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ABSTRACT

There is a relation between hypergeometric function and conformal mapping. Based on this relationship, we

study the map

ζ(α) = i
2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)

which is associated with the generalized modular equation

2F1(s, 1− s; 1; 1− β)

2F1(s, 1− s; 1;β)
= p

2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)

in the Ramanujan’s theories of signatures 1
s = 2, 3, and 4. It is proved that the inverse mapping ρ of ζ can be

analytically extended as a single-valued function on the upper half-plane H only for 1
s = 2, 3, and 4. For the

triangle group G = ( 1
1−2s ,∞,∞) associated with the generalized modular equation, we also investigate various

properties of the mapping f : H → G\H which constructs an infinite cover of the thrice punctured Riemann

sphere Ĉ \ {0, 1,∞}.
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1 Introduction

For α, β ∈ (0, 1), s ∈ (0, 12 ], the map

ζ(α) = i
2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)
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is associated with the generalized modular equation given by

2F1(s, 1− s; 1; 1− β)

2F1(s, 1− s; 1;β)
= p

2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)
, (1.1)

where p ∈ N \ {1}. The notation 2F1 denotes the Gaussian hypergeometric function defined as

2F1(a, b; c;α) =

∞∑
n=0

(a)n(b)n
(c)nn!

αn, |α| < 1,

where a, b, c ∈ C with c ̸= 0, −1, −2, . . . , and (a)n denotes the Pochhammer symbol given by

(a)n =

1 if n = 0,

a(a+ 1) · · · (a+ n− 1) if n ≥ 1.

The integer p is called the degree or order and 1
s is called the signature of the equation (1.1). The function 2F1

can be extended to the slit plane C \ [1,+∞) by Euler’s integral representation formula (see [6, Chapter II] and

[26, Chapter XIV]).

The great mathematician Srinivasa Ramanujan investigated the generalized modular equation and provided

many remarkable formulas and identities (see [8, 9, 10, 11]). However, he did not provide proof of those results.

The identities given by Ramanujan were published in his unpublished notebooks without original proofs (see,

e.g., [21, 22]). Ramanujan mainly investigated the generalized modular equation in the theories of signatures 2,

3, 4, and 6. There were no organized and developed theories associated with the generalized modular equation

in the theories of signatures 2, 3, 4, and 6 before the 1980s. Later many mathematicians studied Ramanujan’s

theories and tried to prove the results provided by Ramanujan. For example, Borwein and Borwein (see [14]),

Berndt (see [10, 12]), Berndt et al. (see [13]) proved many results given by Ramanujan and organized the theories

related to Ramanujan’s modular equation for 1
s = 2, 3, 4, and 6. In their proofs, they used hypergeometric

functions and the nontrivial identities for Jacobi’s theta functions in addition to several new ideas. Also,

Anderson et al. (see [3, 5]) have studied Ramanujan’s theories of modular equations from other perspectives.

Alam and Sugawa (see [2]) provided a geometric method to prove Ramanujan’s modular equations arising

from the generalized modular equation. In [1], Alam studied the Hecke groups associated with the generalized

modular equation in the theories of signatures 1
s = 2, 3, and 4.

There is a relation between the hypergeometric function 2F1 and conformal mapping. It is a known fact

that the function

ζ(α) = i
2F1(a, b; a+ b+ 1− c; 1− α)

2F1(a, b; c;α)

maps the upper half-plane onto a hyperbolic triangle with angles (1 − c)π, (c − a − b)π and (b − a)π at ζ(0),

ζ(1) and ζ(∞), respectively (see [20, pp. 206, 207]). Based on this relationship, we study the map

ζ(α) = i
2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)
, s ∈

(
0,

1

2

]
,

which is related to the generalized modular equation. We prove using the Riemann mapping theorem and the

Schwarz reflection principle that one can analytically extend the inverse mapping of ζ to a single-valued function

on the upper half-plane only for the theories of signatures 1
s = 2, 3, and 4. We construct the triangle group

G = ( 1
1−2s ,∞,∞) from the mapping ζ. The triangle group G acts properly discontinuosly on the upper half-

plane H and we obtain a quotient surface denoted by G\H. The surface G\H is the thrice punctured Riemann



Alam / GANIT J. Bangladesh Math. Soc. 44.1 (2024) 77–91 79

sphere Ĉ \ {0, 1,∞}. We study and prove various properties of the map

f : H → G\H

which makes an infinite cover of Ĉ \ {0, 1,∞} and is associated with the generalized modular equation.

2 Preliminaries

Let us denote the upper half-plane {α ∈ C : Imα > 0} by H. The following group of matrices{(
a b

c d

)
: a, b, c, d ∈ R, ad− bc = 1

}

is known as unimodular group and is denoted by SL2(R). The group PSL2(R) is defined as

PSL2(R) = SL2(R)/{±I2},

where I2 is the 2× 2 identity matrix (see, for example, [24, Chapter VII], [17, Chapter One]). The action of the

group PSL2(R) on H is as follows:

α 7→ γ · α =
aα+ b

cα+ d
, for γ =

(
a b

c d

)
∈ PSL2(R), α ∈ H.

Let ∂H denote the boundary of H, then ∂H = R∪{∞}. Vertical lines and semicircles that are orthogonal to the

real axis are known as geodesics (see [17]). The group PSL2(R) together with the transformation γ(α) = −ᾱ
construct the group Isom(H) of isometries of H (see [16, p. 107]), i.e.,

Isom(H) ∼= PSL2(R) ∪ γ PSL2(R)

and the group of analytic automorphisms of H, denoted by AutH, is the group PSL2(R).
Let the internal angles of a triangle be π

m1
, π
m2
, π
m3

, then the triangle is

1. Euclidean if 1
m1

+ 1
m2

+ 1
m3

= 1,

2. spherical if 1
m1

+ 1
m2

+ 1
m3

> 1,

3. hyperbolic if 1
m1

+ 1
m2

+ 1
m3

< 1.

In our study, we are interested in the hyperbolic triangle. We will denote the hyperbolic triangle by Ω. If the

angles of two hyperbolic triangles are the same, then they are congruent. The area of Ω depends on the angles
π
m1
, π
m2
, π
m3

and is given by the following theorem known as Gauss-Bonnet theorem.

Theorem 1 ([17, p. 13]). Let Ω be a hyperbolic triangle with angles π
m1
, π
m2
, π
m3

, then

Area(Ω) = π
(
1− 1

m1
− 1

m2
− 1

m3

)
.
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The upper half-plane H can be tessellated by the successive reflection of the hyperbolic triangle Ω about its

sides. If K is the group generated by the three reflections of Ω about its sides, then it is the discrete subgroup

of Isom(H). Let G be the subgroup of K such that G has only orientation-preserving isometries. Then,

G = K ∩ PSL2(R).

The group G is called the triangle group with signature (m1,m2,m3). One can also represent the triangle group

G as 〈
A,B |Am1 = Bm2 = (AB)m3 = 1

〉
,

where A, B, and AB represents the rotations, respectively, by 2π
m1

, 2π
m2

, and 2π
m3

about the vertices of Ω.

Let P be a subset of H and let G be a subgroup of PSL2(R). If the following conditions are satisfied, then

P is called a fundamental domain for G (see [25, p. 15]):

1. all points of P are G-inequivalent,

2. the subset P is open and connected,

3. if x ∈ H and y is a point of the closure of P , then x is G-equivalent to y.

When the subgroup G is a triangle group, then the fundamental domain for G is given by the hyperbolic triangle

Ω together with its reflection about one of its sides. Note that one can construct a fundamental domain for a

subgroup of PSL2(R) in different ways.

Now, we discuss the construction of a quotient Riemann surface. Let S be a topological space and let G be

a topological group. If α ∈ S and g ∈ G, then the map

α 7→ g · α

is a homeomorphism of S onto itself. The G-orbit of x ∈ S is given by

Gx =
{
g · x : g ∈ G

}
.

Consider a compact subset R of S, then the action of G on S is called properly discontinuous if and only if

g(R) ∩R = ∅,

except for the identity element of G (see [7, p. 94]). The quotient space G\S is the set of all G-orbits of points

on S. Let the mapping

f : S → G\S

is defined by

f(α) = Gα.

Then the mapping f is known as the canonical projection. The topology defined by the mapping f is known as

the quotient topology (see [25]). If D is a subset of G\S, then D is open in G\S when f−1(D) is open in S. If
G acts properly discontinuously on S, then G\S is a Riemann surface according to the following theorem.

Theorem 2 ([7, Theorem 6.2.1]). Let G be a group of linear fractional transformations and let S be a simply

connected open subset of the Riemann sphere Ĉ. Assume that S is invariant under G. Then G\S is a Riemann

surface if the action of G on S is properly discontinuous.
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If P is a fundamental domain for G, then the boundary points of P is G-equivalent. As a result, the action

of G on P identifies the sides of P and we get an oriented surface G\P . The surfaces G\P and G\H are

homeomorphic to each other by the following theorem.

Theorem 3 ([7, Theorem 9.2.4]). Assume that G is a discrete subgroup of PSL2(R) and P is the fundamental

domain for G. Then, P is locally finite if and only if the map σ : G\P → G\H is a homeomorphism.

Now, consider the triangle group G with signature (m1,m2,m3). The action of G on H is properly discon-

tinuous and we obtain the quotient Riemann surface G\H (see, for example, [7, 17]). In [1] and [2], a special

type of triangle group known as the Hecke group is investigated to study modular equations. For example, if

the signature of G is (∞,∞,∞), then G\H is a thrice punctured Riemann surface as depicted in Figure 2.1.

Figure 2.1: Thrice punctured Riemann surface associated with the triangle group G = (∞,∞,∞).

Consider the following hypergeometric differential equation

α(1− α)
d2z

dα2
+ {c− (a+ b+ 1)α} dz

dα
− abz = 0. (2.1)

The equation (2.1) has two linearly independent solutions

z1 = 2F1(a, b; c;α)

and

z2 = 2F1(a, b; a+ b+ 1− c; 1− α).

If

ζ(α) = i
2F1(a, b; a+ b+ 1− c; 1− α)

2F1(a, b; c;α)
,

then ζ maps H conformally onto a hyperbolic triangle Ω (see Figure 2.2). At the vertices ζ(0), ζ(1) and ζ(∞),
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the interior angles of Ω are (1− c)π, (c− a− b)π and (b− a)π, respectively (see [20, Chapter V]).

Figure 2.2: The mapping ζ maps the upper half α-plane to Ω on ζ-plane.

For s ∈ (0, 12 ], let

a = s, b = 1− s and c = 1.

Then

ζ(α) = i
2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)
. (2.2)

The following lemma describes the above facts.

Lemma 1 ([4, Lemma 4.1]). For s ∈ (0, 12 ], if

ζ(α) = i
2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)
,

then ζ maps H = {α ∈ C : Imα > 0} onto the following hyperbolic triangle

Ω =

{
ζ ∈ H : 0 < Re ζ < cos

(1− 2s)π

2
,
∣∣∣2ζ cos (1− 2s)π

2
− 1
∣∣∣ > 1

}
(2.3)

in the ζ-plane. At the vertices

ζ(1) = 0, ζ(0) = ∞ and ζ(∞) = ei
(1−2s)π

2 ,

the interior angles of Ω are 0, 0, and (1− 2s)π, respectively.

The following theorem is known as the Riemann mapping theorem which will be used to prove Theorem 5.
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Theorem 4 ([18, Theorem 4.0.1]). If V is a simply connected open subset of C such that V is not entire C,
then there exists a biholomorphic mapping

f : D → V,

where D = {α ∈ C : |α| < 1}.

3 Main Results

Theorem 5. Consider the mapping

ζ(α) = i
2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)
, (3.1)

where s ∈ (0, 12 ], α ∈ H. Let

ρ : Ω → H

be the inverse mapping of ζ, where Ω is the hyperbolic triangle defined in (2.3). Then the mapping ρ can be

analytically extended to a single-valued function on H only for Ramanujan’s theories of signatures 1
s = 2, 3,

and 4.

Proof. Let

θ1 =
π

m1
, θ2 =

π

m2
and θ3 =

π

m3

be the internal angles of a hyperbolic triangle Ω, then Ω can be continued across its sides as a single-valued

function if and only if mj > 1 and mj ∈ N ∪ {∞} (see [23, p. 416]). Therefore,

1

m1
+

1

m2
+

1

m3
< 1. (3.2)

By Lemma 1, the mapping

ζ(α) = i
2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)

transforms H to the hyperbolic triangle Ω. The angles of Ω are

θ1 =
π

m1
= 0, θ2 =

π

m2
= 0 and θ3 =

π

m3
= (1− 2s)π

at

ζ(0) = ∞, ζ(1) = 0 and ζ(∞) = ei
θ3
2 ,

respectively. Therefore, we have

m1 = ∞, m2 = ∞ and m3 =
1

1− 2s
.

Thus, the condition (3.2) becomes
1

m3
< 1,
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which implies that it depends only on the point

ζ(∞) = ei
θ3
2 .

As m3 = 1
1−2s , we conclude that m3 is an integer for s = 1

3 ,
1
4 and m3 = ∞ for s = 1

2 . Since Ω is a simply

connected domain that is not the whole C and D = {α ∈ C : |α| < 1} is conformally equivalent to H, the

mapping ζ : H → Ω is biholomorphic by the Riemann Mapping Theorem (Theorem 4). As a result, the inverse

mapping ρ : Ω → H of ζ is holomorphic and one can analytically extend ρ(ζ) to a single-valued function on H
for s = 1

2 ,
1
3 , and

1
4 by applying repeatedly the Schwarz reflection principle.

From Theorem 5, we have seen that the map ρ can be extended analytically to the whole H as a single-valued

function for s = 1
2 ,

1
3 , and

1
4 . Since the hyperbolic triangle Ω has angles 0, 0, and (1− 2s)π at the vertices ∞,

0, and ei
θ3
2 , respectively, we can construct the triangle group ( 1

1−2s ,∞,∞) from the triangle Ω. Note that we

use the notation ( 1
1−2s ,∞,∞) instead of (∞,∞, 1

1−2s ). Let G denote the triangle group ( 1
1−2s ,∞,∞), then G

is the triangle group associated with the generalized modular equation

2F1(s, 1− s; 1; 1− β)

2F1(s, 1− s; 1;β)
= p

2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)

for s = 1
2 ,

1
3 , and 1

4 . If G acts on H, then, by Theorem 2, we obtain the quotient surface G\H which is

Ĉ \ {0, 1,∞} and we have the following natural projection map (canonical map)

f : H → G\H.

Theorem 6. If G is the triangle group associated with the generalized modular equation

2F1(s, 1− s; 1; 1− β)

2F1(s, 1− s; 1;β)
= p

2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)

in the Ramanujan’s theories of signatures 2, 3, and 4, then the mapping

f : H → G\H

constructs an infinite cover of the thrice punctured Riemann sphere Ĉ \ {0, 1,∞}.

Proof. We have the function

ζ(α) = i
2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)

maps the upper half α-plane to the hyperbolic triangle Ω with angles 0, 0 and (1− 2s)π at

ζ(0) = ∞, ζ(1) = 0 and ζ(∞) = ei
θ3
2 ,

respectively, in the upper half ζ-plane.

If we reflect the hyperbolic triangle Ω about the geodesic joining 0 and ∞, then we obtain the hyperbolic

triangle Ω′ with vertices at 0, e−i
θ3
2 , and ∞ (see Figure 3.1). The triangle Ω represents the upper half-plane
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Figure 3.1: Fundamental domain for the triangle group G = ( 1
1−2s ,∞,∞).

and the triangle Ω′ represents the lower half-plane. If we identify the geodesic joining e−i
θ3
2 and ∞ with the

geodesic joining ei
θ3
2 and ∞ by

A =

(
1 2 cos θ3

2

0 1

)
,

and identify the geodesic joining 0 and e−i
θ3
2 with the geodesic joining 0 and ei

θ3
2 by

B =

(
1 0

2 cos θ3
2 1

)
,

then we obtain a Riemann surface which has branch points at 0, ei
θ3
2 and ∞. Note that one can reflect Ω about

any side of Ω. Therefore, the triangle group G = ( 1
1−2s ,∞,∞) is generated by

A =

(
1 2 cos θ3

2

0 1

)
and B =

(
1 0

2 cos θ3
2 1

)
.

The hyperbolic triangle Ω and one copy of its reflection about any side of it construct the fundamental domain

for the triangle group G. If the triangle group G acts on the upper half-plane, then we obtain the quotient

surface G\H which is Ĉ \ {0, 1,∞}.
The triangle group G acts properly discontinuously on the upper half-plane as a discrete subgroup of

PSL2(R). As a result, for each α ∈ H, one can find a neighborhood U of α such that U does not contain

any other element of the orbit of α. Therefore, we can construct the fundamental domain for G which contains

exactly one representative from the orbit of each α ∈ H. Let P denote the hyperbolic polygon which is the
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fundamental domain for the triangle group G constructed by joining the hyperbolic triangles Ω and Ω′. We

have an infinite number of copies of the hyperbolic polygon P on H.

Figure 3.2: An illustration of the mapping f : H → G\H.

Let X denote the surface G\H = Ĉ \ {0, 1,∞}. For the mapping

f : H → X,

consider a point x ∈ X. If we choose a small disc D = D(x) such that x ∈ D ⊂ X, then

f−1(D) =
⋃
i∈I

D̃i,

where D̃i for i ∈ I are disjoint open discs of H and each mapping

f |D̃i
: D̃i → D

is a homeomorphism for all i ∈ I (see [15, p. 24]).

The open discs D̃i ⊂ H are known as sheets. Since the disc D is connected, the discs D̃i can be uniquely

determined up to homeomorphism. As we have an infinite number of copies of the hyperbolic polygon P in the

upper half-plane H, the number of sheets D̃i are infinite. Therefore, we conclude that the mapping f makes an

infinite cover of X = Ĉ \ {0, 1,∞}.
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Lemma 2. For the triangle group G = ( 1
1−2s ,∞,∞), the mapping

f : H → G\H

is locally 1
1−2s to 1 at the point ei

(1−2s)π
2 .

Proof. We have seen in the proof of Theorem 6 that the generators of the triangle group G = ( 1
1−2s ,∞,∞) are

A =

(
1 2 cos θ3

2

0 1

)
and B =

(
1 0

2 cos θ3
2 1

)
,

where θ3 = (1− 2s)π. The fundamental domain for G is shown in Figure 3.1. Now, we modify the fundamental

domain as follows. If we reflect the hyperbolic triangle Ω about the geodesic joining ei
θ3
2 and ∞, then we obtain

the hyperbolic triangle Ω′ whose vertices are at 2 cos θ3
2 , e

i
θ3
2 , and ∞.

Figure 3.3: The modified fundamental domain for the triangle group G = ( 1
1−2s ,∞,∞).

The triangle Ω represents the upper half-plane and the triangle Ω′ represents the lower half-plane. If the

geodesic side between 0 and ∞ is identified with the geodesic side between 2 cos θ3
2 and ∞, then the side-pairing

transformation is

A =

(
1 2 cos θ3

2

0 1

)
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and if the geodesic side between 0 and ei
θ3
2 is identified with the geodesic side between 2 cos θ3

2 and ei
θ3
2 , then

the side-pairing transformation is

C = −AB−1 =

(
4 cos2 θ3

2 − 1 −2 cos θ3
2

2 cos θ3
2 −1

)
.

At the point ei
(1−2s)π

2 , 1
1−2s copies of the fundamental domain meet, i.e., 1

1−2s branches meet at the point

ei
(1−2s)π

2 . Therefore, we conclude that the mapping

f : H → G\H

is locally 1
1−2s to 1 at the point ei

(1−2s)π
2 .

Lemma 3. The mapping

f : H → G\H,

where G is the triangle group ( 1
1−2s ,∞,∞), has branch points at 0, 1, and ∞.

Proof. We have seen that the vertices of the hyperbolic triangle Ω are at ∞, 0, and ei
θ3
2 and Ω is the half

fundamental domain for the triangle group G = ( 1
1−2s ,∞,∞). When the triangle group G acts on H, we obtain

the quotient surface G\H. Since ρ : Ω → H is the inverse map of

ζ(α) = i
2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)

and

ζ(0) = ∞, ζ(1) = 0 and ζ(∞) = ei
θ3
2 ,

we have

ρ(∞) = 0, ρ(0) = 1 and ρ(ei
θ3
2 ) = ∞.

Since the mapping f comes from the mapping ρ, so f maps the points ∞, 0, and ei
θ3
2 and all equivalent points

of them under the triangle group G to the points 0, 1, and ∞, respectively, which implies that

f
(aw + b

cw + d

)
= f(w) ∈ {0, 1,∞}

for w ∈ {∞, 0, ei
θ3
2 } and

(
a b

c d

)
∈ G. As a result, the mapping

f : H → G\H

is ramified only over the points 0, 1, and ∞. Thus 0, 1, and ∞ are the only branch points of f .

Remark 1. Ramanujan investigated the theories of signatures 1
s = 2, 3, 4, and 6. For 1

s = 2, 3, 4, the surface

G\H is a modular surface, but for 1
s = 6, the surface G\H is not a modular surface as m3 = 1

1−2s is not an

integer greater than 1 for 1
s = 6 (see [19, Section 10]).
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Remark 2. In [13, Section 12], Bruce C. Berndt, S. Bhargava, and Frank G. Garvan provided the following

reason why Ramanujan’s theories of signatures are restricted to the values 2, 3, 4, and 6. For α ∈ (0, 1) and

s ∈ (0, 12 ], let

x =
2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)

and

qs(α) := exp

(
− πα

sinπs

)
.

Then,

qs(α) =α exp
(
ψ(s) + ψ(1− s) + 2γ

)
×
(
1 + (2s2 − 2s+ 1)α

+
(
1− 7

2
(s− s2) +

13

4
(s− s2)2

)
α2 + · · ·

)
,

where ψ(α) = d(ln Γ(α))
dα . Let h(s) = exp

(
ψ(s) + ψ(1− s) + 2γ

)
, then

h(
1

2
) =

1

16
,

h(
1

3
) =

1

27
,

h(
1

4
) =

1

64
,

h(
1

6
) =

1

432
,

which implies that h(s) is a rational number for s = 1
2 ,

1
3 ,

1
4 and 1

6 . If s takes other values, then h(s) is

transcendental, e.g., if s = 1
5 , then

h(
1

5
) = (

√
5)−5

(1 +√
5

2

)−√
5

.

For this reason, Ramanujan’s theories of signatures are restricted to the values 2, 3, 4, and 6.

4 Conclusion

We have studied geometrically the analytic mapping associated with the generalized modular equation

2F1(s, 1− s; 1; 1− β)

2F1(s, 1− s; 1;β)
= p

2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)

for 1
s = 2, 3, and 4. We have shown that the mapping ρ : Ω → H, which is the inverse map of

ζ(α) = i
2F1(s, 1− s; 1; 1− α)

2F1(s, 1− s; 1;α)
,

can be analytically extended as a single-valued function on H for 1
s = 2, 3, and 4. Also, we have proved that

the mapping

f : H → G\H,
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where f comes from the mapping ρ and G is the triangle group ( 1
1−2s ,∞,∞), constructs an infinite cover of

the thrice punctured Riemann sphere Ĉ \ {0, 1,∞}. It has been proved that the mapping f is locally 1
1−2s to

1 at the point ei
(1−2s)π

2 and has branch points at 0, 1, and ∞. Though Ramanujan investigated the theories

of signatures 2, 3, 4, and 6, we were not able to study the theories of signature 6 geometrically because the

corresponding surface is not modular.
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