Intuitionistic Fuzzy R_{0} Bitopological Space: An In-depth Exploration

Saikh Shahjahan Miah*, Badrun Naher Jumur
Department of Mathematics, Faculty of Science, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh

Abstract

We propose intuitionistic fuzzy bitopological R_{0}-spaces (abbreviated IFB- R_{0}) in this study. On intuitionistic fuzzy bitopological space, we introduce several new ideas of R_{0}-space. Our notions are maintained under one-one, onto, fuzzy open, and fuzzy continuous mappings, and we demonstrate that R_{0}-spaces satisfy the "good extension" property.

© 2024 Published by Bangladesh Mathematical Society
Received: June 11, 2023 Accepted: January 31, 2024 Published Online: March 13, 2024 (Online First)

Keywords: Intuitionistic Fuzzy Set, Intuitionistic Fuzzy Topology, Intuitionistic Fuzzy R_{0} Bitopological Space, Good Extension.

AMS Subject Classifications 2020: 54A10, 54A40, 03E72

1. Introduction

Zadeh [1] introduced the first fuzzy set notion in 1965. Chang [2] defined fuzzy topological spaces in 1968 using this idea. Important components of fuzzy topological spaces are separation axioms [3, 4].
A wide range of separation axioms have also been offered by other academics [5, 6, 7]. About fuzzy bitopological space, which Kandil and EL-Shafee [8] initially discussed in 1991. M. S. Hossain and M. R. Amin conducted research in fuzzy bitopological spaces $[9,10]$.
Atanassov [11] introduced the idea of an intuitionistic fuzzy set, which is a generalization of fuzzy sets and takes into consideration both degree and non-degree membership as long as their sum does not exceed 1.
Coker $[12,13]$ and his coworkers developed intuitionistic fuzzy topological spaces by using intuitionistic fuzzy sets. Numerous authors have written numerous articles on intuitionistic fuzzy topological space. Such as S. Bayhan and D. Coker [14] introduced fuzzy separation hypothesis in intuitionistic fuzzy topological space. D. Coker [15] also introduced fuzzy subspace in intuitionistic fuzzy topological space. Ahmed et al [16] studied on intuitionistic fuzzy R_{0} space. The intent of this study is to advance intuitionistic fuzzy bitopological space. The fuzzy R_{0} intuitionistic bitopological space is instance. In the current research, we develop intuitionistic fuzzy R_{0} bitopological space and showed that the approach satisfies good extension property and hereditary property. The major objective of this research is to focus on theoretical development of separation axiom on intuitionistic fuzzy bitopological spaces. Also, the specific objectives are mentioned as follows:

- To define new notions on Intuitionistic fuzzy R_{0} bitopological spaces.
- To study Hereditary and Good Extension properties on the notions.
- Justification of homeomorphism preserving, productive and projective properties.

2. Intuitionistic Fuzzy \boldsymbol{R}_{0} Bitopological space

We convey our thoughts and assessments in the following section. Here, we are applying our definition for debating several well-known features.
Definition 2.1: It has been referred to as an intuitionistic fuzzy bitopological space (X, s, t) is
(a) IFB-R R_{0} (i) if for all $x_{1}, x_{2} \in X, \quad x_{1} \neq x_{2}$ whenever $\exists M=\left(\mu_{M}, v_{M}\right) \in(s \cup t)$ with $\mu_{M}\left(x_{1}\right)=1, v_{M}\left(x_{1}\right)=$ $0, \mu_{M}\left(x_{2}\right)=0, v_{M}\left(x_{2}\right)=1$ then $\exists N=\left(\mu_{N}, v_{N}\right) \in(s \cup t)$ such that $\mu_{N}\left(x_{1}\right)=1, v_{N}\left(x_{2}\right)=0, \mu_{N}\left(x_{1}\right)=0$, $v_{N}\left(x_{1}\right)=1$.
(b) IFB-R R_{0} (ii) if for all $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ whenever $\exists M=\left(\mu_{M}, v_{M}\right) \in(s \cup t)$ with $\mu_{M}\left(x_{1}\right)=1, v_{M}\left(x_{1}\right)=$ $0, \mu_{M}\left(x_{2}\right)=0, v_{M}\left(x_{2}\right)>0$ then $\exists N=\left(\mu_{N}, v_{N}\right) \in(s \cup t)$ such that $\mu_{N}\left(x_{2}\right)=1, v_{N}\left(x_{2}\right)=0, \mu_{N}\left(x_{1}\right)=0, v_{N}\left(x_{1}\right)>$ 0.
(c) IFB-R R_{0} (iii) if for all $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ whenever $\exists M=\left(\mu_{M}, v_{M}\right) \in(s \cup t)$ with $\mu_{M}\left(x_{1}\right)>0, v_{M}\left(x_{1}\right)=$ $0, \mu_{M}\left(x_{2}\right)=0, v_{M}\left(x_{2}\right)=1$ then $\exists N=\left(\mu_{N}, v_{N}\right) \in(s \cup t)$ such that $\mu_{N}\left(x_{2}\right)>0, v_{N}\left(x_{2}\right)=0, \mu_{N}\left(x_{1}\right)=0, v_{N}\left(x_{1}\right)=$ 1.
(d) IFB-R R_{0} (iv) if for all $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ whenever $\exists M=\left(\mu_{M}, v_{M}\right) \in(s \cup t)$ with $\mu_{M}\left(x_{1}\right)>0, v_{M}\left(x_{1}\right)=$ $0, \mu_{M}\left(x_{2}\right)=0, v_{M}\left(x_{2}\right)>0$ then $\exists N=\left(\mu_{N}, v_{N}\right) \in(s \cup t)$ such that $\mu_{N}\left(x_{2}\right)>0, v_{N}\left(x_{2}\right)=0, \mu_{N}\left(x_{1}\right)=0, v_{N}\left(x_{1}\right)>0$.

α-Intuitionistic fuzzy bitopological $\boldsymbol{R}_{\mathbf{0}}$-space

Definition 2.2: Let $\alpha \in(0,1)$. An intuitionistic fuzzy bitopological space (X, s, t) is called
(a) $\alpha-I F B-R_{0}(i)$ if for all $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ whenever $\exists M=\left(\mu_{M}, v_{M}\right) \in(s \cup t)$ with $\mu_{M}\left(x_{1}\right)=1, v_{M}\left(x_{1}\right)=$ $0, \mu_{M}\left(x_{2}\right)=0, v_{M}\left(x_{2}\right) \geq \alpha$ then $\exists N=\left(\mu_{N}, v_{N}\right) \in(s \cup t)$ such that $\mu_{N}\left(x_{2}\right)=1, v_{N}\left(x_{2}\right)=0, \mu_{N}\left(x_{1}\right)=0, v_{N}\left(x_{1}\right) \geq$ α
(b) $\alpha-I F B-R_{0}$ (ii) if for all $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ whenever $\exists M=\left(\mu_{M}, v_{M}\right) \in(s \cup t)$ with $\mu_{M}\left(x_{1}\right) \geq \alpha, v_{M}\left(x_{1}\right)=$ 0 , $\mu_{M}\left(x_{2}\right)=0, v_{M}\left(x_{2}\right) \geq \alpha$ then $\exists N=\left(\mu_{N}, v_{N}\right) \in(s \cup t)$ such that $\mu_{N}\left(x_{2}\right) \geq \alpha, v_{N}\left(x_{2}\right)=0, \mu_{N}\left(x_{1}\right)=0, v_{N}\left(x_{1}\right) \geq$ α
(c) $\alpha-$ IFB- R_{0} (iii) if for all $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ whenever $\exists M=\left(\mu_{M}, v_{M}\right) \in(s \cup t)$ with $\mu_{M}\left(x_{1}\right)>0, v_{M}\left(x_{1}\right)=$ $0, \mu_{M}\left(x_{2}\right)=0, v_{M}\left(x_{2}\right) \geq \alpha$ then $\exists N=\left(\mu_{N}, v_{N}\right) \in(s \cup t)$ such that $\mu_{N}\left(x_{2}\right)>0, v_{N}\left(x_{2}\right)=0, \mu_{N}\left(x_{1}\right)=0, v_{N}\left(x_{1}\right) \geq \alpha$

Theorem 2.1: The features $I B F-R_{0}(i), I B F-R_{0}(i i), I B F-R_{0}(i i i)$ and $I B F-R_{0}(i v)$ are all autonomous.
Proof: In order to demonstrate that there are no consequences among these features, we have a look at the instances below.
Example 2.1: Let $X=\left\{x_{1}, x_{2}\right\}$ and $(s \cup t)$ be the intuitionistic fuzzy bitopology on X generated by $\{M, N\}$ where $M=\left\{\left(x_{1}, 1,0\right)\left(x_{2}, 0,0.5\right)\right\}$ and $N=\left\{\left(x_{1}, 0.3,0.2\right)\left(x_{2}, 0.1,0.4\right)\right\}$. We see that the IFBTS $(X, s \cup$ $t)$ is $I F B-R_{0}(i)$ but it is neither $I F B-R_{0}(i i)$ nor $I F B-R_{0}(i v)$.
Example 2.2: Let $X=\left\{x_{1}, x_{2}\right\}$ and $(s \cup t)$ be the intuitionistic fuzzy bitopology on X generated by $\{M, N\}$ where $M=\left\{\left(x_{1}, 0.6,0\right)\left(x_{2}, 0,1\right)\right\}$ and $N=\left\{\left(x_{1}, 0.2,0.7\right)\left(x_{2}, 0.6,0.3\right)\right\}$. We see that the IFBTS $(X, s \cup t)$ is $I F B-R_{0}(i)$ but it is not $I F B-R_{0}(i i i)$.
Example 2.3: Let $X=\left\{x_{1}, x_{2}\right\}$ and $(s \cup t)$ be the intuitionistic fuzzy bitopology on X generated by $\{M, N\}$ where $M=\left\{\left(x_{1}, 0.5,0\right)\left(x_{2}, 0,1\right)\right\}$ and $N=\left\{\left(x_{1}, 0.2,0.4\right)\left(x_{2}, 0.1,0.6\right)\right\}$. We see that the $\operatorname{IFBTS}(X, s \cup t)$ is $I F B-R_{0}(i i)$ but it is neither IFB $-R_{0}(i i i)$ nor IFB $-R_{0}(i v)$.
Example 2.4: Let $\boldsymbol{X}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\}$ and $(s \cup t)$ be the intuitionistic fuzzy bitopology on X generated by $\{M, N\}$ where $M=\left\{\left(x_{1}, 1,0\right)\left(x_{2}, 0,1\right)\right\}$ and $N=\left\{\left(x_{1}, 0,0.2\right)\left(x_{2}, 1,0\right)\right\}$. We see that the IFBTS $(X, s \cup t)$ is IFB- $R_{0}($ iii) but it is not IFB- $R_{0}(\mathrm{i})$.
Example 2.5: Let $X=\left\{x_{1}, x_{2}\right\}$ and $(s \cup t)$ be the intuitionistic fuzzy bitopology on X generated by $\{M, N\}$ where $M=\left\{\left(x_{1}, 0.7,0\right)\left(x_{2}, 0,0.4\right)\right\}$ and $N=\left\{\left(x_{1}, 0.3,0.2\right)\left(x_{2}, 0.5,0.2\right)\right\}$. We see that the IFBTS $(X, s \cup t)$ is IFB- $R_{0}(i i i)$ but it is not IFB- R_{0} (iv)
Example 2.6: Let $X=\left\{x_{1}, x_{2}\right\}$ and $(s \cup t)$ be the intuitionistic fuzzy bitopology on X generated by $\{M, N\}$ where $M=\left\{\left(x_{1}, 1,0\right)\left(x_{2}, 0,1\right)\right\}$ and $N=\left\{\left(x_{1}, 0,1\right)\left(x_{2}, 0.5,0\right)\right\}$. We see that the $\operatorname{IFBTS}(X, s \cup t)$ is $\operatorname{IFB}-R_{0}($ iii $)$ but it is not IFB- $R_{0}(\mathrm{i})$.
Example 2.7: Let $X=\left\{x_{1}, x_{2}\right\}$ and $(s \cup t)$ be the intuitionistic fuzzy bitopology on X generated by $\{M, N\}$ where $M=\left\{\left(x_{1}, 0.2,0\right)\left(x_{2}, 0,1\right)\right\}$ and $N=\left\{\left(x_{1}, 0,0.5\right)\left(x_{2}, 0.7,0\right)\right\}$. We see that the IFBTS $(X, s \cup t)$ is IFB- $R_{0}(i v)$ but it is not IFB- R_{0} (iii).

Theorem 2.2: The properties $\alpha-$ IBF- $R_{0}(\mathrm{i}), \alpha-\mathrm{IBF}-R_{0}(\mathrm{ii})$, and $\alpha-\mathrm{IBF}-R_{0}$ (iii) are all independent.
Proof: To prove the non- implications among these properties, we consider the following examples.

Example 2.8: Let $X=\left\{x_{1}, x_{2}\right\}$ and $(s \cup t)$ be the intuitionistic fuzzy bitopology on X generated by $\{M, N\}$ where M $=\left\{\left(x_{1}, 0.6,0\right)\left(x_{2}, 0,0.7\right)\right\}$ and $N=\left\{\left(x_{1}, 0.4,0.3\right)\left(x_{2}, 0.5,0.2\right)\right\}$. For $\alpha=0.2$. We see that the IFBTS (X, sU $\left.t\right)$ is α IFB- R_{0} (i) but it is neither α IFB- R_{0} (ii) nor $\alpha-$ IFB- R_{0} (iii).
Example 2.9: Let $X=\left\{x_{1}, x_{2}\right\}$ and $(s \cup t)$ be the intuitionistic fuzzy bitopology on X generated by $\{M, N\}$ where $M=\left\{\left(x_{1}, 1,0\right)\left(x_{2}, 0,0.7\right)\right\}$ and $N=\left\{\left(x_{1}, 0,0.6\right)\left(x_{2}, 0.5,0\right)\right\}$. For $\alpha=0.3$. We see that the IFBTS $(X, s \cup t)$ is $\alpha-$ IFB- R_{0} (ii) but it is not α-IFB- $R_{0}(\mathrm{i})$.
Example 2.10: Let $X=\{x, y\}$ and $(s \cup t)$ be the intuitionistic fuzzy bitopology on X generated by $\{M, N\}$ where $M=\{(x, 0.2,0)(y, 0,0.6)\}$ and $\mathrm{N}=\{(x, 0,0.2)(\mathrm{y}, 0.3,0)\}$. For $\alpha=0.5$. We see that the IFBTS $(X, \mathrm{sU} t)$ is $\alpha-$ IFB- R_{0} (ii) but it is not $\alpha-$ IFB- R_{0} (iii).
Example 2.11: Let $X=\left\{x_{1}, x_{2}\right\}$ and $(s \cup t)$ be the intuitionistic fuzzy bitopology on X generated by $\{M, N\}$ where $M=\left\{\left(x_{1}, 1,0\right)\left(x_{2}, 0,0.7\right)\right\}$ and $N=\left\{\left(x_{1}, 0,0.3\right)\left(x_{2}, 0.2,0\right)\right\}$. For $\alpha=0.3$. We see that the IFBTS $(X, s \cup t)$ is α - IFB- R_{0} (iii) but it is neither α - IFB- $R_{0}(\mathrm{i})$ nor $\alpha-$ IFB- $R_{0}($ ii $)$.

3. Hereditary property

Theorem 3.1: Let (X, s, t) be an intuitionistic fuzzy bitopological space, $W \subseteq X$ and $s_{W}=\{M / W: M \in s\}$ and $t_{W}=\{N / W: N \in t\}$ and $\alpha \in(0,1)$ then

1. (X, s, t) is $\operatorname{IFB}-R_{0}(i) \Longrightarrow\left(W, s_{W}, t_{W},\right)$ is IFB-R $R_{0}(i)$
2. (X, s, t) is IFB-R $R_{0}(i i) \Longrightarrow\left(W, s_{W}, t_{W}\right)$ is IFB-R $R_{0}(i i)$
3. (X, s, t) is IFB-R $R_{0}(i i i) \Rightarrow\left(W, s_{W}, t_{W}\right.$, is IFB-R $R_{0}(i i i)$
4. (X, s, t) is $\operatorname{IFB}-R_{0}(i v) \Longrightarrow\left(W, s_{W}, t_{W}\right)$ is IFB-R $R_{0}(i v)$
5. (X, s, t) is $\alpha-I F B-R_{0}(i) \Rightarrow\left(W, s_{W}, t_{W}\right)$ is $\alpha-I F B-R_{0}(i)$
6. (X, s, t) is $\alpha-I F B-R_{0}(i i) \Longrightarrow\left(W, s_{W}, t_{W}\right)$ is $\alpha-I F B-R_{0}(i i)$
7. (X, s, t) is $\alpha-I F B-R_{0}(i i i) \Longrightarrow\left(W, s_{W}, t_{W}\right)$ is $\alpha-I F B-R_{0}(i i i)$.

The proof (1), (2), (3), (4), (5), (6), (7) are similar. As an example, we proved (1).
Proof (1): Suppose (X, s, t) is the fuzzy bitopological space and is also $I F B-R_{0}(\mathrm{i})$. We shall prove that (W, s_{W}, t_{W}) is $I F B-R_{0}(i)$. Let $x_{1}, x_{2} \in W, x_{1} \neq x_{2}$ with $M_{W}=\left(\mu_{M_{W}}, v_{M_{W}}\right) \in\left(s_{W} \cup t_{W}\right)$ such that $\mu_{M_{W}}\left(x_{1}\right)=1, v_{M_{W}}\left(x_{1}\right)=0$ and $\mu_{M_{W}}\left(x_{2}\right)=0, v_{M_{W}}\left(x_{2}\right)=1$.
Suppose $M=\left(\mu_{M}, v_{M}\right) \in(s \cup t)$ is the extension IFBS of M_{W} on $X, \mu_{M}\left(x_{1}\right)=1, v_{M}\left(x_{1}\right)=0$ and $\mu_{M}\left(x_{2}\right)=0$, $v_{M}\left(x_{2}\right)=1$. Since $x_{1}, x_{2} \in W \subseteq X$. That is $x_{1}, x_{2} \in X$. Again since $(X, s, t) I F B-R_{0}(\mathrm{i})$ then there exists $N=$ $\left(\mu_{N}, v_{N}\right) \in(s \cup t)$ such that $\mu_{N}\left(x_{2}\right)=1, v_{N}\left(x_{2}\right)=0$ and $\mu_{N}\left(x_{1}\right)=0, v_{N}\left(x_{1}\right)=1$
$\Rightarrow\left(\mu_{N} / W\right)\left(x_{2}\right)=1,\left(v_{N} / W\right)\left(x_{2}\right)=0$ and $\left(\mu_{N} / W\right)\left(x_{1}\right)=0,\left(v_{N} / W\right)\left(x_{1}\right)=1$.
Hence $\left.\left(\mu_{N} / W, v_{N} / W\right)\right) \in\left(s_{W} \cup t_{W}\right)$.
Therefore $\left(U, s_{W}, t_{W}\right)$ is $I F B-R_{0}(\mathrm{i})$.
Definition 3.1: An intuitionistic bitopological space (X, τ_{1}, τ_{2}) is called intuitionistic $P R_{0}$-space ($I-P R_{0}$ space) iffor all $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ whenever $\exists M=\left(M_{1}, M_{2}\right) \in \tau_{1} \cup \tau_{2}$ with $x_{1} \in M_{1}, x_{1} \notin M_{2}$ and $x_{2} \notin M_{1}, x_{2} \in$ M_{2} then $\exists N=\left(N_{1}, N_{2}\right) \in\left(\tau_{1} \cup \tau_{2}\right)$ such that $x_{2} \in N_{1}, x_{2} \notin N_{2}$ and $x_{1} \notin N_{1}, x_{1} \notin N_{2}$.

4. Good Extension Property

We demonstrate in this part that our conceptions adhere to the good extension property.
Theorem 4.1: Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an intuitionistic bitopological space and let $\left(X, t_{1}, t_{2}\right)$ be an intuitionistic fuzzy bitopological space. Then we have the following implication
a. $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-P R_{0} \Leftrightarrow\left(X, t_{1}, t_{2}\right)$ is $I F-P R_{0}(i)$.
b. $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-P R_{0} \Rightarrow\left(X, t_{1}, t_{2}\right)$ is $I F-P R_{0}(i i)$.
c. $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-P R_{0} \Rightarrow\left(X, t_{1}, t_{2}\right)$ is $I F-P R_{0}$ (iii).
d. $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-P R_{0} \Rightarrow\left(X, t_{1}, t_{2}\right)$ is $I F-P R_{0}$ (iv).

Proof (a): Let $\left(X, \tau_{1}, \tau_{2}\right)$ be $I-P R_{0}$ space we shall show that $\left(X, t_{1}, t_{2}\right)$ is $I F-P R_{0}(\mathrm{i})$. Suppose $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-$ $P R_{0}$. Let $x_{1}, x_{2} \in X x_{1} \neq x_{2}$ with $\left(1 M_{1}, 1 M_{2}\right) \in\left(t_{1} \cup t_{2}\right)$ such that $1 M_{1}\left(x_{1}\right)=1,1 M_{2}\left(x_{1}\right)=0,1 M_{1}\left(x_{2}\right)=$ $0,1 M_{2}\left(x_{2}\right)=1 . \Rightarrow x_{1} \in M_{1}, x_{1} \notin M_{2}, x_{2} \notin M_{1}, x_{2} \in M_{2}$. Hence $\quad\left(M_{1}, M_{2}\right) \in\left(\tau_{1} \cup \tau_{2}\right)$. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-$ $P R_{0}$ then there exist $\left(N_{1}, N_{2}\right) \in\left(\tau_{1} \cup \tau_{2}\right)$ such that $x_{2} \in N_{1}, x_{2} \notin N_{2}$ and $x_{1} \notin N_{1}, x_{1} \in N_{2} . \Rightarrow 1 N_{1}\left(x_{2}\right)=$ $1,1 N_{2}\left(x_{2}\right)=0$ and $1 N_{1}\left(x_{1}\right)=0,1 N_{2}\left(x_{1}\right)=1 . \Rightarrow\left(1 N_{1}, 1 N_{2}\right) \in\left(t_{1} \cup t_{2}\right)$.
Hence (X, t_{1}, t_{2}) is IF-P $R_{0}(i)$. Therefore $I-P R_{0} \Rightarrow I F-P R_{0}(i)$.
Conversely let $\left(X, t_{1}, t_{2}\right)$ be $I F-P R_{0}(i)$, we shall show that $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-P R_{0}$. Suppose $\left(X, t_{1}, t_{2}\right)$ is $I F-$
$P R_{0}$ (i). Let $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ with $M=\left(M_{1}, M_{2}\right) \in\left(\tau_{1} \cup \tau_{2}\right)$ such that $x_{1} \in M_{1}, x_{1} \notin M_{2}$ and $x_{2} \notin M_{1}, x_{2} \in M_{2} . \Rightarrow$ $1 M_{1}\left(x_{1}\right)=1,1 M_{2}\left(x_{1}\right)=0$ and $1 M_{1}\left(x_{2}\right)=0,1 M_{2}\left(x_{2}\right)=1$. Hence $\left(1 M_{1}, 1 M_{2}\right) \in\left(t_{1} \cup t_{2}\right)$. Since $\left(X, t_{1}, t_{2}\right)$ is $I F-$ $P R_{0}(i)$ then there exist $\left(1 N_{1}, 1 N_{2}\right) \in\left(t_{1} \cup t_{2}\right)$ such that $1 N_{1}(y)=1,1 N_{2}(y)=0$ and $1 N_{1}\left(x_{1}\right)=0,1 N_{2}\left(x_{1}\right)=1 \Rightarrow$ $x_{2} \in N_{1}, x_{2} \notin N_{2}$ and $x_{1} \notin N_{1}, x_{1} \in N_{2} \Rightarrow\left(N_{1}, N_{2}\right) \in\left(\tau_{1} \cup \tau_{2}\right)$. Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-P R_{0}$. Hence $I F-P R_{0}(i) \Rightarrow$ $I-P R_{0}$.
Therefore $I-P R_{0} \Leftrightarrow I F-P R_{0}(i)$.
Furthermore, it can verify that $I-P R_{0} \Rightarrow I F-P R_{0}(i i), I-P R_{0}(i i i)$ and $I-P R_{0}(i v)$.
Theorem 4.2: Let $\left(X, \tau_{1}, \tau_{2}\right)$ be an intuitionistic bitopological space and let $\left(X, t_{1}, t_{2}\right)$ be an intuitionistic fuzzy bitopological space. Then we have the following implication
a. $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-P R_{0} \Rightarrow\left(X, t_{1}, t_{2}\right)$ is $\alpha-I F-P R_{0}(i)$
b. $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-P R_{0} \Rightarrow\left(X, t_{1}, t_{2}\right)$ is $\alpha-I F-P R_{0}$ (ii)
c. $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-P R_{0} \Rightarrow\left(X, t_{1}, t_{2}\right)$ is $\alpha-I F-P R_{0}(i i i)$.

Proof (b): Let $\left(X, \tau_{1}, \tau_{2}\right)$ be $I-P R_{0}$ space we shall show that $\left(X, t_{1}, t_{2}\right)$ is $\alpha-I F-P R_{0}$ (ii). Let $\alpha \in(0,1)$. Suppose $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-P R_{0}$. Let $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ with $\left(1 M_{1}, 1 M_{2}\right) \in\left(t_{1} \cup t_{2}\right)$ such that $1 M_{1}\left(x_{1}\right) \geq \alpha, 1 M_{2}\left(x_{1}\right)=$ $0,1 M_{1}\left(x_{2}\right)=0,1 M_{2}\left(x_{2}\right) \geq \alpha . \Rightarrow 1 M_{1}\left(x_{1}\right)=1,1 M_{2}\left(x_{1}\right)=0,1 M_{1}\left(x_{2}\right)=0,1 M_{2}\left(x_{2}\right)=1$ for any $\alpha \in(0,1) . \Rightarrow x_{1} \in$ $M_{1}, x_{1} \notin M_{2}, x_{2} \notin M_{1}, x_{2} \in M_{2}$. Hence $\left(M_{1}, M_{2}\right) \in\left(\tau_{1} \cup \tau_{2}\right)$. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is $I-P R_{0}$ then there exist $\left(N_{1}, N_{2}\right) \in$ $\left(\tau_{1} \cup \tau_{2}\right)$ such that $x_{2} \in N_{1}, x_{2} \notin N_{2}$ and $x_{1} \notin N_{1}, x_{1} \in N_{2} \Rightarrow 1 N_{1}\left(x_{2}\right)=1,1 N_{2}\left(x_{2}\right)=0$ and $1 N_{1}\left(x_{1}\right)=$ $0,1 N_{2}\left(x_{1}\right)=1 . \Rightarrow 1 N_{1}\left(x_{2}\right) \geq \alpha, 1 N_{2}\left(x_{2}\right)=0$ and $1 N_{1}\left(x_{1}\right)=0,1 N_{2}\left(x_{1}\right) \geq \alpha$ for $\alpha \in(0,1) \Rightarrow\left(1 N_{1}, 1 N_{2}\right) \in\left(t_{1} \cup\right.$ t_{2}).
Hence (X, t_{1}, t_{2}) is $\alpha-\mathrm{IF}-\mathrm{P} R_{0}$ ($i i$).Therefore $I-P R_{0} \Rightarrow \alpha-I F-P R_{0}$ (ii).
Furthermore, it can be verified that $I-P R_{0} \Longrightarrow \alpha-I F-P R_{0}(i)$ and $I-P R_{0} \Rightarrow \alpha-P R_{0}$ (iii).

5. Mappings in Fuzzy Intuitionistic $\boldsymbol{R}_{\mathbf{0}}$ Bitopological Space

In this part, we explore order of preserving attribute of the idea IFP- $R_{0}(\mathrm{j})$, where $j=i, i i, i i i, i v$ under one- one, onto, fuzzy open and fuzzy continuous mappings.
Theorem 5.1: Let $\left(X, s_{1}, s_{2}\right)$ and $\left(Y, t_{1}, t_{2}\right)$ be two intuitionistic fuzzy bitopological space and if $X \rightarrow Y$ be one -one onto continuous open mapping, then

a.	$\left(X, s_{1}, s_{2}\right)$ is $I F-P R_{0}(i) \Leftrightarrow\left(Y, t_{1}, t_{2}\right)$ is $I F-P R_{0}(i)$.
b.	$\left(X, s_{1}, s_{2}\right)$ is $I F-P R_{0}(i i) \Leftrightarrow\left(Y, t_{1}, t_{2}\right)$ is $I F-P R_{0}(i i)$.
c.	$\left(X, s_{1}, s_{2}\right)$ is $I F-P R_{0}(i i i) \Leftrightarrow\left(Y, t_{1}, t_{2}\right)$ is $I F-P R_{0}(i i I)$.
d.	$\left(X, s_{1}, s_{2}\right)$ is $I F-P R_{0}($ iv $) \Leftrightarrow\left(Y, t_{1}, t_{2}\right)$ is $I F-P R_{0}(i V)$.
e.	$\left(X, s_{1}, s_{2}\right)$ is $\alpha-I F-P R_{0}(i) \Leftrightarrow\left(Y, t_{1}, t_{2}\right)$ is $\alpha-I F-P R_{0}(i)$.
f.	$\left(X, s_{1}, s_{2}\right)$ is $\alpha-I F-P R_{0}(i i) \Leftrightarrow\left(Y, t_{1}, t_{2}\right)$ is $\alpha-I F-P R_{0}(i i)$.
g.	$\left(X, s_{1}, s_{2}\right)$ is $\alpha-I F-P R_{0}(i i i) \Leftrightarrow\left(Y, t_{1}, t_{2}\right)$ is $\alpha-I F-P R_{0}(i i i)$.

The proofs (a), (b), (c), (d), (e), (f) and (g) are similar. As an example, we proved (e).
Proof (e): Assume that the intuitionistic fuzzy bitopological space $\left(X, s_{1}, s_{2}\right)$ is $\alpha-I F-P R_{0}(i)$,we shall prove that the intuitionistic fuzzy bitopological space (Y, t_{1}, t_{2}) is $\alpha-I F-P R_{0}(i)$. Let $\alpha=(0,1)$. Let $y_{1}, y_{2} \in Y, y_{1} \neq y_{2}$ with $M=$ $\left(\mu_{M}, v_{M}\right) \in\left(s_{1} \cup s_{2}\right)$, such that $\mu_{M}\left(y_{1}\right)=1, v_{M}\left(y_{2}\right) \geq \alpha$. since f is onto, then $\exists x_{1}, x_{2} \in X$ such that $x_{1}=$ $f^{-1}\left(y_{1}\right)$ and $x_{2}=f^{-1}\left(y_{2}\right)$. Since $y_{1} \neq y_{2}$, then $f^{-1}\left(y_{1}\right) \neq f^{-1}\left(y_{2}\right)$. Hence $x_{1} \neq x_{2}$. We have $\left(f^{-1}\left(\mu_{M}\right), f^{-1}\left(v_{M}\right)\right) \in$ $\left(s_{1} \cup s_{2}\right)$, as f is $I F-$ continuous.
Now if $\left(f^{-1}\left(\mu_{M}\right)\right)\left(x_{1}\right)=\mu_{M} f\left(x_{1}\right)=\mu_{M}\left(y_{1}\right)=1$ and $\left(f^{-1}\left(v_{M}\right)\right)\left(x_{2}\right)=v_{M}\left(y_{2}\right)=1$. Therefore since $\left(X, s_{1}, s_{2}\right)$ is $\alpha-$ $I F-P R_{0}(i)$ then there exits $N=\left(\mu_{N}, v_{N}\right) \in\left(s_{1} \cup s_{2}\right)$, such that $\mu_{N}\left(x_{2}\right)=1, v_{N}\left(x_{1}\right) \geq \alpha$ and $\left(f\left(v_{N}\right)\right)\left(y_{1}\right)=$ $v_{N}\left(f^{-1}\left(y_{1}\right)\right)=v_{N}\left(x_{1}\right)=1$ as f is one - one and onto. Hence $\left(f\left(\mu_{N}\right), f\left(v_{N}\right)\right) \in\left(t_{1} \cup t_{2}\right)$. Therefore $\left(Y, t_{1}, t_{2}\right)$ is $I F-$ $P R_{0}(i)$.
In contrast assume the intuitionistic fuzzy bitopological space $\left(Y, t_{1}, t_{2}\right)$ is $\alpha-I F-P R_{0}(i)$. We shall prove that the intuitionistic fuzzy bitopological space $\left(X, s_{1}, s_{2}\right)$ is $I F-P R_{0}(i)$. Let $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ with $M=\left(\mu_{M}, v_{N}\right) \in\left(s_{1} \cup\right.$ s_{2}) such that $y_{i}=f x_{i}, i=1,2$. Hence $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ implies $y_{1} \neq y_{2}$ as f is one one. We have $\left(f\left(\mu_{M}\right), f\left(v_{M}\right)\right) \in$ $\left(t_{1} \cup t_{2}\right)$ as f is continuous.
Now, $\left(f\left(\mu_{M}\right)\right)\left(y_{1}\right)=\left(f\left(\mu_{M}\right)\right)\left(f\left(x_{1}\right)=\mu_{M}\left(f^{-1}\left(f\left(x_{1}\right)\right)=\mu_{M}\left(x_{1}\right)=1\right.\right.$ and
$\left.f\left(v_{M}\right)\right)\left(y_{2}\right)=\left(f\left(v_{M}\right)\left(f\left(x_{2}\right)=v_{M}\left(f^{-1}\left(f\left(x_{2}\right)\right)=v_{M}\left(x_{2}\right)=1\right.\right.\right.$.
Therefore since $\left(Y, t_{1}, t_{2}\right)$ is $\alpha-I F-P R_{0}(i)$ then there exists $N=\left(\mu_{N}, v_{N}\right) \in\left(t_{1} \cup t_{2}\right)$ such that $\mu_{N}\left(y_{2}\right)=$
$1, v_{N}\left(y_{1}\right) \geq \alpha$. Now $\left(f^{-1}\left(\mu_{N}\right)\right)\left(x_{2}\right)=\mu_{N}\left(f\left(x_{2}\right)\right)=\mu_{N}\left(y_{2}\right)=1$ and $\left(f^{-1}\left(v_{N}\right)\right)\left(x_{1}\right)=v_{N}\left(f\left(x_{1}\right)\right)=v_{N}\left(y_{1}\right)=1$. As f is one-one and onto. Hence, $\left(f^{-1}\left(\mu_{N}\right), f^{-1}\left(v_{N}\right) \in\left(s_{1} \cup s_{2}\right)\right.$. Therefore $\left(X, s_{1}, s_{2}\right)$ is $\alpha-I F-P R_{0}(i)$.

6. Conclusions

This paper's key accomplishment is the formulation of an innovative notion of an intuitionistic fuzzy bitopological R_{0} space. We go over a few aspects of those notions. Additionally, we have found that these notions hold true for both fuzzy open and fuzzy continuous mapping. We anticipate that the outcomes of these studies will contribute to illuminate the subject of contemporary mathematics.

Conflict of Interests

The authors declare no conflict of interest.

Acknowledgements

The authors are grateful to the referees for their valuable comments and suggestions.

Funding

This research received no external funding.

References

[1] Zadeh, L. A., Fuzzy sets, Information and Control 8: 338-353(1965).
[2] Chang, C. L., Fuzzy topological space, J. Math. Anal. Appl. 24: 182-192 (1968)
[3] Miah, S. S., Amin, M. R., Mappings in fuzzy Hausdorff spaces in quasi- coincidence sense, J. Bangladesh Acad. Sci. 41(1): 47-56 (2017).
[4] Miah, S. S., Amin, M. R., Rashid, H., T_{1} - type separation on fuzzy topological spaces in quasi-coincidence sense, J. Mech. Cont. \& Math. Sci. 12(1) 45-56 (2017).
[5] Miah, S. S, Amin, M. R., Certain properties in fuzzy R_{0} topological Spaces in quasi-coincident sense, Ann. Pure Appl. Math 14(1): 125-131 (2017).
[6] Miah, S. S., Amin, M., Jahan, M., Mapping on fuzzy T_{0} topological spaces in quasi-coincidence sense, J. Math. Comput. Sci. 7(5): 883-894 (2017).
[7] Miah, S. S., Jahan, M., Amin, M. R., Separation axioms (Hausdorff) on fuzzy bitopological spaces in quasicoincidence sense, J. Sci. Eng. Res., 6(4): 167-174 (2017).
[8] Kandil and El-Shafee, Separation axioms for fuzzy bitopological spaces, J. Ins. Math. Comput. Sci. 4(3): 373383 (1991).
[9] Amin, M. R., and Hossain, M. S., T_{2} Concept in fuzzy bitopological spaces, J. Math. Comput. Sci. 4(6): 10551063 (2014).
[10] Amin, M. R., D. M. Ali and Hossain, M. S., R_{0} Concept in fuzzy bitopological spaces, Ann. Fuzzy Math. Inform. 11(6): 945-955 (2016).
[11] Atanassov, K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20: 87-96 (1986).
[12] Coker, D., An intuitionistic fuzzy topological space, BUSEFAL, 81: 51-56 (2000).
[13] Bayhan, S., Coker, D., On separation axioms in intuitionistic topological space, Int. J. Math. Sci., 27(10): 621630 (2001).
[14] Bayhan, S., Coker, D., On separation axioms in intuitionistic topological space, BUSEFAL, 67: 77-87 (1996).
[15] Coker, D., An introduction to fuzzy subspace in intuitionistic fuzzy topological space, J. Fuzzy Math., 4: 749764 (1996).
[16] Ahmed, E., Hossain, M. S., Ali, D. M., On intuitionistic Fuzzy $R_{0}-$ spaces, J. Ann. Pure. Math, 10(1): 714(2015).
[17] Ming, P. P., Liu Ying, Fuzzy topology I. neighborhood structure of a fuzzy point and Moore - Smith convergence, J. Math. Anal. Appl. 76: 571-599 (1980).
[18] Wong, C. K., Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46: 316-328 (1974).
[19] Ming, P. P., Liu Ying, Fuzzy topology II. Product and quotient spaces, J. Math. Anal. Appl. 77: 20-37 (1980).
[20] Malghan, S. R., Benchalli, S. S., On open maps, closed maps and local compactness in fuzzy topological spaces, J. Math. Anal. Appl. 99(2): 338-349 (1984).

Coker, D. A note on intuitionistic sets and intuitionistic points, TU J. Math. 20(3): 343-351 (1996).

Appendix A: Basic Notions

Definition A.1: [1] A fuzzy set u from X into the unit interval I is called a fuzzy set in X . For every $x \in X, u(x) \in I$ is called the grade of membership of x in u. Some authors say that u is a fuzzy subset of X instead of saying that u is a fuzzy set in X. The class of all fuzzy sets from X into the closed unit interval I will be denoted by I^{X}.
Definition A.2: [17] A fuzzy set u in X is called a fuzzy singleton if and only if $\mathrm{u}(\mathrm{x})=\mathrm{r}, 0<r \leq 1$, for a certain $x \in$ X and $u(y)=0$ for all points y of X except x . The fuzzy singleton is denoted by x_{r} and x is its support. The class of all fuzzy singletons in X will be denoted by $S(X)$.If $\mathrm{u} \in I^{x}$ and $x_{r} \in S(X)$, then we say that $x_{r} \in \mathrm{u}$ if and only if $r \leq$ $u(x)$.
Definition A.3: [18] A fuzzy set u in X is called a fuzzy point if and only if $u(x)=r, 0<r<1$ for a certain $x \in X$ and $\mathrm{u}(\mathrm{y})=0$ for all points y of X without x. The point is denoted by x_{r} and x is its support.
Definition A.4: [2] Let f be a mapping from a set X into a set Y and v be a fuzzy subset of Y. Then, the inverse of v written as $f^{-1}(v)$ is a fuzzy subset of X defined by $f^{-1}(v)(x)=v(f(x))$, for $x \in X$.
Definition A.5: [19] The function $f:(X, t) \rightarrow(Y, s)$ is called fuzzy continuous if and only if for every $v \in s, f^{-1}(v) \in$ t, the function f is called fuzzy homeomorphic if and only if f is bijective and both f and f^{-1} are fuzzy continuous.
Definition A.6: [20] The function $f:(X, t) \rightarrow(Y, s)$ is called fuzzy open if and only if for every open fuzzy set u in $(X, t), f(u)$ is open fuzzy set in (Y, s).
Definition A.7: [21] An intuitionistic set A is an object having the form $\mathrm{A}=\left(x, A_{1}, A_{2}\right)$, where A_{1} and A_{2} are subsets of X satisfying $A_{1} \cap A_{2}=\emptyset$. The set A_{1} is called the set the member of A while A_{2} is called the set of non -member of A. Definition A.8: [12] An intuitionistic topology on a set X is a family τ of intuitionistic sets in X satisfying the following axioms:
(1) $\phi_{\sim}, X_{\sim} \in \tau$.
(2) $G_{1} \cap G_{2} \in \tau$ for any $G_{1}, G_{2} \in \tau$.
(3) $\cup G_{i} \in \tau$ for any arbitrary family $G_{i} \in \tau$

In this case, the pair (X, τ) is called an intuitionistic topological space (ITS, in short) and any intuitionistic set in τ in known as an intuitionistic open set in X.
Definition A.9: [11] Let X be a non-empty set and I be the interval [0,1]. An intuitionistic fuzzy set A in X is an object having the form $\mathrm{A}=\left\{\left(x, \mu_{A}(x), v_{A}(x)\right), x \in X\right\}$, where $\mu_{A}: X \rightarrow I$ and $v_{A}: X \rightarrow I$ degree of membership and degree of nonmembership respectively, and $\mu_{A}(x)+v_{A}(x) \leq 1$. Let $\mathrm{I}(\mathrm{X})$ denote the set of all intuitionistic fuzzy sets in X . Obviously every fuzzy set μ_{A} in X is an intuitionistic fuzzy set of the form $\left(\mu_{A}(x), 1-\mu_{A}(x)\right)$.

