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ABSTRACT 

The (2+1)-dimensional long-wave-short-wave resonance interaction (LWSWRI) equation has 
extensive applications in various fields of science and engineering. The (2+1)-dimensional 
LWSWRI equation and two analytical techniques have been considered in this manuscript. These 
schemes, via the advanced auxiliary equation, improve F-expansion techniques applied to the 
considered model and obtain soliton solutions with a lot of parameters. These derived soliton 
solutions manifest as trigonometric, hyperbolic, rational, and exponential function solutions, 
highlighting their utility as mathematical tools. The study offers visual representations, including 
both three-dimensional (3D) and two-dimensional (2D) combined charts, to illustrate selected 
solutions and demonstrate the influence of parameters. Furthermore, the bifurcation analysis (BA) 
of the model is studied through the planar dynamical systems. The stability of the equilibrium 
points (EPs) and a graphical representation of the phase chart of the system are investigated. The 
Hamiltonian function is also derived in this manuscript. These methodologies function as 
dependable, straightforward, and powerful instruments for examining diverse nonlinear evolution 
equations encountered in physics, applied mathematics, engineering, and other disciplines. 
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1. Introduction 
Nowadays, the exploration of nonlinear wave phenomena has emerged as a pivotal area of research 
worldwide. Nonlinear wave models offer a valuable framework for analysing these complex 
phenomena. Consequently, numerous researchers have dedicated their efforts to studying these 
models, aiming for precise wave solutions and an understanding of nonlinear wave phenomena. Its 
significance extends beyond theoretical realms to real-life applications across diverse fields 
including shallow water wave propagation [1], mathematical fluid dynamics [2], nonlinear optics 
[3], plasma physics [4], nano-biosciences [5], finance [6], optical fiber [7], communication systems 
[8], and numerous other domains. 
In the last three decades, a multitude of researchers have delved into NLMs in pursuit of numerous 
analytic solutions. This quest for solutions holds significant importance as it aids in unravelling the 
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underlying dynamics and physical properties of nonlinear wave phenomena. By extracting solutions 
from NLMs, researchers gain valuable insights into the intricate workings of these phenomena. For 
example, Kamrujjaman et al. [9] have delved into the intricate dynamics of phenomena by 
leveraging solutions from NLMs. Their study explores the competitive reaction-diffusion model, 
focusing on the emergence of traveling wave solutions for two competing species. Additionally, 
they investigate the influence of competitive-cooperative coefficients. Furthermore, Kamrujjaman 
et al. [10] analyse the Burgers equation using the tan-cot function method, examining both its 
inviscid and viscous versions in the context of fluid flow. Their investigation includes an 
exploration of the effects of internal friction on fluid dynamics, elucidated through the Reynolds 
number. Consequently, investigators have successfully employed a diverse array of analytical and 
numerical approaches to find solutions for NLMs. Notable among these approaches are the 
generalized Kudryashov [11], the Riccati sub-equation [12], the advanced auxiliary equation (AAE) 
[13, 14], the extended hyperbolic function [15], the (𝐺! 𝐺⁄ , 1 𝐺⁄ )-expansion [16], the improved F-
expansion (IFE) [17, 18], the unified [19], the enhanced modified simple equation [20], the 
extended (𝐺! 𝐺")⁄ -expansion [21], the Nucci’s reduction [22], the new extended generalized 
Kudryashov [23], the improved modified extended tanh-function [24], Hirota’s bilinear [25], 
Darboux transformation [26], and several other methodologies. These powerful and effective 
schemes are constantly being refined and are specifically designed to build soliton solutions for 
NLMs. They are skilfully made to extract new solutions for the NLMs, whose solutions are of great 
importance to physics, fluid mechanics, and many other scientific and technical domains. 
 
In the realm of mathematical physics, numerous researchers have explored nonlinear mathematical 
models (NLMs) to uncover soliton solutions, particularly for analysing wave phenomena in fluid 
dynamics. Examples include the Korteweg-de Vries equation, the Burgers equation, the Benjamin-
Ono equation, and the (2+1)-dimensional dispersive long wave equation in shallow water [27]. It's 
well established that a significant interaction between long and short waves emerges when the 
phase velocity of the long wave closely aligns with the component of the short wave's group 
velocity in the direction of the long wave's propagation. This phenomenon can be viewed as a 
distinct manifestation of the three-wave resonant interaction [28]. In 1976, Yajima and Oikawa [29] 
demonstrated that the NLMs governing this interaction are amenable to exact solutions through the 
inverse scattering method and yielding 𝑁-soliton solutions, which are bright-type solitons. Ma and 
Redekopp [30] reformulated the equations into Hirota’s bilinear forms [31], and yielding soliton 
solutions wherein the short wave appears as a uniform plane wave at infinity, which is alongside the 
bright-type 𝑁-soliton solution. At the same time, Benny [32] explored the resonance between long 
and short waves in two-dimensional wave propagation, focusing on capillary-gravity waves in deep 
water. Unlike in shallow water, obtaining simple interaction equations proved challenging due to 
the absence of long wave behaviours in deep water conditions. Conversely, Grimshaw [33] derived 
straightforward interaction equations elucidating the resonant interplay between long and short 
internal waves propagating obliquely in a stably stratified fluid. However, the discussion did not 
extend to their solutions. In 1983, Funakoshi and Oikawa [34] conducted a comprehensive 
numerical investigation into the initial value problems associated with these equations, and they 
also extended the interaction equations for the resonance between a long internal wave and a short 
surface wave in a two-layer fluid to the case in which they propagate obliquely each other and 
discussed some solutions to the extended interaction equations. In 1989, Oikawa et al. [35] 
expanded the concept of long-short resonance to (2+1)-dimensional scenarios, integrating the 
propagation of oblique waves. The resulting (2+1)-dimensional LWSWRI equation is represented 
as: 

𝑖(𝑢# + 𝑢$+ − 𝑢%% + 𝑢𝑣 = 0,                        (1.1) 
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𝑣# − 2(|𝑢|")% = 0,                            (1.2) 
In the context of the (2+1)-dimensional LWSWRI equation, this interaction manifests as a nonlinear 
coupling between the long wave field 𝑢 and the short-wave field	𝑣. In Eqs. (1.1) and (1.2), the short 
surface wave packets represent as 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) , the long interfacial wave represents as 𝑣 =
𝑣(𝑥, 𝑦, 𝑡), the term 𝑢𝑣 represents the nonlinear interaction between the long and short-wave fields. 
This interaction can lead to various effects, such as the modulation of wave amplitudes, the 
generation of new wave frequencies through wave mixing, the formation of solitons or other 
coherent structures, and the transfer of energy between different wave modes.  
From my observations, numerous researchers have delved into the (2+1)-dimensional LWSWRI 
model, exploring soliton solutions through various techniques. Additionally, the introduction of an 
arbitrary function of the seed solutions has unveiled a wealth of coherent soliton structures within 
this model. In a specific instance, authors employed the variable separation approach to derive exact 
solutions to the (2+1)-dimensional LWSWRI equation [36]. Yan [37] has investigated new Jacobi 
elliptic function solutions to the considered model through the sinh-Gordon expansion method. 
Radha et al. [38] have investigated the (2+1)-dimensional LWSWRI equation by using the Painleve 
truncation approach, and they generated a wide class of elliptic function periodic wave solutions. 
Xin et al. [39] have studied the existence and uniqueness of the global smooth solution to the (2+1)-
dimensional LWSWRI equation. Kumar and Chand [40] have inspected the soliton solution to the 
system of Eqs. (1.1) and (1.2) through the projective Riccati equation method. In Mirzazadeh [41], 
the modified simple equation method has been used to construct exact periodic and soliton solutions 
of the (2+1)-dimensional LWSWRI equation. Kanna et al. [42] have obtained mixed soliton 
solutions of the (2+1)-dimensional multi-component long-wave-short-wave resonance interaction 
system by applying Hirota’s bilinearization method. Khare et al. [43] have explored exact periodic 
solutions to the (2+1)-dimensional LWSWRI equation by using the Lam´e function ansatz. Chen et 
al. [44] have derived a bright-dark multi-soliton solution to the (2+1)-dimensional multi-component 
LWSWRI system with the help of KP hierarchy reduction. Cimpoiasu and Pauna [45] have 
explored the exact solutions of the LWSWRI system through the trial equation and the generalized 
Kudryashov methods. Jia and Zuo have studied the long-wave-short-wave resonance interaction 
through the bilinear method and attained soliton solutions [46]. The soliton solutions obtained from 
these studies hold potential applications in the science and engineering fields. 
Upon examining prior research conducted by multiple scholars, it becomes evident that there has 
been no exploration of soliton solutions for the (2+1)-dimensional LWSWRI equation employing 
both AAE and IFE techniques (both methods are detailed in Appendices A and B). Furthermore, 
there is a notable void in the literature, as prior authors have not conducted bifurcation analysis or 
shown the way to stable solutions for the wave variable. Our paper introduces these methods and 
performs a thorough analysis of the model to close this gap. 
This study has two goals in mind: First, we will obtain soliton solutions of the (2+1)-dimensional 
LWSWRI equation using AAE and IFE approaches and analyse the effect of parameters. We will 
also offer physical and graphical representations of some of the solutions that fit inside the model's 
structure. Second, in order to investigate the possibility of other solutions, we will apply planar 
dynamical theory to the BA of the model. 
The format of the paper is as follows: The techniques used to investigate soliton solutions of the 
(2+1)-dimensional LWSWRI equation in Section 2 and the comparison between our solutions and 
Mirzazadeh [41] solutions are shown in the same section. In Section 3, the impact of parameters is 
discussed, and the graphical and physical explanations of certain solutions are discussed. The BA of 
the considered model is analyzed in Section 4. Section 5 provides a thorough summary of our 
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results in conclusion. 

2. Mathematical Conduct of the Model 
In this segment, we will smear the AAE and IFE schemes on the (2+1)-dimensional LWSWRI 
equation to explore the soliton solutions, and the mathematical analysis is given below: 
To complex wave transformation [39] 

𝑢(𝑥, 𝑡) = ℧(𝜉)𝑒&ð, 𝑣(𝑥, 𝑡) = ℘(𝜉), 𝜉 = 𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡, ð = 𝛼𝑥 + 𝛽𝑦 + 𝜏𝑡  
in Eqs. (1.1) and (1.2), we get the real part as 

℧!!(𝜉) + (𝛽 + 𝜏 − 𝛼")℧(𝜉) − ℧(𝜉)℘(𝜉) = 0,             (2.1) 
and imaginary parts as 

𝜔℘!(𝜉) − 2(℧"(𝜉)+! = 0.                (2.2) 
Integrating Eq. (2.2) with respect to 𝜉 and taking the integration constant as zero yields 

℘(𝜉) = "
(
℧"(𝜉).                 (2.3) 

Substituting Eq. (2.3) into Eq. (2.1), yields 
℧!!(𝜉) + (𝛽 + 𝜏 − 𝛼")℧(𝜉) − "

(
℧)(𝜉) = 0,              (2.4) 

where 𝛼, 𝛽, 𝜏 and 𝜔 are real constant. 

2.1. The AAE scheme applied to the stated model 

By using the balancing procedure in (2.4), yields	𝑁 = 1, The general solution takes the form 
℧(𝜉) = 𝑐* + 𝑐+𝑑,(.).                       (2.5) 

In Eq. (2.5), 𝑐*  and 𝑐+  are constants with 𝑐+ ≠ 0  and the function 𝑓(𝜉)  satisfies the first order 
auxiliary equation 𝑓!(𝜉) = +

01(2)
D𝜆𝑑3,(.) + 𝜇 + 𝜎𝑑,(.)H. Substituting Eq. (2.5) into Eq. (2.4), we 

derive algebraic equations, which upon solving, the following solution sets yields: 
𝜔 = 45!"

6"
, 𝜏 = 𝛼" − 2𝜆𝜎 + 6"

"
, 𝑐* = 𝑐*, 𝑐+ =

"5!7
6

,                    (2.6) 
Using Eqs. (2.6) and (2.5) with regards to the solutions of the auxiliary equation, the solutions of 
the (2+1)-dimensional LWSWRI equation as follows:  
When 𝜇" − 4𝜆𝜎 < 0 and 𝜎 ≠ 0, 

𝑢+(𝑥, 𝑦, 𝑡) =
5!849736"

6
𝑡𝑎𝑛 M849736

"

"
(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

and  

𝑢"(𝑥, 𝑦, 𝑡) = − 5!849736"

6
𝑐𝑜𝑡 M849736

"

"
(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

When 𝜇" − 4𝜆𝜎 > 0 and 𝜎 ≠ 0, 

𝑢)(𝑥, 𝑦, 𝑡) = − 5!86"3497
6

𝑡𝑎𝑛ℎ M86
"3497
"

(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

and  

𝑢4(𝑥, 𝑦, 𝑡) = − 5!86"3497
6

𝑐𝑜𝑡ℎ M86
"3497
"

(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

When 𝜇" + 4𝜆" < 0, 𝜎 ≠ 0 and 𝜎 = −𝜆, 

𝑢>(𝑥, 𝑦, 𝑡) =
5!836"349"

6
𝑡𝑎𝑛 M836

"349"

"
(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

and  
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𝑢?(𝑥, 𝑦, 𝑡) = − 5!836"349"

6
𝑐𝑜𝑡 M836

"349"

"
(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

When 𝜇" + 4𝜆" > 0, 𝜎 ≠ 0 and 𝜎 = −𝜆, 

𝑢@(𝑥, 𝑦, 𝑡) = − 5!86";49"

6
𝑡𝑎𝑛ℎ M86

";49"

"
(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

and  

𝑢A(𝑥, 𝑦, 𝑡) = − 5!86";49"

6
𝑐𝑜𝑡ℎ M86

";49"

"
(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

When 𝜇" − 4𝜆" < 0 and 𝜎 = 𝜆, 

𝑢B(𝑥, 𝑦, 𝑡) =
5!849"36"

6
𝑡𝑎𝑛 M849

"36"

"
(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

and  

𝑢+*(𝑥, 𝑦, 𝑡) = − 5!849"36"

6
𝑐𝑜𝑡 M849

"36"

"
(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

When 𝜇" − 4𝜆" > 0 and 𝜎 = 𝜆, 

𝑢++(𝑥, 𝑦, 𝑡) = − 5!86"349"

6
𝑡𝑎𝑛ℎ M86

"349"

"
(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

and  

𝑢+"(𝑥, 𝑦, 𝑡) = − 5!86"349"

6
𝑐𝑜𝑡ℎ M86

"349"

"
(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

When 𝜇" = 4𝜆𝜎, 
𝑢+)(𝑥, 𝑦, 𝑡) = − 5!

√79
((𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)+3+𝑒&(:%;<$;=#), 

When 𝜎 = 𝜇 = 𝐾 and 𝜆 = 0 , 

𝑢+4(𝑥, 𝑦, 𝑡) = − 5!DE#(%&('("))+&',);+F
E#(%&('("))+&',)3+

𝑒&(:%;<$;=#), 
When 𝜇 = (𝜆 + 𝜎), 

𝑢+>(𝑥, 𝑦, 𝑡) =
5!(-(.)D7E(.(-)

(%&('("))+&',);+F
(9;7)D7E(.(-)(%&('("))+&',)3+F

𝑒&(:%;<$;=#), 

When 𝜇 = −(𝜆 + 𝜎), 

𝑢+?(𝑥, 𝑦, 𝑡) =
5!(-(.)DE(.(-)

(%&('("))+&',);7F
(9;7)D73E(.(-)(%&('("))+&',)F

𝑒&(:%;<$;=#), 

When 𝜆 = 0, 

𝑢+@(𝑥, 𝑦, 𝑡) = − 5!D7E/(%&('("))+&',);+F
D7E/(%&('("))+&',)3+F

𝑒&(:%;<$;=#), 
When 𝜎 = 𝜇 = 𝜆 ≠ 0, 

𝑢+A(𝑥, 𝑡) = 𝑐*√3 × 𝑡𝑎𝑛 M
√)9
"
(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)N 𝑒&(:%;<$;=#), 

Where 𝜔 = 45!"

6"
	 and 𝜏 = 𝛼" − 2𝜆𝜎 + 6"

"
. Under specific conditions, including 𝜆 = 𝜎 = 0, 𝜇 = 𝜎 =

𝐾 and 𝜆 = 0, and 𝜎 = 0, when the constants are replaced, constant solutions are found. However, 
these solutions are not provided here as they hold no physical significance. Conversely, utilizing the 
mentioned method, a solution for Eq. (1.1) does not emerge, when 𝜆𝜎 < 0, 𝜇 = 0 and 𝜎 ≠ 0, 𝜇 = 0 
and = −𝜎, 𝜆 = 𝜇 = 0, 𝜎 = 𝜆 and 𝜇 = 0, and 𝜎 = 𝜇 = 0. 

2.2. The IFE scheme applied to the stated model 
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By using the balancing procedure in (2.4), yields	𝑁 = 1, the general solution take the form 
℧(𝜉) = 𝛼* + 𝛼+(𝑚 + 𝜑(𝜉)) + 𝛽+(𝑚 + 𝜑(𝜉))3+,             (2.7) 

where 𝛼*, 𝛼+ and 𝛽+ are constants and to be evaluated latter and 𝛼+ or 𝛽+ may be zero, but both 𝛼+ 
and 𝛽+  could not be zero simultaneously. The function 𝜑(𝜉)  satisfies the first order auxiliary 
equation 𝜑!(𝜉) = 𝜅 + 𝜑"(𝜉). By substituting Eq. (2.7) into Eq. (2.4) and consolidating all terms, 
and then setting each coefficient to zero, we derive a system of algebraic equations. Employing 
Maple software to solve these equations and yields in the resulting solutions set: 
Group one:  𝜏 = 𝛼" − 𝛽 − 2𝜅, 𝛼* = ±√𝜔𝑚, 𝛼+ = ±√𝜔, 𝛽+ = 0,                 (2.8) 
Group two:  𝜏 = 𝛼" − 𝛽 − 2𝜅, 𝛼* = ±√𝜔𝑚, 𝛼+ = 0, 𝛽+ = ±(𝑚" + 𝜅)√𝜔,           (2.9) 
By employing Eqs. (2.8) and (2.7) alongside the solution of the auxiliary equation, we derive the 
following solutions for the (2+1)-dimensional LWSWRI equation: 
When 𝜅 < 0, 

𝑢+B,"*(𝑥, 𝑦, 𝑡) = ±√𝜔 × √−𝜅	𝑡𝑎𝑛ℎ Z√−𝜅(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)[ 𝑒&(:%;<$;=#),  
and  

𝑢"+,""(𝑥, 𝑦, 𝑡) = ±√𝜔 × √−𝜅	𝑐𝑜𝑡ℎ Z√−𝜅(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)[ 𝑒&(:%;<$;=#),  
When 𝜅 > 0, 

𝑢"),"4(𝑥, 𝑦, 𝑡) = ±√𝜔 × √𝜅	𝑡𝑎𝑛 Z√𝜅(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)[ 𝑒&(:%;<$;=#),  
and  

𝑢">,"?(𝑥, 𝑦, 𝑡) = ±√𝜔 × √𝜅	𝑐𝑜𝑡 Z√𝜅(𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡)[ 𝑒&(:%;<$;=#),  
When 𝜅 = 0, 

𝑝"@,"A(𝑥, 𝑦, 𝑡) = ± √(𝑒
𝑖1Γ(1+Υ)𝛼 (𝑎𝑥𝛼+𝑏𝑡𝛼)2

%;((3":)$;(#
. 

By employing Eqs. (2.9) and (2.7) alongside the solution of the auxiliary equation, we derive the 
following solutions for the (2+1)-dimensional LWSWRI equation: 
When 𝜅 < 0, 

𝑢"B,)*(𝑥, 𝑦, 𝑡) = ±√𝜔 ×
H√3I	#KLMN√−𝜅(%;((3":)$;(#)O−𝜅

H3√3I	#KLMN√−𝜅(%;((3":)$;(#)O
𝑒&(:%;<$;=#),  

and  

𝑢)+,)"(𝑥, 𝑦, 𝑡) = ±√𝜔 ×
H√3I	5P#MN√−𝜅(%;((3":)$;(#)O+𝜅

H3√3I	5P#MN√−𝜅(%;((3":)$;(#)O
𝑒&(:%;<$;=#),  

When 𝜅 > 0, 

𝑢)),)4(𝑥, 𝑦, 𝑡) = ±√𝜔 ×
H√I	#KLN√𝜅(%;((3":)$;(#)O−𝜅

H;√I	#KLN√𝜅(%;((3":)$;(#)O
𝑒&(:%;<$;=#),  

and  

𝑢)>,)?(𝑥, 𝑦, 𝑡) = ±√𝜔 ×
H√I	5P#N√𝜅(%;((3":)$;(#)O+𝜅

H3√I	5P#N√𝜅(%;((3":)$;(#)O
𝑒&(:%;<$;=#),  

When 𝜅 = 0, 

𝑝)@,)A(𝑥, 𝑦, 𝑡) = ± √(𝑚	
H(%;((3":)$;(#)3+

	𝑒
𝑖QΓ(1+Υ)

𝛼
(𝑎𝑥𝛼+𝑏𝑡𝛼)R

. 

For all the solutions mentioned above to be valid, it is imperative that the condition 𝜔 ≠ 0 is 
satisfied. Under certain conditions, namely	𝜌 < 0 and	𝜎 = 0; 𝜌 > 0 and	𝜎 = 0, when the constants 
are replaced, it has no solution of the both equations for EHF scheme. After substituting all the 
obtained solutions into Eq. (2.3), we get the solution 𝑣(𝑥, 𝑦, 𝑡) but not shown in this manuscript. 
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2.3. Comparison between our solutions and Mirzazadeh [41] solutions 
In this manuscript, the AAE and IFE schemes have been applied to the LWSWRI equation and 
soliton solutions from the previous sub-section. By applying the AAE technique, we found eighteen 
soliton solutions to the LWSWRI equation, and by employing the IFE technique, we found twenty 
soliton solutions to the LWSWRI equation. Both techniques have some common solutions but are 
not shown in Table in the manuscript. Mirzazadeh [41] has inspected the LWSWRI equation 
through the modified simple equation (MSE) scheme and explored five soliton solutions. It is 
noteworthy that both methods share a common solution, as illustrated in Table 1. Finally, it can be 
claimed that using the AAE approach instead of Mirzazadeh's MSE method for solving the 
LWSWRI equation yields a substantially higher number of wave solutions [41]. These solutions are 
expressed through exponential function solutions, rational function solutions, hyperbolic function 
solutions, and trigonometric function solutions. 
Table 1: Comparison between our solutions and Mirzazadeh [41] solutions: 

Mirzazadeh [41] solutions  Our solutions  
Taking 𝑎 = 1, 𝑝 = 1, 𝑞 = 1, 𝑘 = −0.5	  and 
𝑢)(𝑥, 𝑦, 𝑡) = Φ(𝑥, 𝑦, 𝑡) , then the solution of 
Eq. (88) turns to  

Φ(𝑥, 𝑦, 𝑡) = 0.5	𝑡𝑎𝑛 Z%;$;#
"

[ 𝑒&N%;$3
,
"O. 

Taking 𝑐! = 1, µ = 2,ω = 1, α = 1, β = 1, 𝜏 =
−0.5, 𝜎 = 1, 𝜆 = "

#
 and 𝑢+(𝑥, 𝑦, 𝑡) = Φ(𝑥, 𝑦, 𝑡) , 

then the solution turns to  

Φ(𝑥, 𝑦, 𝑡) = 0.5	𝑡𝑎𝑛 Z%;$;#
"

[ 𝑒&N%;$3
,
"O. 

Picking 𝑎 = 1, 𝑝 = 1, 𝑞 = 1, 𝑘 = −0.5	  and 
𝑢4(𝑥, 𝑦, 𝑡) = Φ(𝑥, 𝑦, 𝑡) , then the solution of 
Eq. (89) turns to  

Φ(𝑥, 𝑦, 𝑡) = 0.5	𝑐𝑜𝑡 Z%;$;#
"

[ 𝑒&N%;$3
,
"O. 

Picking 𝑐! = −1, µ = 2,ω = 1, α = 1, β = 1, 𝜏 =
−0.5, 𝜎 = 1, 𝜆 = "

#
 and 𝑢"(𝑥, 𝑦, 𝑡) = Φ(𝑥, 𝑦, 𝑡) , 

then the solution turns to  

Φ(𝑥, 𝑦, 𝑡) = 0.5	𝑐𝑜𝑡 Z%;$;#
"

[ 𝑒&N%;$3
,
"O. 

Taking 𝑎 = 1, 𝑝 = 1, 𝑞 = 1, 𝑘 = 5, ℰ = 	√2.5 
and 𝑢>(𝑥, 𝑦, 𝑡) = Φ(𝑥, 𝑦, 𝑡), then the solution 
of Eq. (90) turns to  
Φ(𝑥, 𝑦, 𝑡) = ℰ	𝑡𝑎𝑛ℎ(ℰ(𝑥 + 𝑦 + 𝑡)+𝑒&(%;$;>#). 

Taking 𝑐! = −1, µ = 2,ω = 1, α = 1, β = 1, ℰ =
√2 , 𝜏 = 5 , 𝜆 = 1  and 𝑢@(𝑥, 𝑦, 𝑡) = Φ(𝑥, 𝑦, 𝑡) , 
then the solution turns to  
Φ(𝑥, 𝑦, 𝑡) = ℰ	𝑡𝑎𝑛ℎ(ℰ(𝑥 − 𝑦 + 𝑡)+𝑒&(%;$;>#). 

Taking 𝑎 = 1, 𝑝 = 1, 𝑞 = 1, 𝑘 = 5, ℰ = 	√2.5 
and 𝑢>(𝑥, 𝑦, 𝑡) = Φ(𝑥, 𝑦, 𝑡), then the solution 
of Eq. (91) turns to  
Φ(𝑥, 𝑦, 𝑡) = ℰ	𝑐𝑜𝑡ℎ(ℰ(𝑥 + 𝑦 + 𝑡)+𝑒&(%;$;>#). 

Taking 𝑐! = −1, µ = 2,ω = 1, α = 1, β = 1, ℰ =
√2 , 𝜏 = 5 , 𝜆 = 1  and 𝑢A(𝑥, 𝑦, 𝑡) = Φ(𝑥, 𝑦, 𝑡) , 
then the solution turns to  
Φ(𝑥, 𝑦, 𝑡) = ℰ	𝑐𝑜𝑡ℎ(ℰ(𝑥 − 𝑦 + 𝑡)+𝑒&(%;$;>#). 

 
Remarks: All the established solutions have been validated and found to be correct by putting them 
into the stated equation. 

3. Graphical and physical explaination of some solutions 
In this segment, we explore the graphical behavior and physical attributes of several solutions 
obtained using Matlab. These solutions were derived through the effective AAE and IFE methods, 
encompassing exact soliton solutions, hyperbolic functions, rational solutions, trigonometric 
functions, and exponential functions. The diversity of functions in these solutions allows us to 
visualize various graphical structures such as traveling waves, periodic waves, kink waves, and 
other soliton profiles. Graphs serve as illustrated representations of explicit solutions, facilitating 
comparison. For dynamic solution analysis, 3D and 2D combined plots of select results are 
presented in Figures 1, 2, 3, and 4, with appropriate parametric values assigned. A succinct 
overview of solution dynamics is provided below: 
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Figure 1 depicts the evolutionary profile dynamics of the solution 𝑢+(𝑥, 𝑦 = 0, 𝑡) using appropriate 
parameter values:  𝑐* = 0.02, 𝜆 = 1, 𝜎 = 2, 𝜇 = 1, 𝛼 = 0.3 and 𝛽 = 0.1. In the 3D plot (Fig. 1a), a 
periodic wave profile is illustrated within the interval 𝑥 ∈ [−5, 5] and 𝑡 ∈ [0, 5]. Figures 1(b) and 
1(c) exhibit the variation of wave amplitude and phase component, respectively, for different 
parameter values of  𝜆 = {1.0, 1.4, 1.8	}  and 𝜎 = {2.0, 2.3, 2.6}  via 2D plots, showcasing wave 
propagation across the spatial range 𝑥 ∈ [−5, 5].  
Figure 2 shows the 3D, and 2D combined plots of the solutions 	𝑢)(𝑥, 𝑦, 𝑡). The evolutionary 
profile of the solution was obtained of the appropriate selection of the arbitrary parameters 𝑐* =
0.4, 𝜆 = 0.2, 𝜎 = −0.1, 𝜇 = 1, 𝛼 = 0.3 and 𝛽 = 0.1. In Fig. 2(a), the 3D wave profile represents the 
kink type wave profiles of the selected solutions within the interval 𝑥 ∈ [−5, 5] and 𝑡 ∈ [0, 5]. The 
variation of wave amplitude and phase component are recorded in the Figs. 2(b) anf (c) for the 
appropriate choice of the parameters 𝜆 = {0.2, 0.4, 0.6	} and 𝜎 = {−0.1, −0.5, −0.9} via the 2D plot 
that shows the wave propagation for 𝑥 ∈ [−5, 5].  
Figure 3 illustrates the graphical view of the solution 	𝑢+B(𝑥, 𝑦, 𝑡) for the appropriate values of 
parameters 𝜔 = 1.25, 𝜅 = −0.09, 𝛼 = 0.3  and 𝛽 = 0.01 . Figure 3(a) demonstrates a 3D plot, 
which is represents kink shape wave profile with the range 𝑥 ∈ [−5, 5] and 𝑡 ∈ [0, 5]. Moreover, 
Figs. 3(b) and (c) illustrates the corresponding 2D representations for the suitable choice of the 
parameters 𝜔 = {1.0, 1.25, 1.50	}  and 𝜅 = {−0.07, −0.09, −0.11} . It is observed that phase 
component is increase when the value of 𝜔 increases and 𝜅 decreses.  

Figure 4 describe the 3D, and 2D combined plots of the obtained solution 	𝑢">(𝑥, 𝑦, 𝑡)for the 
appropriate values of parameters 𝜔 = 0.01, 𝜅 = 0.52, 𝛼 = 0.25 and 𝛽 = 1.23. In 3D plot, Fig. 4(a) 
demonstrates the periodic wave profile of the solution	𝑢">(𝑥, 𝑦, 𝑡)within the interval 𝑥 ∈ [−5, 5] 
and 𝑡 ∈ [0, 5]. Furthermore, the variation of wave amplitude and phase difference are recorded in 
Figs. 5(b) and (c) for the appropriate choice of the parameters 𝜔 = {0.01, 0.02, 0.03	} and 𝜅 =
{0.52, 0.55, 0.58}  via the 2D plot that shows the wave propagation under the range space 𝑥 ∈
[−5, 5]. 

 
Figure 1: Dynamics behaviours of the solution	𝑢+(𝑥, 𝑦, 𝑡), (a) Periodic (3D) wave profile (b) 

Impact of the parameter 𝜆, and (c) Impact of the parameter 𝜎. 
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Figure 2: Dynamics behaviours of the solution	𝑢)(𝑥, 𝑦, 𝑡), (a) Kink (3D) wave profile (b) 

Impact of the parameter 𝜆, and (c) Impact of the parameter 𝜎. 
 

 
Figure 3: Dynamics behaviours of the solution	𝑢+B(𝑥, 𝑦, 𝑡), (a) Kink (3D) wave profile (b) 

Impact of the parameter 𝜔, and (c) Impact of the parameter 𝜅. 
 

 
Figure 4: Dynamics behaviours of the solution	𝑢">(𝑥, 𝑦, 𝑡), (a) Periodic (3D) wave profile (b) 

Impact of the parameter 𝜔, and (c) Impact of the parameter 𝜅. 
 

4. Bifurcation analysis of the model 
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In this section, we delve into the BA of the specified model using planar dynamical system 
techniques. By setting 𝑋 = ℧ and 𝑌 = 𝑋′, we postulate that the system outlined in Eq. (2.4) can be 
expressed as the following system: 

p

2S
2.
= 𝑌

2T
2.
= "

(
𝑋) − (𝛽 + 𝜏 − 𝛼")𝑋

.                      (4.1) 

In this context, we introduce the well-known phase portraits in the (𝑋, 𝑌)-plane to depict wave 
solutions of the considered model.  

The system of (4.1) is derived from the associated Hamiltonian function 

𝐻(𝑋, 𝑌) = T"

"
− +

"(
𝑋4 + <;=3:"

"
𝑋".                              (4.2) 

using the Hamilton canonical equations 𝑋! = UV
UT

 and 𝑌! = − UV
US

. Currently, the three EPs of 

equation (4.1) are  (0, 0)  and M±r((<;=3:")
"

, 0N , with the condition 𝜔 ≠ 0 . The characteristic 

equation of the Jacobian matrix is expressed as:  

Ω" − ?
(
𝑋" + (𝛽 + 𝜏 − 𝛼") = 0.  

Regarding the EP (0, 0), the characteristic roots are±√Θ, where Θ = 𝛽 + 𝜏 − 𝛼" . If	Θ > 0, the 
eigenvalues (EV) are real and have opposed signs, rendering the EP an unstable saddle point (USP). 
Contrariwise, if	Θ < 0, the EVs are imaginary, indicating that the EP (0, 0) is a stable center (SC) 
or ellipse. Through this investigation, it becomes clear that the EP can be categorized as an USP, as 
depicted in Figs. 5, 7, and 8. On the other hand, the specified point displays an elliptical profile and 
signifies a SC, as demonstrated in Figs. 5, 6, and 8. Conversely, in terms of the stability of the EPs 

M±r((<;=3:")
"

, 0N, the characteristic roots are	±√Θ, where	Θ = 2(𝛽 + 𝜏 − 𝛼"). If Θ > 0, the EVs 

are imaginary, indicating a stable center for the given EP. Conversely, if Θ < 0, the EVs are real 
and have opposite signs, classifying the given EPs as USPs. Following this examination, it is 
apparent that the EPs can be characterized as USPs, as demonstrated in Figs. 5, 7, and 8. 
Conversely, the stated points exhibit an elliptical profile and represent SC, as depicted in Figs. 5, 6, 
and 8. 

 
Figure 5: The phase depiction and related solution of the planar dynamical system (4.1) are 
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existing for designated parameter as	𝜔 = 1, 𝛽 = 12, 𝜏 = 0.3, 𝛼 = 3: (a) The possible EP at (0,0) 
which is an unstable saddle and the other EP at (±1.28, 0) are centers, (b) the corresponding 
solutions of the trajectories in terms of wave variable is depicted.  
 

 
Figure 6: The phase portrait and associated solution of the planar dynamical system (4.1) are 
presented for selected parameter as 𝜔 = 0.7, 𝛽 = 12, 𝜏 = 1, 𝛼 = 0.1: (a) The possible EP at 
(0,0)  which is center, (b) the corresponding solutions of the trajectories in terms of wave 
variable is depicted. 
 

 
Figure 7: The phase portrait and associated solution of the planar dynamical system (4.1) are 
presented for selected parameter as 𝜔 = 1, 𝛽 = 10, 𝜏 = 0.5, 𝛼 = 1.25: (a) The possible EP at 
(0,0) which is an unstable saddle, (b) the corresponding solutions of the trajectories in terms of 
wave variable is depicted. 
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Figure 8: The phase depiction and related solution of the planar dynamical system (4.1) are 
existing for fixed parameter as 𝜔 = −0.03, 𝛽 = −12, 𝜏 = −0.21, 𝛼 = −1.75: (a) The possible 
EP at (0,0) which is an unstable saddle and the other EP at (±0.48, 0) are centers, (b) the 
corresponding solutions of the trajectories in terms of wave variable is depicted. 
 
5. Conclusion 
In this study, we employed two distinct analytical approaches, namely the AAE and IFE methods, 
to analyze the (2+1)-dimensional LWSWRI equation. Through these methods, we successfully 
derived a range of solutions, including periodic, kink, exponential, and rational solutions, for this 
model. The impact of various parameters was also discussed, as illustrated in Figs. 1, 2, 3, and 4. 
These methods proved effective in achieving the objectives of our scientific investigation. To 
visually represent different wave patterns under various system parameters, we generated several 
graphs. These results contribute to a better understanding of the physical implications of the model 
under scrutiny, as well as other nonlinear models commonly used in research. Additionally, we 
conducted bifurcation analysis of the model and investigated the phase-chart of the system, as 
depicted in Figs. 5, 6, 7, and 8. This comprehensive analysis provides valuable insights for future 
studies on more complex higher-order nonlinear phenomena, along with additional analyses of the 
model and its soliton solutions. 
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Appendix 
Consider nonlinear evolution equations in the following structure, 

Ɲ(𝑢, 𝑢# , 𝑢% , 𝑢%% , 𝑢#% , 𝑢## , …… ) = 0,                                                      (A) 
where Ɲ is a nonlinear polynomial function of wave function 𝑢(𝑥, 𝑡), and including its disparate 
partial derivatives. We suppose that 

𝑢(𝑥, 𝑦, 𝑡) = 	℧(𝜉), 𝜉 = 𝑥 + (𝜔 − 2𝛼)𝑦 + 𝜔𝑡.                                                                     (B) 
In Eq. (B), the coefficients 𝜔 is the speed of soliton. Eq. (B) converts to Eq. (A) into a nonlinear 
ordinary differential equation as  

£(	℧, 	℧!, 	℧W, ⋯⋯⋯) = 0,                                                                                                (C) 
among them, prime represents the derivative of 𝜉.  
Appendix A: Advanced Auxiliary equation scheme [13, 14] 
According to the AAE method, the solution of Eq. (C) is conjecture to be 

℧(𝜉) = ∑ 𝑐&𝑑&,(.),X
&Y*                                                                                                           (A1) 

where the constants 𝑐*, 𝑐+, 𝑐", …… , 𝑐X are calculated, such that 𝑐X ≠ 0, according to the balanced 
theorem, we get value 𝑁 in Eq. (A1) and 𝑓(𝜉) are the solution of the equation as 

𝑓!(𝜉) = +
01(2)

D𝜆𝑑3,(.) + 𝜇 + 𝜎𝑑,(.)H                                                                                (A2) 
In this step, we are substituting the Eq. (A1) and Eq. (A2) into Eq. (C) and we get an algebraic 
equation which are equated left and right side based on powers of 𝑑&,(.), (𝑖 = 0,1,2,3…… ).  As a 
result, we gain an algebraic equation, solving these equations and we find out the values of 
𝑐*,𝑐+, 𝑐",……𝑐X and 𝜎. The solutions of Eq. (A2) are obtained as follows: 
Case 1: When 𝜇" − 4𝜆𝜎 < 0	and 𝜎 ≠ 0, 

dZ([) = −
µ
2σ +

}4λσ − µ"

2σ tan�
}4λσ − µ"

2 ξ� 
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Or 

dZ([) = −
µ
2σ −

}4λσ − µ"

2σ cot �
}4λσ − µ"

2 ξ� 

Case 2: When 𝜇" − 4𝜆𝜎 > 0	and 𝜎 ≠ 0, 

dZ([) = −
µ
2σ −

}µ" − 4λσ
2σ tanh	 �

}µ" − 4λσ
2 ξ� 

Or 

dZ([) = −
µ
2σ −

}µ" − 4λσ
2σ coth�

}µ" − 4λσ
2 ξ� 

Case 3: When 𝜇" + 4𝜆" < 0	and 𝜎 ≠ 0 and 𝜎 = −	𝜆, 
	

dZ([) =
µ
2λ −

}−µ" − 4λ"

2λ tan	 �
}−µ" − 4λ"

2 ξ� 

Or 

dZ([) =
µ
2λ +

}−µ" − 4λ"

2λ cot �
}−µ" − 4λ"

2 ξ� 

Case 4: When 𝜇" + 4𝜆" > 0	and 𝜎 ≠ 0 and 𝜎 = −	𝜆, 

dZ([) =
µ
2λ +

}µ" + 4λ"

2λ tanh	 �
}µ" + 4λ"

2 ξ� 

Or 

dZ([) =
µ
2λ +

}µ" + 4λ"

2λ coth	 �
}µ" + 4λ"

2 ξ� 

Case 5: When 𝜇" − 4𝜆" < 0	 and 𝜎 = 	𝜆, 

dZ([) = −
µ
2λ +

}−µ" + 4λ"

2λ tan�
}−µ" + 4λ"

2 ξ� 

Or 

𝑑Z([) = −
µ
2λ −

}−µ" + 4λ"

2λ cot �
}−µ" + 4λ"

2 ξ� 

Case 6: When 𝜇" − 4𝜆" > 0	 and 𝜎 = 	𝜆, 

dZ([) = −
µ
2λ −

}µ" − 4λ"

2λ tanh�
}µ" − 4λ"

2 ξ� 

Or 

𝑑Z([) = −
µ
2λ −

}µ" − 4λ"

2λ coth �
}µ" − 4λ"

2 ξ� 

Case 7: When	𝜇" = 4𝜆𝜎, 

dZ([) = −
2 + µξ
2σξ  

Case 8: When		𝜆𝜎 < 0,	𝜇 = 0  and	𝜎 ≠ 0, 
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dZ([) = −�
−	λ
σ tanh(√−σλ	ξ+ 

Or 

dZ([) = −�
−	λ
σ coth(√−σλ	ξ+ 

Case 9: When 𝜇 = 0 and		𝜆 = −𝜎, 

dZ([) =
1 + e(3"\[)

−1 + e(3"\[)
 

Case 10: When		𝜆 = 𝜎 = 0, 
𝑑Z([) = cosh(µξ) + sinh(µξ) 

Case 11: When  𝜆 = 𝜇 = 𝐾, and 𝜎 = 0, 
dZ([) = e][ − 1 

Case 12: When  𝜇 = 𝜎 = 𝐾, and	𝜆 = 0, 

dZ([) =
e][

1−e][
 

Case 13: When	𝜇 = 	𝜆 + 𝜎, 

dZ([) = −
1 − 	λe(	^3\)[

1 − σe(	^3\)[
 

Case 14: When  𝜇 = −(	𝜆 + 𝜎), 

dZ([) =
	λ − e(	^3\)[

σ − e(	^3\)[
 

Case 15: When		𝜆 = 0, 

dZ([) =
µe_[

1 − σe_[
 

Case 16: When  𝜎 = 𝜇 = 	𝜆 ≠ 0, 

dZ([) =
1
2 {√3 tan(

√3
2 λξ) − 1} 

Case 17: When  𝜎 = 𝜇 = 0, 
dZ([) = 	λξ 

Case 18: When 	𝜆 = 𝜇 = 0, 

𝑑,(.) =
−1
𝜎𝜉  

Case 19: When  𝜎 = 	𝜆 and 𝜇 = 0, 
𝑑,(.) = tan(𝜆𝜉) 

Case 20: When  𝜎 = 0, 
𝑎,(.) = 𝑒6. −

𝑚
𝑛  

Substituting the values of the constants 𝑐&(𝑖 = 0, 1, 2, … . 𝑁),	𝜆, 𝜇 and 𝜎 and the function 𝑓(𝜉) into 
(A1), yield abundant wave solutions to the equation (A). 

Appendix B: Improve F-expansion method [17, 18] 
According to the IFE method, the solution of Eq. (C) can be represented in the subsequent form: 

℧(𝜉) = ∑ 𝛼&(𝑚 + 𝜑(𝜉))&X
&Y* + ∑ 𝛽&(𝑚 + 𝜑(𝜉))3&X

&Y+                         (B1) 
Here, it's possible for 𝛼3X  or 𝛼X   to equal zero, although both 𝛼3X  and 𝛼X  cannot be zero 
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simultaneously. The constants  𝛼&	(𝑖 = 0, 1,⋯ ,𝑁)  and 𝛽& 	(𝑖 = 1, 2,⋯ ,𝑁)  and 𝑚  are to be 
determined subsequently and 𝜑(𝜉) satisfies the ODE in the form: 

𝜑′(𝜉) = 𝜅 + 𝜑"(𝜉),	 	 	 	 	 	 	 	 	 									(B2) 
where the prime stands for derivatives with respect to 𝜉 and 𝜆 is the real parameter. We now present 
three cases of the general solutions of the Riccati Eq. (B2) as follows: 
Case-I: when 𝜅 < 0, we get following hyperbolic solution 

𝜑(𝜉) = −√−𝜅 𝑡𝑎𝑛ℎ(√−𝜅	𝜉)	
and 

𝜑(𝜉) = −√−𝜅 𝑐𝑜𝑡ℎ( √−𝜅	𝜉) 
Case-II: when 𝜅 > 0, we get following trigonometric solution 

𝜑(𝜉) = √𝜅 𝑡𝑎𝑛( √𝜅	𝜉)	
and 

𝛷(𝜉) = −√𝜅 𝑐𝑜𝑡( √𝜅	𝜉) 
Case-III: when 𝜅 = 0, we get following rational solution 

𝜑(𝜉) = −
1
𝜉 

The determination of the positive integer 𝑁 involves balancing the highest-order linear terms with 
the highest-order nonlinear terms present in Eq. (C). Subsequently, by substituting Eq. (B1) and 
(B2) into Eq. (C), we derive polynomials in (𝑚 + 𝜑(𝜉))` and (𝑚 + 𝜑(𝜉))3`, (	𝑗 = 1, 2, 3⋯ ,𝑁). 
Equating the coefficients of these polynomials to zero results in an overdetermined set of algebraic 
equations for 𝛼` 	(𝑗 = 0, 1, 2, 3,⋯ ,𝑁) , 𝛽 	(𝑗 = 1, 2, 3,⋯ ,𝑁) , 𝑚 . Solving these mathematical 
conditions yields the values of the constants. Substituting these constants along with the solutions of 
Eq. (B2), we obtain novel and comprehensive soliton solutions for the nonlinear evolution equation 
Eq. (A). 


