

GANIT: Journal of Bangladesh Mathematical Society

GANIT *J. Bangladesh Math. Soc.* 44.1 (2024) 92–98 DOI: https://doi.org/10.3329/ganit.v44i1.73989

A Characterization of Jordan Automorphisms on Jordan Ideals of Prime Gamma Rings

Sujoy Chakraborty^a, and Akhil Chandra Paul^b

^aDepartment of Mathematics, Shahjalal University of Science and Technology, Sylhet, Bangladesh ^bDepartment of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh

ABSTRACT

We study and develop the concepts of homomorphism and anti-homomorphism to derive some important results in the theory of gamma rings. This article attempts to analyze some of the results of Ali et al. [1] in case of classical rings for extending those in the context of gamma rings. We establish a number of results related to automorphism, anti-automorphism and Jordan automorphism on Jordan ideal of prime gamma rings to obtain a new characterizing result. If M is a 2-torsion free prime gamma ring fulfilling a suitable condition, J is a non-zero Jordan ideal as well as a subring of M and $\varphi: M \to M$ is a Jordan automorphism, then we prove that φ is an automorphism or φ is an anti-automorphism.

© 2024 Published by Bangladesh Mathematical Society

Received: January 07, 2024 Accepted: April 16, 2024 Published Online: June 30, 2024 (Online First)

Keywords: Jordan automorphism, Jordan ideal, prime gamma ring.

AMS Subject Classifications 2024: 16W10, 16W25, 16U80.

1. Introduction

We begin by recalling the concept and some properties of gamma ring. If M, Γ are two abelian groups under addition and $(a,\alpha,b) \to a\alpha b$ is a map of $M \times \Gamma \times M \to M$ such that $(a+b)\alpha c = a\alpha c + b\alpha c$, $a(\alpha+\beta)b = a\alpha b + a\alpha b$, $a\alpha(b+c) = a\alpha b + a\alpha c$, and $(a\alpha b)\beta c = a\alpha(b\beta c) \forall a,b,c \in M$ and $\alpha,\beta \in \Gamma$, then M is called a *gamma ring* (shortly: a Γ -ring). Nobusawa introduced the concept of gamma ring in [5] and Barnes developed various properties of gamma rings in [2]. M is called 2-torsion free $\Leftrightarrow 2x = 0$ forces $x = 0 \forall x \in M$. Here M is called (i) prime $\Leftrightarrow a\Gamma M\Gamma b = 0$ (with $a,b\in M$) forces a=0 or b=0; and (ii) commutative $\Leftrightarrow x\gamma y = y\gamma x \forall x,y\in M$ and $\gamma\in \Gamma$. If $\alpha,b\in M$ and $\alpha\in \Gamma$, then $[a,b]_{\alpha}=a\alpha b-b\alpha a$ is called the commutator (sometimes called the Lie product) of α,b with respect to α . As a result, α is commutative α is called the α and α is called α and α is called the α and α is called the

Consider J as an additive subgroup of M. J is called (i) a left (or, right) ideal $\Leftrightarrow M\Gamma J \subset J$ (or, $J\Gamma M \subset J$); (ii) an ideal $\Leftrightarrow m\gamma u \in J$ and $u\gamma m \in J \forall m \in M$, $\gamma \in \Gamma$ and $u \in J$; and (iii) a Jordan ideal $\Leftrightarrow (u \circ m)_{\gamma} \in J$ (that is, iff $u\gamma m + m\gamma u \in J$) $\forall u \in J$, $m \in M$ and $\gamma \in \Gamma$. $x \in M$ is called a nilpotent element $\Leftrightarrow \forall \gamma \in \Gamma \exists n \in \mathbb{Z}^+$ (depends on γ) such that $(x\gamma)^n x = (x\gamma)(x\gamma) \dots (x\gamma)x = 0$. J is called (i) a nil ideal \Leftrightarrow each element of J is nilpotent; and (ii) a nilpotent ideal $\Leftrightarrow \exists n \in \mathbb{Z}^+$ for which $(J\Gamma)^n J = (J\Gamma)(J\Gamma) \dots (J\Gamma)J = 0$. Every nilpotent ideal of a Γ -ring is thus a nil ideal.

For Γ -rings M and N, an additive map $\varphi: M \to N$ is called (i) a homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(a)\alpha\varphi(b) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; (ii) an anti-homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(b)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(b)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(b)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(a)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(a)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(a)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(a)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(a)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(a)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(a)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(a)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(a)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(a)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a)\alpha\varphi(a) \ \forall \ a, b \in M$ and $\alpha \in \Gamma$; and (iii) a Jordan homomorphism $\Leftrightarrow \varphi(a)\alpha\varphi(a) \ \forall \ a, b \in M$

* Corresponding author. Email: sujoy_chbty@yahoo.com

 $\varphi(a\alpha a) = \varphi(a)\alpha\varphi(a) \ \forall \ a \in M \ \text{and} \ \alpha \in \Gamma$. From the very definition, it follows that every homomorphism and anti-homomorphism of Γ -rings is a Jordan homomorphism of the same, but the converse is not always true.

We know that a bijective homomorphism of a Γ -ring onto another Γ -ring is called an isomorphism, and an isomorphism of a Γ -ring onto itself is called an automorphism. A bijective additive map $\varphi: M \to M$ is thus called an automorphism, an anti-automorphism and a Jordan automorphism $\Leftrightarrow \varphi(a\alpha b) = \varphi(a)\alpha\varphi(b)$, $\varphi(a\alpha b) = \varphi(a)\alpha\varphi(b)$ and $\varphi(a\alpha a) = \varphi(a)\alpha\varphi(a) \ \forall \ a,b \in M$ and $\alpha \in \Gamma$, respectively.

Oukhtite et al. [6] developed the concept of homomorphism and anti-homomorphism on σ -Lie ideals in the theory of classical rings. Afterwards, Dey and Paul [3] worked with the notions of homomorphism and anti-homomorphism on a non-zero ideal in the theory of gamma rings. Later on, Paul and Chakraborty [7] also worked on the development of the concepts of homomorphism and anti-homomorphism to derive some more important results in the theory of Γ -rings.

We are inspired to perform this attempt from the work of Ali et al. [1] in the theory of classical rings in order to generalize extensively some of their results in the context of gamma rings. If M is a 2-torsion free prime Γ -ring fulfilling a suitable condition, J is a non-zero Jordan ideal as well as a subring of M and $\varphi: M \to M$ is a Jordan automorphism, then we prove that φ is an automorphism or φ is an anti-automorphism.

2. Main Results

We start this section with the following well-known identities on commutators.

```
(i) [a,b]_{\alpha} + [b,a]_{\alpha} = 0,

(ii) [a+b,c]_{\alpha} = [a,c]_{\alpha} + [b,c]_{\alpha},

(iii) [a,b+c]_{\alpha} = [a,b]_{\alpha} + [a,c]_{\alpha},

(iv) [a,b]_{\alpha+\beta} = [a,b]_{\alpha} + [a,b]_{\beta},

(v) [a\beta b,c]_{\alpha} = a\beta [b,c]_{\alpha} + [a,c]_{\alpha}\beta b + a\beta (c\alpha b) - a\alpha (c\beta b), and

(vi) [a,b\beta c]_{\alpha} = b\beta [a,c]_{\alpha} + [a,b]_{\alpha}\beta c + b\alpha (a\beta c) - b\beta (a\alpha c).
```

We need to consider throughout this section hereafter that a Γ -ring M fulfills the condition

```
(*) a\alpha b\beta c = a\beta b\alpha c \ \forall \ a, b, c \in M \text{ and } \alpha, \beta \in \Gamma.
```

If *M* fulfills the condition (*), then the last two commutator identities become (respectively)

```
(V) [a\beta b, c]_{\alpha} = a\beta [b, c]_{\alpha} + [a, c]_{\alpha}\beta b, and (VI) [a, b\beta c]_{\alpha} = b\beta [a, c]_{\alpha} + [a, b]_{\alpha}\beta c.
```

Proof. For any $x \in M$, $c \in J$ and $\alpha \in \Gamma$, we get $(c \circ x)_{\alpha} \in J$.

Unless otherwise stated, M will represent a prime Γ -ring and J will represent a non-zero Jordan ideal of M (throughout this section hereafter)

Lemma 2.1 Let M fulfills the condition (*). Then $2[M, M]_{\Gamma}\Gamma J \subseteq J$ and $2J\Gamma[M, M]_{\Gamma}\subseteq J$.

```
Proof. Let a,b \in M and c \in J.

For any \alpha,\beta,\gamma \in \Gamma, we get (c \circ [a,b]_{\alpha})_{\beta} - ((c \circ a)_{\alpha} \circ b)_{\beta} + ((c \circ b)_{\alpha} \circ a)_{\beta} \in J.

It gives c\beta(a\alpha b - b\alpha a) + (a\alpha b - b\alpha a)\beta c - ((c\alpha a + a\alpha c) \circ b)_{\beta} + ((c\alpha b + b\alpha c) \circ a)_{\beta} \in J.

This implies that c\beta a\alpha b - c\beta b\alpha a + a\alpha b\beta c - b\alpha a\beta c - c\alpha a\beta b - a\alpha c\beta b
-b\beta c\alpha a - b\beta a\alpha c + c\alpha b\beta a + b\alpha c\beta a + a\beta c\alpha b + a\beta b\alpha c \in J.

Using (*), we obtain 2(a\alpha b - b\alpha a)\beta c \in J.

It gives that 2[a,b]_{\alpha}\beta c \in J \ \forall \ a,b \in M, \ c \in J \ \text{and} \ \alpha,\beta \in \Gamma.

That is, 2[M,M]_{\Gamma}\Gamma J \subseteq J.

Similarly, \forall \ a,b \in M, \ c \in J \ \text{and} \ \alpha,\beta \in \Gamma,
2c\beta(a\alpha b - b\alpha a) = ((c \circ b)_{\alpha} \circ a)_{\beta} - (c \circ [a,b]_{\alpha})_{\beta} - ((c \circ a)_{\alpha} \circ b)_{\beta} \in J.

This gives 2J\Gamma[M,M]_{\Gamma} \subseteq J. \square

Lemma 2.2 If a \in M and a\Gamma J = (0) [or J\Gamma a = (0)], then a = 0.
```

According to hypothesis, $a\beta((c \circ x)_{\alpha}) = 0 \ \forall \ x \in M, c \in J \text{ and } \alpha, \beta \in \Gamma.$

Now we get $0 = a\beta(c\alpha x + x\alpha c) = a\beta c\alpha x + a\beta x\alpha c = a\beta x\alpha c$, since $a\beta c = 0$.

That is, $\alpha \beta M \alpha I = 0$.

Since $I \neq 0$ and M is prime, the above equation yields that a = 0.

If $J\Gamma a=(0)$, in view of the similar arguments with necessary variations, we also obtain that a=0. \Box

Lemma 2.3 Let M be 2-torsion free fulfilling the condition (*) such that $\alpha\alpha J\beta b = (0) \ \forall \ a,b \in M \ and \ \alpha,\beta \in \Gamma$. Then a=0 or b=0.

Proof. From Lemma 2.1, we get $2[M, M]_{\Gamma}\Gamma J \subseteq J$.

Therefore, $\forall u, v \in M, c \in J \text{ and } \gamma, \delta \in \Gamma, \text{ we get } 2[u, v]_{\gamma} \delta c \in J.$

By hypothesis, we get $2a\alpha[u,v]_{\nu}\delta c\beta b = 0$.

The 2-torsion freeness of M then gives

(1)
$$a\alpha[u,v]_{\gamma}\delta c\beta b=0.$$

Now substituting vva (with $v \in \Gamma$) for v in (1), we obtain

$$0 = a\alpha[u, vva]_{\gamma}\delta c\beta b = a\alpha vv[u, a]_{\gamma}\delta c\beta b + a\alpha[u, v]_{\gamma}va\delta c\beta b.$$

Since $a\alpha J\beta b = (0)$, we get $a\alpha [u, v]_{\gamma} v\alpha \delta c\beta b = 0$.

Hence we obtain $a\alpha vv[u, a]_{\gamma}\delta c\beta b = 0 \ \forall \ u, v \in M, c \in J \ \text{and} \ \alpha, \beta, \gamma, \delta, v \in \Gamma.$

This implies that $a\alpha M\nu[u,a]_{\nu}\delta c\beta b=0$.

By the primeness of M, we find that a = 0 or $[u, a]_v \delta c \beta b = 0$.

If $[u, a]_{v}\delta c\beta b = 0 \ \forall \ u \in M, c \in J \ \text{and} \ \beta, \gamma, \delta \in \Gamma$, it gives $u\gamma a\delta c\beta b - a\gamma u\delta c\beta b = 0$.

Since $a\delta c\beta b = 0$, we get $a\gamma u\delta c\beta b = 0 \ \forall \ u \in M, c \in J \ \text{and} \ \beta, \gamma, \delta \in \Gamma$.

This implies that $\alpha \gamma M \delta c \beta b = 0$.

Since M is prime, we get a = 0 or $c\beta b = 0$.

If $c\beta b = 0 \ \forall \ c \in J$ and $\beta \in \Gamma$, then by Lemma 2.2, b = 0. \Box

Lemma 2.4 *Let M be* 2-torsion free fulfilling the condition (*). If J is commutative, then $J \subseteq Z(M)$.

Proof. From Lemma 2.1, we get $2[M, M]_{\Gamma}\Gamma I \subseteq I$.

For any $u, v \in M$, $c, d \in J$ and $\alpha, \beta, \gamma \in \Gamma$, we thus get $[2[u, v]_{\alpha}\beta c, d]_{\gamma} = 0$.

Hence $[2[u, v]_{\alpha}, d]_{\nu}\beta c + 2[u, v]_{\alpha}\beta[c, d]_{\nu} = 0.$

Since *J* is a commutative Jordan ideal, $2[u, v]_{\alpha}\beta[c, d]_{\gamma} = 0$.

Using this fact in the above equation, we obtain $2[[u, v]_{\alpha}, d]_{\gamma}\beta c = 0$.

The 2-torsion freeness of M then gives $[[u, v]_{\alpha}, d]_{\gamma} \beta c = 0 \ \forall \ u, v \in M, c, d \in J \text{ and } \alpha, \beta, \gamma \in \Gamma.$

By Lemma 2.2, $[[u, v]_{\alpha}, d]_{\gamma} = 0 \ \forall \ u, v \in M, d \in J \text{ and } \alpha, \gamma \in \Gamma.$

Now putting $u\beta v$ (with $\beta \in \Gamma$) for v in (1), we get $[[u, u\beta v]_{\alpha}, d]_{\nu} = 0$.

This implies that $[u\beta[u,v]_{\alpha},d]_{\gamma}+[[u,u]_{\alpha}\beta v,d]_{\gamma}=0.$

It becomes $0 = [u\beta[u, v]_{\alpha}, d]_{\gamma} = u\beta[[u, v]_{\alpha}, d]_{\gamma} + [u, d]_{\gamma}\beta[u, v]_{\alpha} = [u, d]_{\gamma}\beta[u, v]_{\alpha}$

 $\forall u, v \in M, d \in J \text{ and } \alpha, \beta, \gamma \in \Gamma.$

Further replacing v by $v\delta d$ (with $\delta \in \Gamma$), the last equation becomes

 $0 = [u, d]_{\gamma} \beta[u, v \delta d]_{\alpha} = [u, d]_{\gamma} \beta v \delta[u, d]_{\alpha} + [u, d]_{\gamma} \beta[u, v]_{\alpha} \delta d = [u, d]_{\gamma} \beta v \delta[u, d]_{\alpha}.$

This implies that $[u, d]_{\gamma} \beta M \delta[u, d]_{\alpha} = 0 \ \forall \ u \in M, d \in J \text{ and } \alpha, \beta, \gamma, \delta \in \Gamma.$

The primeness of M then gives $[u, d]_{\gamma} = 0$ or $[u, d]_{\alpha} = 0$.

In both cases, $d \in Z(M) \ \forall \ d \in J$. Hence $J \subseteq Z(M)$. \Box

Lemma 2.5 *Let M be 2-torsion free fulfilling the condition* (*) *and let J be a subring of M* as well. *If* φ : $M \to M$ *is an additive map with* $\varphi(\alpha\alpha\alpha) = \varphi(\alpha)\alpha\varphi(\alpha) \ \forall \ \alpha \in J \ and \ \alpha \in \Gamma$, then $\forall \ \alpha, b, c \in J \ and \ \alpha, \beta \in \Gamma$,

```
(i) \varphi(a\alpha b + b\alpha a) = \varphi(a)\alpha\varphi(b) + \varphi(b)\alpha\varphi(a);
```

(ii) $\varphi(a\alpha b\beta a) = \varphi(a)\alpha\varphi(b)\beta\varphi(a)$;

(iii) $\varphi(a\alpha b\beta c + c\alpha b\beta a) = \varphi(a)\alpha\varphi(b)\beta\varphi(c) + \varphi(c)\alpha\varphi(b)\beta\varphi(a)$.

Proof. (i) For any $a, b \in I$ and $\alpha \in \Gamma$, we get $a\alpha b + b\alpha a \in I$, as I is a Jordan ideal and a subring of M.

By assumption, we get $\varphi(a\alpha a) = \varphi(a)\alpha\varphi(a) \ \forall \ a \in I$ and $\alpha \in \Gamma$.

Substitute a by a + b to obtain $\varphi((a + b)\alpha(a + b)) = \varphi(a + b)\alpha\varphi(a + b)$.

It gives $\varphi(a\alpha a + a\alpha b + b\alpha a + b\alpha b) = (\varphi(a) + \varphi(b))\alpha(\varphi(a) + \varphi(b))$. This yields

 $\varphi(a\alpha a) + \varphi(a\alpha b + b\alpha a) + \varphi(b\alpha b) = \varphi(a)\alpha\varphi(a) + \varphi(a)\alpha\varphi(b) + \varphi(b)\alpha\varphi(a) + \varphi(b)\alpha\varphi(b).$

It then gives

$$\varphi(a)\alpha\varphi(a) + \varphi(a\alpha b + b\alpha a) + \varphi(b)\alpha\varphi(b)$$

= $\varphi(a)\alpha\varphi(a) + \varphi(a)\alpha\varphi(b) + \varphi(b)\alpha\varphi(a) + \varphi(b)\alpha\varphi(b)$.

Thus we get

(1)
$$\varphi(a\alpha b + b\alpha a) = \varphi(a)\alpha\varphi(b) + \varphi(b)\alpha\varphi(a),$$

which proves the claim.

(ii) Substituting b by $a\beta b + b\beta a$ (where $\beta \in \Gamma$) in (1) and using (*), we get

(2)
$$\varphi(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = \varphi(a)\alpha\varphi(a\beta b + b\beta a) + \varphi(a\beta b + b\beta a)\alpha\varphi(a)$$
$$= \varphi(a)\alpha(\varphi(a)\beta\varphi(b) + \varphi(b)\beta\varphi(a)) + (\varphi(a)\beta\varphi(b) + \varphi(b)\beta\varphi(a))\alpha\varphi(a)$$
$$= \varphi(a)\alpha\varphi(a)\beta\varphi(b) + \varphi(a)\alpha\varphi(b)\beta\varphi(a) + \varphi(a)\beta\varphi(b)\alpha\varphi(a) + \varphi(b)\beta\varphi(a)\alpha\varphi(a).$$

On the other hand,

(3)
$$\varphi(a\alpha(a\beta b + b\beta a) + (a\beta b + b\beta a)\alpha a) = \varphi(a\alpha a\beta b + a\alpha b\beta a + a\beta b\alpha a + b\beta a\alpha a)$$
$$= \varphi(a\alpha a\beta b + b\beta a\alpha a) + \varphi(a\alpha b\beta a) + \varphi(a\beta b\alpha a)$$
$$= \varphi(a\alpha a)\beta \varphi(b) + \varphi(b)\beta \varphi(a\alpha a) + 2\varphi(a\alpha b\beta a)$$
$$= \varphi(a)\alpha \varphi(a)\beta \varphi(b) + \varphi(b)\beta \varphi(a)\alpha \varphi(a) + 2\varphi(a\alpha b\beta a).$$

Comparing (2) and (3), and using (*), we obtain $\varphi(a\alpha b\beta a) = \varphi(a)\alpha\varphi(b)\beta\varphi(a)$.

(iii) Putting a + c for a (where $c \in J$) in (ii), we get

(4)
$$\varphi((a+c)\alpha b\beta(a+c)) = \varphi(a+c)\alpha\varphi(b)\beta\varphi(a+c)$$

$$= (\varphi(a) + \varphi(c))\alpha\varphi(b)\beta(\varphi(a) + \varphi(c))$$

$$= \varphi(a)\alpha\varphi(b)\beta\varphi(a) + \varphi(a)\alpha\varphi(b)\beta\varphi(c) + \varphi(c)\alpha\varphi(b)\beta\varphi(a) + \varphi(c)\alpha\varphi(b)\beta\varphi(c).$$

On the other hand,

(5)
$$\varphi((a+c)\alpha b\beta(a+c)) = \varphi(a\alpha b\beta a + a\alpha b\beta c + c\alpha b\beta a + c\alpha b\beta c)$$

$$= \varphi(a\alpha b\beta c + c\alpha b\beta a) + \varphi(a\alpha b\beta a) + \varphi(c\alpha b\beta c)$$

$$= \varphi(a\alpha b\beta c + c\alpha b\beta a) + \varphi(a)\alpha \varphi(b)\beta \varphi(a) + \varphi(c)\alpha \varphi(b)\beta \varphi(c).$$

Comparing (4) and (5), we obtain $\varphi(a\alpha b\beta c + c\alpha b\beta a) = \varphi(a)\alpha\varphi(b)\beta\varphi(c) + \varphi(c)\alpha\varphi(b)\beta\varphi(a)$. \Box

Definition 2.1 For convenience we now define $\Phi_{\alpha}(a,b) = \varphi(a\alpha b) - \varphi(a)\alpha\varphi(b)$.

Lemma 2.6 For any $a, b, c \in J$ and $\alpha, \beta \in \Gamma$, the following are true.

(i)
$$\Phi_{\alpha}(a,b) + \Phi_{\alpha}(b,a) = 0$$
;

(ii)
$$\Phi_{\alpha}(a+b,c) = \Phi_{\alpha}(a,c) + \Phi_{\alpha}(b,c)$$
;

(iii)
$$\Phi_{\alpha}(a, b + c) = \Phi_{\alpha}(a, b) + \Phi_{\alpha}(a, c)$$
;

(iv)
$$\Phi_{\alpha+\beta}(a,b) = \Phi_{\alpha}(a,b) + \Phi_{\beta}(a,b)$$
.

Proof. Obvious.

Definition 2.2 For convenience we next define $\Psi_{\alpha}(a,b) = \varphi(a\alpha b) - \varphi(b)\alpha\varphi(a)$.

Lemma 2.7 For any α , b, $c \in J$ and α , $\beta \in \Gamma$, the following results hold.

(i)
$$\Psi_{\alpha}(a,b) + \Psi_{\alpha}(b,a) = 0$$
;

(ii)
$$\Psi_{\alpha}(a+b,c) = \Psi_{\alpha}(a,c) + \Psi_{\alpha}(b,c)$$
;

(iii)
$$\Psi_{\alpha}(a, b + c) = \Psi_{\alpha}(a, b) + \Psi_{\alpha}(a, c)$$
;

(iv)
$$\Psi_{\alpha+\beta}(a,b) = \Psi_{\alpha}(a,b) + \Psi_{\beta}(a,b)$$
.

Proof. Clear. \square

Lemma 2.8 For any $a, b \in I$ and $\alpha, \beta \in \Gamma$, the following results are true.

(i)
$$\Phi_{\alpha}(a,b)\beta\Psi_{\alpha}(a,b) = 0$$
;

(ii)
$$\Psi_{\alpha}(a,b)\beta\Phi_{\alpha}(a,b)=0$$
;

(iii)
$$[\varphi(a), \varphi(b)]_{\alpha} = \Psi_{\alpha}(a, b) - \Phi_{\alpha}(a, b)$$
;

(iv)
$$\varphi([a,b]_{\alpha}) = \Psi_{\alpha}(a,b) + \Phi_{\alpha}(a,b)$$
.

Proof. (i)
$$\Phi_{\alpha}(a,b)\beta\Psi_{\alpha}(a,b) = (\varphi(a\alpha b) - \varphi(a)\alpha\varphi(b))\beta(\varphi(a\alpha b) - \varphi(b)\alpha\varphi(a))$$

 $= \varphi(a\alpha b)\beta\varphi(a\alpha b) - \varphi(a\alpha b)\beta\varphi(b)\alpha\varphi(a) - \varphi(a)\alpha\varphi(b)\beta\varphi(a\alpha b) + \varphi(a)\alpha\varphi(b)\beta\varphi(b)\alpha\varphi(a)$
 $= \varphi(a\alpha b\beta a\alpha b) - \varphi(a\alpha b\beta b\alpha a) - \varphi(a\alpha b\beta a\alpha b) + \varphi(a\alpha b\beta b\alpha a) = 0.$

(ii) Similar as (i).

(iii)
$$\Psi_{\alpha}(a,b) - \Phi_{\alpha}(a,b) = \varphi(a\alpha b) - \varphi(b)\alpha\varphi(a) - \varphi(a\alpha b) + \varphi(a)\alpha\varphi(b)$$

= $\varphi(a)\alpha\varphi(b) - \varphi(b)\alpha\varphi(a) = [\varphi(a),\varphi(b)]_{\alpha}$.

(iv)
$$\Psi_{\alpha}(a,b) + \Phi_{\alpha}(a,b) = \varphi(a\alpha b) - \varphi(b)\alpha\varphi(a) + \varphi(a\alpha b) - \varphi(a)\alpha\varphi(b)$$

$$= \varphi(a\alpha b) - \varphi(b\alpha a) + \varphi(a\alpha b) - \varphi(a\alpha b)$$

$$= \varphi(a\alpha b - b\alpha a + a\alpha b - a\alpha b) = \varphi(a\alpha b - b\alpha a) = \varphi([a,b]_{\alpha}). \square$$

Lemma 2.9 For any $a, b, m \in J$ and $\alpha, \beta \in \Gamma$, the following results happen.

(i) $\varphi([a,b]_{\alpha}\beta m) = \varphi(m)\beta\Phi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m)$;

 $(ii) \ \varphi(m\beta[a,b]_{\alpha}) = \Phi_{\alpha}(a,b)\beta\varphi(m) + \varphi(m)\beta\Psi_{\alpha}(a,b).$

Proof. (i) We get
$$\varphi(m)\beta\Phi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m)$$

$$= \varphi(m)\beta\big(\varphi(a\alpha b) - \varphi(a)\alpha\varphi(b)\big) + (\varphi(a\alpha b) - \varphi(b)\alpha\varphi(a))\beta\varphi(m)$$

$$= \varphi(m)\beta\varphi(a\alpha b) - \varphi(m)\beta\varphi(a)\alpha\varphi(b) + \varphi(a\alpha b)\beta\varphi(m) - \varphi(b)\alpha\varphi(a)\beta\varphi(m)$$

$$= \varphi(m\beta(a\alpha b)) - \varphi(m\beta\alpha ab) + \varphi((a\alpha b)\beta m) - \varphi(b\alpha a\beta m)$$

$$= \varphi(m\beta\alpha ab - m\beta\alpha ab + a\alpha b\beta m - b\alpha a\beta m)$$

$$= \varphi(a\alpha b\beta m - b\alpha a\beta m) = \varphi([a,b]_{\alpha}\beta m).$$

(ii) Similar as (i). □

Lemma 2.10 If $\varphi: M \to M$ is a Jordan homomorphism on a Γ -ring M fulfilling the condition (*), then $\forall a, b, m \in J$ and $\alpha, \beta, \gamma \in \Gamma$, $\Phi_{\alpha}(a, b)\beta\varphi(m)\gamma\Psi_{\alpha}(a, b) + \Psi_{\alpha}(a, b)\beta\varphi(m)\gamma\Phi_{\alpha}(a, b) = 0$.

Proof. Lemma 2.9(i) yields us that

(1)
$$\varphi(m)\beta\Phi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m) = \varphi([a,b]_{\alpha}\beta m).$$

Multiplying both sides of (1) by $\Phi_{\alpha}(a, b)$ from the left, we obtain

$$\Phi_{\alpha}(a,b)\gamma\varphi(m)\beta\Phi_{\alpha}(a,b) + \Phi_{\alpha}(a,b)\gamma\Psi_{\alpha}(a,b)\beta\varphi(m) = \Phi_{\alpha}(a,b)\gamma\varphi([a,b]_{\alpha}\beta m).$$

Hence, by using Lemma 2.8(i), we get

(2)
$$\Phi_{\alpha}(a,b)\gamma\varphi(m)\beta\Phi_{\alpha}(a,b) = \Phi_{\alpha}(a,b)\gamma\varphi([a,b]_{\alpha}\beta m).$$

Again multiplying both sides of (1) by $\Psi_{\alpha}(a, b)$ to the right, we get

$$\varphi(m)\beta\Phi_{\alpha}(a,b)\gamma\Psi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b) = \varphi([a,b]_{\alpha}\beta m)\gamma\Psi_{\alpha}(a,b).$$

Using Lemma 2.8(i) again, we then get

(3)
$$\Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b) = \varphi([a,b]_{\alpha}\beta m)\gamma\Psi_{\alpha}(a,b).$$

Also, from Lemma 2.9(ii), we get

(4)
$$\varphi(m\gamma[a,b]_{\alpha}) = \Phi_{\alpha}(a,b)\gamma\varphi(m) + \varphi(m)\gamma\Psi_{\alpha}(a,b).$$

Replacing m by $[a, b]_{\alpha}\beta m$ in (4), we get

(5)
$$\varphi([a,b]_{\alpha}\beta m\gamma[a,b]_{\alpha}) = \Phi_{\alpha}(a,b)\gamma\varphi([a,b]_{\alpha}\beta m) + \varphi([a,b]_{\alpha}\beta m)\gamma\Psi_{\alpha}(a,b).$$

By adding (2) and (3), we obtain

(6)
$$\Phi_{\alpha}(a,b)\gamma\varphi(m)\beta\Phi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b) = \Phi_{\alpha}(a,b)\gamma\varphi([a,b]_{\alpha}\beta m) + \varphi([a,b]_{\alpha}\beta m)\gamma\Psi_{\alpha}(a,b).$$

Combing (5) and (6), we get

(7)
$$\varphi([a,b]_{\alpha}\beta m\gamma[a,b]_{\alpha}) = \Phi_{\alpha}(a,b)\gamma\varphi(m)\beta\Phi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b).$$

On the other hand, applying Lemma 2.5(ii) and 2.8(iv), we get

$$\begin{split} &\varphi([a,b]_{\alpha}\beta m\gamma[a,b]_{\alpha}) = \varphi([a,b]_{\alpha})\beta\varphi(m)\gamma\varphi([a,b]_{\alpha}) \\ &= \big(\Phi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\big)\beta\varphi(m)\gamma(\Phi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)) \\ &= \Phi_{\alpha}(a,b)\beta\varphi(m)\gamma\Phi_{\alpha}(a,b) + \Phi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b) \\ &+ \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Phi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b). \end{split}$$

By (7), we thus get

$$\begin{split} & \Phi_{\alpha}(a,b)\gamma\varphi(m)\beta\Phi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b) \\ & = \Phi_{\alpha}(a,b)\beta\varphi(m)\gamma\Phi_{\alpha}(a,b) + \Phi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b) \\ & + \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Phi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b). \end{split}$$

Using (*), we then obtain

$$\begin{split} & \Phi_{\alpha}(a,b)\beta\varphi(m)\gamma\Phi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b) \\ & = \Phi_{\alpha}(a,b)\beta\varphi(m)\gamma\Phi_{\alpha}(a,b) + \Phi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b) \\ & + \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Phi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b). \end{split}$$

Hence, by cancelling the similar terms from both sides, we get

$$\Phi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Phi_{\alpha}(a,b) = 0. \ \Box$$

Lemma 2.11 ([4, Lemma 3.10]) *If M is 2-torsion free and a, b* \in *M such that* $\alpha\alpha m\beta b + b\alpha m\beta a = 0 \forall m \in M$ *and* $\alpha, \beta \in \Gamma$, then $\alpha = 0$ or b = 0.

Proof. For any $m \in M$ and $\alpha, \beta \in \Gamma$, we get

(1)
$$a\alpha m\beta b + b\alpha m\beta a = 0.$$

Replace m by $n\gamma a\delta t$ with $n, t \in M$ and $\gamma, \delta \in \Gamma$, and we get

(2)
$$a\alpha n\gamma a\delta t\beta b + b\alpha n\gamma a\delta t\beta a = 0.$$

But, by (1), we get $a\delta t\beta b = -b\delta t\beta a$ and $b\alpha n\gamma a = -a\alpha n\gamma b$.

Substituting these in (2), we get $-a\alpha n\gamma b\delta t\beta a - a\alpha n\gamma b\delta t\beta a = 0$.

This implies us that $2a\alpha n\gamma b\delta t\beta a = 0$.

By the 2-torsion freeness of M, it then gives $a\alpha n\gamma b\delta t\beta a = 0$.

Thus we get $a\alpha M\gamma(b\delta t\beta a)=0$.

Since M is prime, we get a = 0 or $b\delta t\beta a = 0$.

If $b\delta t\beta a = 0$, then we get $b\delta M\beta a = 0$.

Again, by the primeness of M, we obtain b = 0 or a = 0. \Box

We are now ready to establish our main results as follows.

Theorem 2.1 Let M fulfils the condition (*) and let J be a subring of M as well. If $\varphi: M \to M$ is an automorphism fulfilling $\varphi(a\alpha a) = \varphi(a)\alpha\varphi(a) \ \forall \ a \in J$ and $\alpha \in \Gamma$, then $\varphi(a\alpha b) = \varphi(a)\alpha\varphi(b)$ or $\varphi(a\alpha b) = \varphi(b)\alpha\varphi(a) \ \forall \ a,b \in J$ and $\alpha \in \Gamma$.

Proof. First we assume that *J* is commutative. By Lemma 2.4, we then get $J \subseteq Z(M)$.

Applying this fact to Lemma 2.5(i), $\forall a, b \in I$ and $\alpha \in \Gamma$, we obtain

(1)
$$2\varphi(a\alpha b) = \varphi(a)\alpha\varphi(b) + \varphi(b)\alpha\varphi(a).$$

Again since J is a commutative Jordan ideal and a subring of M, we find that

(2)
$$[a,b]_{\alpha} = 0 \ \forall \ a,b \in J \ \text{and} \ \alpha \in \Gamma.$$

Hence $\varphi([a,b]_{\alpha}) = \varphi(0) = 0$.

This implies that $[\varphi(a), \varphi(b)]_{\alpha} = 0 \ \forall \ a, b \in I \text{ and } \alpha \in \Gamma$.

We thus get $\varphi(a)\alpha\varphi(b) = \varphi(b)\alpha\varphi(a)$.

Substituting this result in (1), we get $2\varphi(a\alpha b) = 2\varphi(a)\alpha\varphi(b)$.

The 2-torsion freeness of M then gives $\varphi(a\alpha b) = \varphi(a)\alpha\varphi(b)$.

Likewise, we also get $2\varphi(a\alpha b) = 2\varphi(b)\alpha\varphi(a)$, and hence $\varphi(a\alpha b) = \varphi(b)\alpha\varphi(a)$.

Now onward we shall assume that $J \nsubseteq Z(M)$.

Since we know from [7, Corollary 3.1] that *M* has no non-zero nilpotent ideal, so *J* has a non-zero ideal (by [8, Theorem 3.4]).

Therefore, by Lemma 2.3, J is a prime Γ -ring.

Now $\varphi|_{I}: J \to M$ is a Jordan homomorphism, and so, by Lemma 2.10, we get

(3)
$$\Phi_{\alpha}(a,b)\beta\varphi(m)\gamma\Psi_{\alpha}(a,b) + \Psi_{\alpha}(a,b)\beta\varphi(m)\gamma\Phi_{\alpha}(a,b) = 0$$
$$\forall a,b,m \in J \text{ and } \alpha,\beta,\gamma \in \Gamma.$$

For any $a, b, c \in \varphi(J)$ and $\alpha, \beta, \gamma \in \Gamma$, it is clear that

$$\varphi^{-1}(a\alpha b\beta c+c\alpha b\beta a)=\varphi^{-1}(a)\alpha \varphi^{-1}(b)\beta \varphi^{-1}(c)+\varphi^{-1}(c)\alpha \varphi^{-1}(b)\beta \varphi^{-1}(a).$$

Now (3) can be treated by means of φ^{-1} , it is then found that

$$\varphi^{-1}(\Phi_{\alpha}(a,b))\beta\varphi^{-1}(\varphi(m))\gamma\varphi^{-1}(\Psi_{\alpha}(a,b)) + \varphi^{-1}(\Psi_{\alpha}(a,b))\beta\varphi^{-1}(\varphi(m))\gamma\varphi^{-1}(\Phi_{\alpha}(a,b)) = 0$$

$$\forall a,b,m \in J \text{ and } \alpha,\beta,\gamma \in \Gamma.$$

It gives us $\varphi^{-1}(\Phi_{\alpha}(a,b))\beta m\gamma \varphi^{-1}(\Psi_{\alpha}(a,b)) + \varphi^{-1}(\Psi_{\alpha}(a,b))\beta m\gamma \varphi^{-1}(\Phi_{\alpha}(a,b)) = 0 \ \forall \ a,b,m \in J \ \text{and} \ \alpha,\beta,\gamma \in \Gamma.$ In view of Lemma 2.11, we obtain $\varphi^{-1}(\Phi_{\alpha}(a,b)) = 0$ or $\varphi^{-1}(\Psi_{\alpha}(a,b)) = 0$.

If $\varphi^{-1}(\Phi_{\alpha}(a,b)) = 0 \ \forall \ a,b \in J \ \text{and} \ \alpha \in \Gamma$, then $\Phi_{\alpha}(a,b) = 0 \ \forall \ a,b \in J \ \text{and} \ \alpha \in \Gamma$.

On the other hand, if $\varphi^{-1}(\Psi_{\alpha}(a,b)) = 0 \ \forall \ a,b \in J \ \text{and} \ \alpha \in \Gamma$, then we find that $\Psi_{\alpha}(a,b) = 0 \ \forall \ a,b \in J \ \text{and} \ \alpha \in \Gamma$. We thus get $\Phi_{\alpha}(a,b) = 0$ or $\Psi_{\alpha}(a,b) = 0 \ \forall \ a,b \in J \ \text{and} \ \alpha \in \Gamma$.

That is, φ is an automorphism or φ is an anti-automorphism. \square

Conflict of Interests

The authors declare no conflict of interest.

Acknowledgements

We are thankful to the reviewer for giving valuable comments and suggestions to improve this article significantly.

Funding

We gratefully acknowledge the active support of the Research Grant 2021-22 provided by SUST Research Centre during this research work.

References

- [1] A. Ali, M. Ashraf and S. Ali, Jordan automorphisms on Jordan ideals of prime rings, *Journal of Jilin University*, Science Edition, **41** (2003), 1-7.
- [2] W. E. Barnes, On the Γ-rings of Nobusawa, *Pacific J. Math.*, **18** (1966), 411-422.
- [3] K. K. Dey and A. C. Paul, Generalized derivations acting as homomorphisms and anti-homomorphisms of gamma rings, *J. Sci. Res.*, 4(1) (2012), 33-37.
- [4] I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, 1969.
- [5] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964), 81-89.
- [6] L. Oukhtite, S. Salhi and L. Taoufiq, σ -Lie ideals with derivations as homomorphisms and anti-homomorphisms, *Internat. J. Algebra*, 1(5) (2007), 235-239.
- [7] A. C. Paul and S. Chakraborty, Derivations acting as homomorphisms and as anti-homomorphisms in σ -Lie ideals of σ -prime gamma rings, *Mathematics and Statistics, Horizon Research Publishing Corporation*, **3**(1) (2015), 10-15. doi: 10.13189/ms.2015.030103.
- [8] A. C. Paul and M. S. Uddin, Lie and Jordan structure in simple gamma rings, *Journal of Physical Sciences*, **14** (2010), 77-86.