a pole of order < 0 at 7 = 79 for Case 3.

Case 1: If w(7) does not have any pole at 7;, then w(7r;) = w; # oo for i = 1,...,r. Since 7; is a vertex of
order n;, in a neighbourhood of 7 = 7;, we have

w(r) —w(r) = bi(r — 7)™ + O((r — 7)™ ™) (2.2)
w(r) —w; = (1 — 1) w* (1), (2.3)

where b; € C\ {0}, w*(7) is analytic in a neighbourhood of 7 = 7, and w*(7;) # 0 for ¢ = 1,...,r. Therefore, in
a neighbourhood of 7 = 7;, one can define a single-valued analytic n;-th root of (w — w;) and this can be done
at all points which are equivalent to 7; under the action of the Fuchsian group I'. Since w(7) —w; # 0 for 7 # 7;
and (w — w;) is analytic on the other part of H, its n;-th root is analytic at each point of the remainder of H.
As (w(r) — w;)™ is locally analytic and single-valued at each 7 € H, so it follows from monodromy theorem
that a single-valued and analytic n;-th root of (w — w;) can be defined on the whole H.

From (2.3), we observe that (w(7) — w;) has a zero of order n; at 7 = 7; and

T

II (o) —w)”

i=1,w;#00

k 1
has a zero of order n;a; = n; L§ (1 — n—)J at 7 = 7. Also, we have from (2.2)

w'(1) = bini (T — Ti)’“_l + O((T — Ti)”i). (2.4)

k
Consequently, at 7 = 7, (w’(r))k/2 has a zero of order §(nZ —1). Since
k k 1
Y= 1) —n 21— =) | >
T

we conclude from (2.1) that the functions h; have a zero of order > 0 at 7 = 7;. Hence, the functions h; are
holomorphic on H.

Case 2: Assume that w(7) has a pole at one of the points 7; for ¢ = 1,...,7. Without loss of generality,
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suppose w(7) has a pole at 71, i.e., w(71) = w1 = co. Since 11 is a vertex of order ny, it follows that

by

w(T) = Ty +0((r - 7-1)1—”1), by € C\ {0}
and
/ byny -
w(T)Z—W—FO((T—Tl) )
In this case, from (2.1) we have
() = — ()" wir)” (2.5)
II (o) —w)”
1=2,w; F# 00

Now, suppose that the functions h;(7) defined in (2.5) have a pole of order N at 7 = 1. Since w(7) has a pole

k
of order n; at 7 = 7y, (w’(r))k/2 has a pole of order 5(711 +1) and

T

II () —w)™

1=2,w; #00

T T
has a pole of order ny Z a; at 7 = 71. As j varies from 0 to d—1, so the maximum value of j is d—1 = Z a;—k.
i=2 i=1

Hence, (w(T))J has a pole of order at most n; ( Z a; — k) at 7 = 7, and we have
i=1

<0.

Since N < 0, it follows that there are no principal parts in the expansions of the functions h;. Therefore, the
functions h; are holomorphic on H.

Case 3: Suppose that w(7) has the value oo at the point 7 = 79 and w(r;) # oo for i = 1,...,r. Therefore,
w(7) has a simple pole at 7o and we have

w(r) = - EOTO) +0(1), byeC\{0} (2.6)
and
bo
w' (1) = ————5 + O(1). (2.7)
(1 —10)

Let Ny be the order of the pole of h; defined in (2.1) at 7 = 79. From (2.6) and (2.7), we observe that (w’(T))k/2
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has a pole of order k,

II () —w)™

i=1,w;#00

has a pole of order Z a; and w? has a pole of order at most d — 1 = Z a; — k. Therefore, from (2.1), it follows

i=1 i=1
that
T T
No §k+2ai—k72ai:0,
i=1 i=1
which implies that the functions h; are holomorphic on H in this case also. O

Lemma 1. The functions hj for j =0,...,d—1 defined in (2.1) are automorphic forms of weight k with respect
to the Fuchsian group T.

Proof. For j =0,...,d—1 and a; = {g (1 — %)J, we have to show that

hj(ar+b

) = e (o),

b .
where (a d) € I" and 7 € H. Since w(7) is a Hauptmodul of X, i.e., w(7) is an automorphic function, thus
c

we have

w(a7+b
ct+d

) = w(r)

and

w,(a7’—|—b

CT+d) = (et 4 )%/ (7).

Now,

ny (210 - <wl<CTT+ d)) (wgc:+ d)>

"Ner +d . ar+b
] H (w<CT+d

= (et + d)*hy(7).

Thus, the functions h; are automorphic forms of weight k£ with respect to I'. O

Example 1. Let I'y be the triangle group (0;4,6,6) which is a subgroup of the Fuchsian group T'. Thus,
g=0, n1=4, na=6, n3=0_06.

If 71, T2, T3 are the elliptic points of orders 4, 6, 6, respectively, and w(t) is the Hauptmodul of the quotient
Riemann surface X = I\H*, then according to Theorem 2

w(m) =wi, w(m)=wz, w(r3)=ws.
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We consider the cases k =6 and k = 8. For k = 6, we have

6 1 6

ap = {2(1—4)J =2, ay=az= {2(1—6)J =2.

and

3
dzdimA6:1—6+Zai:1.

i=1

Therefore, we have the holomorphic function ho(7) on H defined by

If we normalize w(7) such that

then

For the case k = 8, we have

and

dzdimA8:1—8+Zai:2.

i=1

In this case, we have the holomorphic functions ho(T) and hi(7) on H defined by

_ (w/(r))"
ho(T) = olm) — )P () = wa)P(w(r) — wa)?
and 4
h(r) = (w'(r)) w(r)

(w(7) —w1)*(w(r) — wa)*(w(r) — ws3)?’

respectively. For the following normalization

w(rn) =0, w(rn)=1, w(r)=o0,

we have .
I )
(w(r))?(w(r) —1)°
and .
b (W) )

42



3 Conclusion

In this study, a set of functions has been defined explicitly in terms of the Hauptmodul w of the quotient

Riemann surface X = I\H* for the Fuchsian group I' with signature (0;n1,...,n,). The holomorphicity of

these functions on the upper half-plane H has been investigated. Also, it has been shown that these holomorphic

functions are automorphic forms of weight k with respect to the Fuchsian group I'. Finally, an example has

been given as an application of Theorem 2 for the triangle group I'y = (0;4,6,6) which is a subgroup of the

Fuchsian group T.
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