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ABSTRACT 

We study and develop the concepts of homomorphism and anti-homomorphism to derive some important results in the 
theory of gamma rings. This article attempts to analyze some of the results of Ali et al. [1] in case of classical rings for 
extending those in the context of gamma rings. We establish a number of results related to automorphism, anti-
automorphism and Jordan automorphism on Jordan ideal of prime gamma rings to obtain a new characterizing result. If 
𝑀 is a 2-torsion free prime gamma ring fulfilling a suitable condition, 𝐽 is a non-zero Jordan ideal as well as a subring of 
𝑀 and 𝜑:𝑀 → 𝑀 is a Jordan automorphism, then we prove that 𝜑 is an automorphism or 𝜑 is an anti-automorphism. 
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1. Introduction 

We begin by recalling the concept and some properties of gamma ring. If 𝑀, Γ are two abelian groups under addition and 
(𝑎, 𝛼, 𝑏) → 𝑎𝛼𝑏 is a map of 𝑀 × Γ ×𝑀 → 𝑀 such that (𝑎 + 𝑏)𝛼𝑐 = 𝑎𝛼𝑐 + 𝑏𝛼𝑐, 𝑎(𝛼 + 𝛽)𝑏 = 𝑎𝛼𝑏 + +𝑎𝛽𝑏, 𝑎𝛼(𝑏 +
𝑐) = 𝑎𝛼𝑏 + 𝑎𝛼𝑐, and (𝑎𝛼𝑏)𝛽𝑐 = 𝑎𝛼(𝑏𝛽𝑐) ∀ 𝑎, 𝑏, 𝑐 ∈ 𝑀 and 𝛼, 𝛽 ∈ Γ, then 𝑀 is called a gamma ring (shortly: a Γ-
ring). Nobusawa introduced the concept of gamma ring in [5] and Barnes developed various properties of gamma rings 
in [2]. 𝑀 is called 2-torsion free ⇔ 2𝑥 = 0 forces 𝑥 = 0 ∀ 𝑥 ∈ 𝑀. Here 𝑀 is called (i) prime ⇔ 𝑎Γ𝑀Γ𝑏 = 0 (with 
𝑎, 𝑏 ∈ 𝑀) forces 𝑎 = 0 or 𝑏 = 0; and (ii) commutative ⇔ 𝑥𝛾𝑦 = 𝑦𝛾𝑥 ∀ 𝑥, 𝑦 ∈ 𝑀 and 𝛾 ∈ Γ. If 𝑎, 𝑏 ∈ 𝑀 and 𝛼 ∈ Γ, then 
[𝑎, 𝑏]! = 𝑎𝛼𝑏 − 𝑏𝛼𝑎 is called the commutator (sometimes called the Lie product) of 𝑎, 𝑏 with respect to 𝛼. As a result, 
𝑀 is commutative ⇔ [𝑎, 𝑏]! = 0 ∀ 𝑎, 𝑏 ∈ 𝑀 and 𝛼 ∈ Γ. If 𝑎, 𝑏 ∈ 𝑀 and 𝛼 ∈ Γ, then (𝑎 ∘ 𝑏)! = 𝑎𝛼𝑏 + 𝑏𝛼𝑎 is called 
the Jordan product of 𝑎, 𝑏 with respect to 𝛼.  

Consider 𝐽 as an additive subgroup of 𝑀. 𝐽 is called (i) a left (or, right) ideal ⇔ 𝑀Γ𝐽 ⊂ 𝐽 (or, 𝐽Γ𝑀 ⊂ 𝐽); (ii) an ideal ⇔ 
𝑚𝛾𝑢 ∈ 𝐽 and 𝑢𝛾𝑚 ∈ 𝐽 ∀ 𝑚 ∈ 𝑀, 𝛾 ∈ Γ and 𝑢 ∈ 𝐽; and (iii) a Jordan ideal ⇔ (𝑢 ∘ 𝑚)" ∈ 𝐽 (that is, iff 𝑢𝛾𝑚 +𝑚𝛾𝑢 ∈ 𝐽) 
∀ 𝑢 ∈ 𝐽, 𝑚 ∈ 𝑀 and 𝛾 ∈ Γ. 𝑥 ∈ 𝑀 is called a nilpotent element ⇔ ∀ 𝛾 ∈ Γ ∃ 𝑛 ∈ ℤ# (depends on 𝛾) such that (𝑥𝛾)$𝑥 =
(𝑥𝛾)(𝑥𝛾)… (𝑥𝛾)𝑥 = 0. 𝐽 is called (i) a nil ideal ⇔ each element of 𝐽 is nilpotent; and (ii) a nilpotent ideal ⇔ ∃ 𝑛 ∈ ℤ# 
for which (𝐽Γ)$𝐽 = (𝐽Γ)(𝐽Γ)… (𝐽Γ)𝐽 = 0. Every nilpotent ideal of a Γ-ring is thus a nil ideal.  

For Γ-rings	𝑀 and 𝑁, an additive map 𝜑:𝑀 → 𝑁 is called (i) a homomorphism ⇔ 𝜑(𝑎𝛼𝑏) = 𝜑(𝑎)𝛼𝜑(𝑏) ∀ 𝑎, 𝑏 ∈ 𝑀 and 
𝛼 ∈ Γ; (ii) an anti-homomorphism ⇔ 𝜑(𝑎𝛼𝑏) = 𝜑(𝑏)𝛼𝜑(𝑎) ∀ 𝑎, 𝑏 ∈ 𝑀 and 𝛼 ∈ Γ; and (iii) a Jordan homomorphism ⇔ 
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𝜑(𝑎𝛼𝑎) = 𝜑(𝑎)𝛼𝜑(𝑎) ∀ 𝑎 ∈ 𝑀 and 𝛼 ∈ Γ. From the very definition, it follows that every homomorphism and anti-
homomorphism of Γ-rings is a Jordan homomorphism of the same, but the converse is not always true.  

We know that a bijective homomorphism of a Γ-ring onto another Γ-ring is called an isomorphism, and an isomorphism of 
a Γ-ring onto itself is called an automorphism. A bijective additive map 𝜑:𝑀 → 𝑀 is thus called an automorphism, an 
anti-automorphism and a Jordan automorphism ⇔ 𝜑(𝑎𝛼𝑏) = 𝜑(𝑎)𝛼𝜑(𝑏) , 𝜑(𝑎𝛼𝑏) = 𝜑(𝑎)𝛼𝜑(𝑏)  and 𝜑(𝑎𝛼𝑎) =
𝜑(𝑎)𝛼𝜑(𝑎) ∀ 𝑎, 𝑏 ∈ 𝑀 and 𝛼 ∈ Γ, respectively. 

Oukhtite et al. [6] developed the concept of homomorphism and anti-homomorphism on 𝜎-Lie ideals in the theory of 
classical rings. Afterwards, Dey and Paul [3] worked with the notions of homomorphism and anti-homomorphism on a 
non-zero ideal in the theory of gamma rings. Later on, Paul and Chakraborty [7] also worked on the development of the 
concepts of homomorphism and anti-homomorphism to derive some more important results in the theory of Γ-rings.  

We are inspired to perform this attempt from the work of Ali et al. [1] in the theory of classical rings in order to generalize 
extensively some of their results in the context of gamma rings. If 𝑀 is a 2-torsion free prime Γ-ring fulfilling a suitable 
condition, 𝐽 is a non-zero Jordan ideal as well as a subring of 𝑀 and 𝜑:𝑀 → 𝑀 is a Jordan automorphism, then we prove 
that 𝜑 is an automorphism or 𝜑 is an anti-automorphism. 
 
 
2. Main Results 

We start this section with the following well-known identities on commutators. 
(i) [𝑎, 𝑏]! + [𝑏, 𝑎]! = 0,  
(ii) [𝑎 + 𝑏, 𝑐]! = [𝑎, 𝑐]! + [𝑏, 𝑐]!, 
(iii) [𝑎, 𝑏 + 𝑐]! = [𝑎, 𝑏]! + [𝑎, 𝑐]!,  
(iv) [𝑎, 𝑏]!#% = [𝑎, 𝑏]! + [𝑎, 𝑏]%, 
(v) [𝑎𝛽𝑏, 𝑐]! = 𝑎𝛽[𝑏, 𝑐]! + [𝑎, 𝑐]!𝛽𝑏 + 𝑎𝛽(𝑐𝛼𝑏) − 𝑎𝛼(𝑐𝛽𝑏), and 
(vi) [𝑎, 𝑏𝛽𝑐]! = 𝑏𝛽[𝑎, 𝑐]! + [𝑎, 𝑏]!𝛽𝑐 + 𝑏𝛼(𝑎𝛽𝑐) − 𝑏𝛽(𝑎𝛼𝑐). 

We need to consider throughout this section hereafter that a Γ-ring 𝑀 fulfills the condition 
(*) 𝑎𝛼𝑏𝛽𝑐 = 𝑎𝛽𝑏𝛼𝑐 ∀ 𝑎, 𝑏, 𝑐 ∈ 𝑀 and 𝛼, 𝛽 ∈ Γ. 

If M fulfills the condition (*), then the last two commutator identities become (respectively)  
(V) [𝑎𝛽𝑏, 𝑐]! = 𝑎𝛽[𝑏, 𝑐]! + [𝑎, 𝑐]!𝛽𝑏, and  
(VI) [𝑎, 𝑏𝛽𝑐]! = 𝑏𝛽[𝑎, 𝑐]! + [𝑎, 𝑏]!𝛽𝑐. 

Unless otherwise stated, 𝑀 will represent a prime Γ-ring and 𝐽 will represent a non-zero Jordan ideal of 𝑀 (throughout 
this section hereafter) 

Lemma 2.1 Let 𝑀 fulfills the condition (*). Then 2[𝑀,𝑀]&Γ𝐽 ⊆ 𝐽 and 2𝐽Γ[𝑀,𝑀]& ⊆ 𝐽. 

Proof. Let 𝑎, 𝑏 ∈ 𝑀 and 𝑐 ∈ 𝐽.  
For any 𝛼, 𝛽, 𝛾 ∈ Γ, we get (𝑐 ∘ [𝑎, 𝑏]!)% − ((𝑐 ∘ 𝑎)! ∘ 𝑏)% + ((𝑐 ∘ 𝑏)! ∘ 𝑎)% ∈ 𝐽	. 
It gives 𝑐𝛽(𝑎𝛼𝑏 − 𝑏𝛼𝑎) + (𝑎𝛼𝑏 − 𝑏𝛼𝑎)𝛽𝑐 − ((𝑐𝛼𝑎 + 𝑎𝛼𝑐) ∘ 𝑏)% + ((𝑐𝛼𝑏 + 𝑏𝛼𝑐) ∘ 𝑎)% ∈ 𝐽	. 
This implies that 𝑐𝛽𝑎𝛼𝑏 − 𝑐𝛽𝑏𝛼𝑎 + 𝑎𝛼𝑏𝛽𝑐 − 𝑏𝛼𝑎𝛽𝑐 − 𝑐𝛼𝑎𝛽𝑏 − 𝑎𝛼𝑐𝛽𝑏 

−𝑏𝛽𝑐𝛼𝑎 − 𝑏𝛽𝑎𝛼𝑐 + 𝑐𝛼𝑏𝛽𝑎 + 𝑏𝛼𝑐𝛽𝑎 + 𝑎𝛽𝑐𝛼𝑏 + 𝑎𝛽𝑏𝛼𝑐 ∈ 𝐽	. 
Using (*), we obtain 2(𝑎𝛼𝑏 − 𝑏𝛼𝑎)𝛽𝑐 ∈ 𝐽. 
It gives that 2[𝑎, 𝑏]!𝛽𝑐 ∈ 𝐽 ∀ 𝑎, 𝑏 ∈ 𝑀, 𝑐 ∈ 𝐽 and 𝛼, 𝛽 ∈ Γ. 
That is, 2[𝑀,𝑀]&Γ𝐽 ⊆ 𝐽. 
Similarly, ∀ 𝑎, 𝑏 ∈ 𝑀, 𝑐 ∈ 𝐽 and 𝛼, 𝛽 ∈ Γ,  

2𝑐𝛽(𝑎𝛼𝑏 − 𝑏𝛼𝑎) = ((𝑐 ∘ 𝑏)! ∘ 𝑎)% − (𝑐 ∘ [𝑎, 𝑏]!)% − ((𝑐 ∘ 𝑎)! ∘ 𝑏)% ∈ 𝐽 . 
This gives 2𝐽Γ[𝑀,𝑀]& ⊆ 𝐽. □ 

Lemma 2.2 If 𝑎 ∈ 𝑀 and 𝑎Γ𝐽 = (0) [or 𝐽Γ𝑎 = (0)], then 𝑎 = 0. 

Proof. For any 𝑥 ∈ 𝑀, 𝑐 ∈ 𝐽 and 𝛼 ∈ Γ, we get (𝑐 ∘ 𝑥)! ∈ 𝐽. 
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According to hypothesis, 𝑎𝛽((𝑐 ∘ 𝑥)!) = 0 ∀ 𝑥 ∈ 𝑀, 𝑐 ∈ 𝐽 and 𝛼, 𝛽 ∈ Γ. 
Now we get 0 = 𝑎𝛽(𝑐𝛼𝑥 + 𝑥𝛼𝑐) = 𝑎𝛽𝑐𝛼𝑥 + 𝑎𝛽𝑥𝛼𝑐 = 𝑎𝛽𝑥𝛼𝑐, since 𝑎𝛽𝑐 = 0. 
That is, 𝑎𝛽𝑀𝛼𝐽 = 0. 
Since 𝐽 ≠ 0 and 𝑀 is prime, the above equation yields that 𝑎 = 0. 
If 𝐽Γ𝑎 = (0), in view of the similar arguments with necessary variations, we also obtain that 𝑎 = 0. □  

Lemma 2.3 Let 𝑀 be 2-torsion free fulfilling the condition (*) such that 𝑎𝛼𝐽𝛽𝑏 = (0) ∀ 𝑎, 𝑏 ∈ 𝑀 and 𝛼, 𝛽 ∈ Γ. Then 
𝑎 = 0 or 𝑏 = 0. 

Proof. From Lemma 2.1, we get 2[𝑀,𝑀]&Γ𝐽 ⊆ 𝐽. 
Therefore, ∀ 𝑢, 𝑣 ∈ 𝑀, 𝑐 ∈ 𝐽 and 𝛾, 𝛿 ∈ Γ, we get 2[𝑢, 𝑣]'δ𝑐 ∈ 𝐽. 
By hypothesis, we get 2𝑎𝛼[𝑢, 𝑣]'δ𝑐𝛽𝑏 = 0. 
The 2-torsion freeness of 𝑀 then gives 

(1)  𝑎𝛼[𝑢, 𝑣]'δ𝑐𝛽𝑏 = 0. 
Now substituting 𝑣𝜈𝑎 (with 𝜈 ∈ Γ) for 𝑣 in (1), we obtain 

0 = 𝑎𝛼[𝑢, 𝑣𝜈𝑎]'δ𝑐𝛽𝑏 = 𝑎𝛼𝑣𝜈[𝑢, 𝑎]'δ𝑐𝛽𝑏 + 𝑎𝛼[𝑢, 𝑣]'𝜈𝑎δ𝑐𝛽𝑏. 
Since 𝑎𝛼𝐽𝛽𝑏 = (0), we get 𝑎𝛼[𝑢, 𝑣]'𝜈𝑎δ𝑐𝛽𝑏 = 0. 
Hence we obtain 𝑎𝛼𝑣𝜈[𝑢, 𝑎]'δ𝑐𝛽𝑏 = 0 ∀ 𝑢, 𝑣 ∈ 𝑀, 𝑐 ∈ 𝐽 and 𝛼, 𝛽, 𝛾, 𝛿, 𝜈 ∈ Γ. 
This implies that 𝑎𝛼𝑀𝜈[𝑢, 𝑎]'δ𝑐𝛽𝑏 = 0. 
By the primeness of 𝑀, we find that 𝑎 = 0 or [𝑢, 𝑎]'δ𝑐𝛽𝑏 = 0. 
If [𝑢, 𝑎]'δ𝑐𝛽𝑏 = 0 ∀ 𝑢 ∈ 𝑀, 𝑐 ∈ 𝐽 and 𝛽, 𝛾, 𝛿 ∈ Γ, it gives 𝑢𝛾𝑎δ𝑐𝛽𝑏 − 𝑎𝛾𝑢δ𝑐𝛽𝑏 = 0. 
Since 𝑎δ𝑐𝛽𝑏 = 0, we get 𝑎𝛾𝑢δ𝑐𝛽𝑏 = 0 ∀ 𝑢 ∈ 𝑀, 𝑐 ∈ 𝐽 and 𝛽, 𝛾, 𝛿 ∈ Γ. 
This implies that 𝑎𝛾𝑀δ𝑐𝛽𝑏 = 0. 
Since 𝑀 is prime, we get 𝑎 = 0 or 𝑐𝛽𝑏 = 0. 
If 𝑐𝛽𝑏 = 0 ∀ 𝑐 ∈ 𝐽 and 𝛽 ∈ Γ, then by Lemma 2.2, 𝑏 = 0. □  

Lemma 2.4 Let 𝑀 be 2-torsion free fulfilling the condition (*). If 𝐽 is commutative, then 𝐽 ⊆ 𝑍(𝑀). 

Proof. From Lemma 2.1, we get 2[𝑀,𝑀]&Γ𝐽 ⊆ 𝐽. 
For any 𝑢, 𝑣 ∈ 𝑀, 𝑐, 𝑑 ∈ 𝐽 and 𝛼, 𝛽, 𝛾 ∈ Γ, we thus get [2[𝑢, 𝑣](β𝑐, 𝑑]" = 0. 
Hence [2[𝑢, 𝑣](, 𝑑]"β𝑐 + 2[𝑢, 𝑣](β[𝑐, 𝑑]" = 0. 
Since 𝐽 is a commutative Jordan ideal, 2[𝑢, 𝑣](β[𝑐, 𝑑]" = 0.  
Using this fact in the above equation, we obtain 2[[𝑢, 𝑣](, 𝑑]"β𝑐 = 0. 
The 2-torsion freeness of 𝑀 then gives [[𝑢, 𝑣](, 𝑑]"β𝑐 = 0 ∀ 𝑢, 𝑣 ∈ 𝑀, 𝑐, 𝑑 ∈ 𝐽 and 𝛼, 𝛽, 𝛾 ∈ Γ. 
By Lemma 2.2, [[𝑢, 𝑣](, 𝑑]" = 0 ∀ 𝑢, 𝑣 ∈ 𝑀, 𝑑 ∈ 𝐽 and 𝛼, 𝛾 ∈ Γ. 
Now putting 𝑢𝛽𝑣 (with 𝛽 ∈ Γ) for 𝑣 in (1), we get [[𝑢, 𝑢𝛽𝑣](, 𝑑]" = 0. 
This implies that [𝑢𝛽[𝑢, 𝑣](, 𝑑]" + [[𝑢, 𝑢](𝛽𝑣, 𝑑]" = 0. 
It becomes 0 = [𝑢𝛽[𝑢, 𝑣](, 𝑑]" = 𝑢𝛽[[𝑢, 𝑣](, 𝑑]" + [𝑢, 𝑑]"𝛽[𝑢, 𝑣]( = [𝑢, 𝑑]"𝛽[𝑢, 𝑣](  

∀ 𝑢, 𝑣 ∈ 𝑀, 𝑑 ∈ 𝐽 and 𝛼, 𝛽, 𝛾 ∈ Γ. 
Further replacing 𝑣 by 𝑣𝛿𝑑 (with 𝛿 ∈ Γ), the last equation becomes 

0 = [𝑢, 𝑑]"𝛽[𝑢, 𝑣𝛿𝑑]( = [𝑢, 𝑑]"𝛽𝑣𝛿[𝑢, 𝑑]( + [𝑢, 𝑑]"𝛽[𝑢, 𝑣](𝛿𝑑 = [𝑢, 𝑑]"𝛽𝑣𝛿[𝑢, 𝑑](. 
This implies that [𝑢, 𝑑]"𝛽𝑀𝛿[𝑢, 𝑑]( = 0 ∀ 𝑢 ∈ 𝑀, 𝑑 ∈ 𝐽 and 𝛼, 𝛽, 𝛾, 𝛿 ∈ Γ. 
The primeness of 𝑀 then gives [𝑢, 𝑑]" = 0 or [𝑢, 𝑑]( = 0. 
In both cases, 𝑑 ∈ 𝑍(𝑀) ∀ 𝑑 ∈ 𝐽. Hence 𝐽 ⊆ 𝑍(𝑀). □ 

Lemma 2.5 Let 𝑀 be 2-torsion free fulfilling the condition (*) and let	𝐽 be a subring of 𝑀 as well. If 𝜑:𝑀 → 𝑀 is an 
additive map with 𝜑(𝑎𝛼𝑎) = 𝜑(𝑎)𝛼𝜑(𝑎) ∀ 𝑎 ∈ 𝐽 and 𝛼 ∈ Γ, then ∀ 𝑎, 𝑏, 𝑐 ∈ 𝐽 and 𝛼, 𝛽 ∈ Γ, 
(i) 𝜑(𝑎𝛼𝑏 + 𝑏𝛼𝑎) = 𝜑(𝑎)𝛼𝜑(𝑏) + 𝜑(𝑏)𝛼𝜑(𝑎); 
(ii) 𝜑(𝑎𝛼𝑏𝛽𝑎) = 𝜑(𝑎)𝛼𝜑(𝑏)𝛽𝜑(𝑎); 
(iii) 𝜑(𝑎𝛼𝑏𝛽𝑐 + 𝑐𝛼𝑏𝛽𝑎) = 𝜑(𝑎)𝛼𝜑(𝑏)𝛽𝜑(𝑐) + 𝜑(𝑐)𝛼𝜑(𝑏)𝛽𝜑(𝑎). 

Proof. (i) For any 𝑎, 𝑏 ∈ 𝐽 and 𝛼 ∈ Γ, we get 𝑎𝛼𝑏 + 𝑏𝛼𝑎 ∈ 𝐽, as 𝐽 is a Jordan ideal and a subring of 𝑀. 
By assumption, we get 𝜑(𝑎𝛼𝑎) = 𝜑(𝑎)𝛼𝜑(𝑎) ∀ 𝑎 ∈ 𝐽 and 𝛼 ∈ Γ. 
Substitute 𝑎 by 𝑎 + 𝑏 to obtain 𝜑((𝑎 + 𝑏)𝛼(𝑎 + 𝑏)) = 𝜑(𝑎 + 𝑏)𝛼𝜑(𝑎 + 𝑏). 
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It gives 𝜑(𝑎𝛼𝑎 + 𝑎𝛼𝑏 + 𝑏𝛼𝑎 + 𝑏𝛼𝑏) = (𝜑(𝑎) + 𝜑(𝑏))𝛼(𝜑(𝑎) + 𝜑(𝑏)). 
This yields  

𝜑(𝑎𝛼𝑎) + 𝜑(𝑎𝛼𝑏 + 𝑏𝛼𝑎) + 𝜑(𝑏𝛼𝑏) = 𝜑(𝑎)𝛼𝜑(𝑎) + 𝜑(𝑎)𝛼𝜑(𝑏) + 𝜑(𝑏)𝛼𝜑(𝑎) + 𝜑(𝑏)𝛼𝜑(𝑏). 
It then gives  

𝜑(𝑎)𝛼𝜑(𝑎) + 𝜑(𝑎𝛼𝑏 + 𝑏𝛼𝑎) + 𝜑(𝑏)𝛼𝜑(𝑏) 
= 𝜑(𝑎)𝛼𝜑(𝑎) + 𝜑(𝑎)𝛼𝜑(𝑏) + 𝜑(𝑏)𝛼𝜑(𝑎) + 𝜑(𝑏)𝛼𝜑(𝑏). 

Thus we get  
(1) 𝜑(𝑎𝛼𝑏 + 𝑏𝛼𝑎) = 𝜑(𝑎)𝛼𝜑(𝑏) + 𝜑(𝑏)𝛼𝜑(𝑎), 

which proves the claim. 

(ii) Substituting 𝑏 by 𝑎𝛽𝑏 + 𝑏𝛽𝑎 (where 𝛽 ∈ Γ) in (1) and using (*), we get 
(2) 𝜑(𝑎𝛼(𝑎𝛽𝑏 + 𝑏𝛽𝑎) + (𝑎𝛽𝑏 + 𝑏𝛽𝑎)𝛼𝑎) = 𝜑(𝑎)𝛼𝜑(𝑎𝛽𝑏 + 𝑏𝛽𝑎) + 𝜑(𝑎𝛽𝑏 + 𝑏𝛽𝑎)𝛼𝜑(𝑎) 

= 𝜑(𝑎)𝛼Q𝜑(𝑎)𝛽𝜑(𝑏) + 𝜑(𝑏)𝛽𝜑(𝑎)R + (𝜑(𝑎)𝛽𝜑(𝑏) + 𝜑(𝑏)𝛽𝜑(𝑎))𝛼𝜑(𝑎) 
= 𝜑(𝑎)𝛼𝜑(𝑎)𝛽𝜑(𝑏) + 𝜑(𝑎)𝛼𝜑(𝑏)𝛽𝜑(𝑎) + 𝜑(𝑎)𝛽𝜑(𝑏)𝛼𝜑(𝑎) + 𝜑(𝑏)𝛽𝜑(𝑎)𝛼𝜑(𝑎). 

On the other hand, 
(3) 𝜑(𝑎𝛼(𝑎𝛽𝑏 + 𝑏𝛽𝑎) + (𝑎𝛽𝑏 + 𝑏𝛽𝑎)𝛼𝑎) = 𝜑(𝑎𝛼𝑎𝛽𝑏 + 𝑎𝛼𝑏𝛽𝑎 + 𝑎𝛽𝑏𝛼𝑎 + 𝑏𝛽𝑎𝛼𝑎) 

= 𝜑(𝑎𝛼𝑎𝛽𝑏 + 𝑏𝛽𝑎𝛼𝑎) + 𝜑(𝑎𝛼𝑏𝛽𝑎) + 𝜑(𝑎𝛽𝑏𝛼𝑎) 
= 𝜑(𝑎𝛼𝑎)𝛽𝜑(𝑏) + 𝜑(𝑏)𝛽𝜑(𝑎𝛼𝑎) + 2𝜑(𝑎𝛼𝑏𝛽𝑎) 

= 𝜑(𝑎)𝛼𝜑(𝑎)𝛽𝜑(𝑏) + 𝜑(𝑏)𝛽𝜑(𝑎)𝛼𝜑(𝑎) + 2𝜑(𝑎𝛼𝑏𝛽𝑎). 
Comparing (2) and (3), and using (*), we obtain 𝜑(𝑎𝛼𝑏𝛽𝑎) = 𝜑(𝑎)𝛼𝜑(𝑏)𝛽𝜑(𝑎). 

(iii) Putting 𝑎 + 𝑐 for 𝑎 (where 𝑐 ∈ J) in (ii), we get 
(4) 𝜑Q(𝑎 + 𝑐)𝛼𝑏𝛽(𝑎 + 𝑐)R = 𝜑(𝑎 + 𝑐)𝛼𝜑(𝑏)𝛽𝜑(𝑎 + 𝑐) 

= (𝜑(𝑎) + 𝜑(𝑐))𝛼𝜑(𝑏)𝛽(𝜑(𝑎) + 𝜑(𝑐)) 
= 𝜑(𝑎)𝛼𝜑(𝑏)𝛽𝜑(𝑎) + 𝜑(𝑎)𝛼𝜑(𝑏)𝛽𝜑(𝑐) + 𝜑(𝑐)𝛼𝜑(𝑏)𝛽𝜑(𝑎) + 𝜑(𝑐)𝛼𝜑(𝑏)𝛽𝜑(𝑐). 

On the other hand, 
(5) 𝜑Q(𝑎 + 𝑐)𝛼𝑏𝛽(𝑎 + 𝑐)R = 𝜑(𝑎𝛼𝑏𝛽𝑎 + 𝑎𝛼𝑏𝛽𝑐 + 𝑐𝛼𝑏𝛽𝑎 + 𝑐𝛼𝑏𝛽𝑐) 

= 𝜑(𝑎𝛼𝑏𝛽𝑐 + 𝑐𝛼𝑏𝛽𝑎) + 𝜑(𝑎𝛼𝑏𝛽𝑎) + 𝜑(𝑐𝛼𝑏𝛽𝑐) 
= 𝜑(𝑎𝛼𝑏𝛽𝑐 + 𝑐𝛼𝑏𝛽𝑎) + 𝜑(𝑎)𝛼𝜑(𝑏)𝛽𝜑(𝑎) + 𝜑(𝑐)𝛼𝜑(𝑏)𝛽𝜑(𝑐). 

Comparing (4) and (5), we obtain 𝜑(𝑎𝛼𝑏𝛽𝑐 + 𝑐𝛼𝑏𝛽𝑎) = 𝜑(𝑎)𝛼𝜑(𝑏)𝛽𝜑(𝑐) + 𝜑(𝑐)𝛼𝜑(𝑏)𝛽𝜑(𝑎). □ 

Definition 2.1 For convenience we now define Φ!(𝑎, 𝑏) = 𝜑(𝑎𝛼𝑏) − 𝜑(𝑎)𝛼𝜑(𝑏). 

Lemma 2.6 For any 𝑎, 𝑏, 𝑐 ∈ 𝐽 and 𝛼, 𝛽 ∈ Γ, the following are true. 
(i) Φ!(𝑎, 𝑏) + Φ!(𝑏, 𝑎) = 0; 
(ii) Φ!(𝑎 + 𝑏, 𝑐) = Φ!(𝑎, 𝑐) + Φ!(𝑏, 𝑐); 
(iii) Φ!(𝑎, 𝑏 + 𝑐) = Φ!(𝑎, 𝑏) + Φ!(𝑎, 𝑐); 
(iv) Φ!#%(𝑎, 𝑏) = Φ!(𝑎, 𝑏) + Φ%(𝑎, 𝑏). 

Proof. Obvious. □ 

Definition 2.2 For convenience we next define Ψ!(𝑎, 𝑏) = 𝜑(𝑎𝛼𝑏) − 𝜑(𝑏)𝛼𝜑(𝑎). 

Lemma 2.7 For any 𝑎, 𝑏, 𝑐 ∈ 𝐽 and 𝛼, 𝛽 ∈ Γ, the following results hold. 
(i) Ψ!(𝑎, 𝑏) + Ψ!(𝑏, 𝑎) = 0; 
(ii) Ψ!(𝑎 + 𝑏, 𝑐) = Ψ!(𝑎, 𝑐) + Ψ!(𝑏, 𝑐); 
(iii) Ψ!(𝑎, 𝑏 + 𝑐) = Ψ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑐); 
(iv) Ψ!#%(𝑎, 𝑏) = Ψ!(𝑎, 𝑏) + Ψ%(𝑎, 𝑏). 

Proof. Clear. □ 

Lemma 2.8 For any 𝑎, 𝑏 ∈ 𝐽 and 𝛼, 𝛽 ∈ Γ, the following results are true. 
(i) Φ!(𝑎, 𝑏)𝛽Ψ!(𝑎, 𝑏) = 0; 
(ii) Ψ!(𝑎, 𝑏)𝛽Φ!(𝑎, 𝑏) = 0; 
(iii) [𝜑(𝑎), 𝜑(𝑏)]! = Ψ!(𝑎, 𝑏) − Φ!(𝑎, 𝑏); 
(iv) 𝜑([𝑎, 𝑏]!) = Ψ!(𝑎, 𝑏) + Φ!(𝑎, 𝑏). 
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Proof. (i) Φ!(𝑎, 𝑏)𝛽Ψ!(𝑎, 𝑏) = (𝜑(𝑎𝛼𝑏) − 𝜑(𝑎)𝛼𝜑(𝑏))𝛽(𝜑(𝑎𝛼𝑏) − 𝜑(𝑏)𝛼𝜑(𝑎)) 
= 𝜑(𝑎𝛼𝑏)𝛽𝜑(𝑎𝛼𝑏) − 𝜑(𝑎𝛼𝑏)𝛽𝜑(𝑏)𝛼𝜑(𝑎) − 𝜑(𝑎)𝛼𝜑(𝑏)𝛽𝜑(𝑎𝛼𝑏) + 𝜑(𝑎)𝛼𝜑(𝑏)𝛽𝜑(𝑏)𝛼𝜑(𝑎) 

= 𝜑(𝑎𝛼𝑏𝛽𝑎𝛼𝑏) − 𝜑(𝑎𝛼𝑏𝛽𝑏𝛼𝑎) − 𝜑(𝑎𝛼𝑏𝛽𝑎𝛼𝑏) + 𝜑(𝑎𝛼𝑏𝛽𝑏𝛼𝑎) = 0. 

(ii) Similar as (i). 

(iii) Ψ!(𝑎, 𝑏) − Φ!(𝑎, 𝑏) = 𝜑(𝑎𝛼𝑏) − 𝜑(𝑏)𝛼𝜑(𝑎) − 𝜑(𝑎𝛼𝑏) + 𝜑(𝑎)𝛼𝜑(𝑏) 
= 𝜑(𝑎)𝛼𝜑(𝑏) − 𝜑(𝑏)𝛼𝜑(𝑎) = [𝜑(𝑎), 𝜑(𝑏)]!. 

(iv) Ψ!(𝑎, 𝑏) + Φ!(𝑎, 𝑏) = 𝜑(𝑎𝛼𝑏) − 𝜑(𝑏)𝛼𝜑(𝑎) + 𝜑(𝑎𝛼𝑏) − 𝜑(𝑎)𝛼𝜑(𝑏) 
= 𝜑(𝑎𝛼𝑏) − 𝜑(𝑏𝛼𝑎) + 𝜑(𝑎𝛼𝑏) − 𝜑(𝑎𝛼𝑏) 

= 𝜑(𝑎𝛼𝑏 − 𝑏𝛼𝑎 + 𝑎𝛼𝑏 − 𝑎𝛼𝑏) = 𝜑(𝑎𝛼𝑏 − 𝑏𝛼𝑎) = 𝜑([𝑎, 𝑏]!). □ 

Lemma 2.9 For any 𝑎, 𝑏,𝑚 ∈ 𝐽 and 𝛼, 𝛽 ∈ Γ, the following results happen. 
(i) 𝜑([𝑎, 𝑏]!𝛽𝑚) = 𝜑(𝑚)𝛽Φ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚); 
(ii) 𝜑(𝑚𝛽[𝑎, 𝑏]!) = Φ!(𝑎, 𝑏)𝛽𝜑(𝑚) + 𝜑(𝑚)𝛽Ψ!(𝑎, 𝑏). 

Proof. (i) We get  𝜑(𝑚)𝛽Φ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚) 
= 𝜑(𝑚)𝛽Q𝜑(𝑎𝛼𝑏) − 𝜑(𝑎)𝛼𝜑(𝑏)R + (𝜑(𝑎𝛼𝑏) − 𝜑(𝑏)𝛼𝜑(𝑎))𝛽𝜑(𝑚) 

= 𝜑(𝑚)𝛽𝜑(𝑎𝛼𝑏) − 𝜑(𝑚)𝛽𝜑(𝑎)𝛼𝜑(𝑏) + 𝜑(𝑎𝛼𝑏)𝛽𝜑(𝑚) − 𝜑(𝑏)𝛼𝜑(𝑎)𝛽𝜑(𝑚) 
= 𝜑(𝑚𝛽(𝑎𝛼𝑏)) − 𝜑(𝑚𝛽𝑎𝛼𝑏) + 𝜑((𝑎𝛼𝑏)𝛽𝑚) − 𝜑(𝑏𝛼𝑎𝛽𝑚) 

= 𝜑(𝑚𝛽𝑎𝛼𝑏 −𝑚𝛽𝑎𝛼𝑏 + 𝑎𝛼𝑏𝛽𝑚 − 𝑏𝛼𝑎𝛽𝑚)  
= 𝜑(𝑎𝛼𝑏𝛽𝑚 − 𝑏𝛼𝑎𝛽𝑚) = 𝜑([𝑎, 𝑏]!𝛽𝑚). 

(ii) Similar as (i). □ 

Lemma 2.10 If 𝜑:𝑀 → 𝑀 is a Jordan homomorphism on a Γ-ring 𝑀 fulfilling the condition (*), then ∀ 𝑎, 𝑏,𝑚 ∈ 𝐽 and 
𝛼, 𝛽, 𝛾 ∈ Γ, Φ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Φ!(𝑎, 𝑏) = 0. 

Proof. Lemma 2.9(i) yields us that 
(1) 𝜑(𝑚)𝛽Φ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚) = 𝜑([𝑎, 𝑏]!𝛽𝑚). 

Multiplying both sides of (1) by Φ!(𝑎, 𝑏) from the left, we obtain 
Φ!(𝑎, 𝑏)𝛾𝜑(𝑚)𝛽Φ!(𝑎, 𝑏) + Φ!(𝑎, 𝑏)γΨ!(𝑎, 𝑏)𝛽𝜑(𝑚) = Φ!(𝑎, 𝑏)𝛾𝜑([𝑎, 𝑏]!𝛽𝑚). 

Hence, by using Lemma 2.8(i), we get 
(2) Φ!(𝑎, 𝑏)𝛾𝜑(𝑚)𝛽Φ!(𝑎, 𝑏) = Φ!(𝑎, 𝑏)𝛾𝜑([𝑎, 𝑏]!𝛽𝑚). 

Again multiplying both sides of (1) by Ψ!(𝑎, 𝑏) to the right, we get 
𝜑(𝑚)𝛽Φ!(𝑎, 𝑏)𝛾Ψ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏) = 𝜑([𝑎, 𝑏]!𝛽𝑚)𝛾Ψ!(𝑎, 𝑏). 

Using Lemma 2.8(i) again, we then get 
(3) Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏) = 𝜑([𝑎, 𝑏]!𝛽𝑚)𝛾Ψ!(𝑎, 𝑏). 

Also, from Lemma 2.9(ii), we get 
(4) 𝜑(𝑚𝛾[𝑎, 𝑏]!) = Φ!(𝑎, 𝑏)𝛾𝜑(𝑚) + 𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏). 

Replacing 𝑚 by [𝑎, 𝑏]!𝛽𝑚 in (4), we get 
(5) 𝜑([𝑎, 𝑏]!𝛽𝑚𝛾[𝑎, 𝑏]!) = Φ!(𝑎, 𝑏)𝛾𝜑([𝑎, 𝑏]!𝛽𝑚) + 𝜑([𝑎, 𝑏]!𝛽𝑚)𝛾Ψ!(𝑎, 𝑏). 

By adding (2) and (3), we obtain 
(6) Φ!(𝑎, 𝑏)𝛾𝜑(𝑚)𝛽Φ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏) 

= Φ!(𝑎, 𝑏)𝛾𝜑([𝑎, 𝑏]!𝛽𝑚) + 𝜑([𝑎, 𝑏]!𝛽𝑚)𝛾Ψ!(𝑎, 𝑏). 
Combing (5) and (6), we get 

(7) 𝜑([𝑎, 𝑏]!𝛽𝑚𝛾[𝑎, 𝑏]!) = Φ!(𝑎, 𝑏)𝛾𝜑(𝑚)𝛽Φ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏). 
On the other hand, applying Lemma 2.5(ii) and 2.8(iv), we get 

𝜑([𝑎, 𝑏]!𝛽𝑚𝛾[𝑎, 𝑏]!) = 𝜑([𝑎, 𝑏]!)𝛽𝜑(𝑚)𝛾𝜑([𝑎, 𝑏]!) 
= QΦ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)R𝛽𝜑(𝑚)𝛾(Φ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)) 
= Φ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Φ!(𝑎, 𝑏) + Φ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏) 
+Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Φ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏). 

By (7), we thus get 
Φ!(𝑎, 𝑏)𝛾𝜑(𝑚)𝛽Φ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏) 
= Φ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Φ!(𝑎, 𝑏) + Φ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏) 
+Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Φ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏). 
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Using (*), we then obtain 
Φ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Φ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏) 
= Φ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Φ!(𝑎, 𝑏) + Φ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏) 
+Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Φ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏). 

Hence, by cancelling the similar terms from both sides, we get 
Φ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Φ!(𝑎, 𝑏) = 0. □ 

Lemma 2.11 ([4, Lemma 3.10]) If 𝑀 is 2-torsion free and 𝑎, 𝑏 ∈ 𝑀 such that 𝑎𝛼𝑚𝛽𝑏 + 𝑏𝛼𝑚𝛽𝑎 = 0 ∀ 𝑚 ∈ 𝑀 and 
𝛼, 𝛽 ∈ Γ, then 𝑎 = 0 or 𝑏 = 0. 

Proof. For any 𝑚 ∈ 𝑀 and 𝛼, 𝛽 ∈ Γ, we get  
(1) 𝑎𝛼𝑚𝛽𝑏 + 𝑏𝛼𝑚𝛽𝑎 = 0. 

Replace 𝑚 by 𝑛𝛾𝑎𝛿𝑡 with 𝑛, 𝑡 ∈ 𝑀 and 𝛾, 𝛿 ∈ Γ, and we get 
(2) 𝑎𝛼𝑛𝛾𝑎𝛿𝑡𝛽𝑏 + 𝑏𝛼𝑛𝛾𝑎𝛿𝑡𝛽𝑎 = 0. 

But, by (1), we get 𝑎𝛿𝑡𝛽𝑏 = −𝑏𝛿𝑡𝛽𝑎 and 𝑏𝛼𝑛𝛾𝑎 = −𝑎𝛼𝑛𝛾𝑏. 
Substituting these in (2), we get – 𝑎𝛼𝑛𝛾𝑏𝛿𝑡𝛽𝑎 − 𝑎𝛼𝑛𝛾𝑏𝛿𝑡𝛽𝑎 = 0. 
This implies us that 2𝑎𝛼𝑛𝛾𝑏𝛿𝑡𝛽𝑎 = 0. 
By the 2-torsion freeness of 𝑀, it then gives 𝑎𝛼𝑛𝛾𝑏𝛿𝑡𝛽𝑎 = 0. 
Thus we get 𝑎𝛼𝑀𝛾(𝑏𝛿𝑡𝛽𝑎) = 0. 
Since 𝑀 is prime, we get 𝑎 = 0 or 𝑏𝛿𝑡𝛽𝑎 = 0. 
If 𝑏𝛿𝑡𝛽𝑎 = 0, then we get 𝑏𝛿𝑀𝛽𝑎 = 0. 
Again, by the primeness of 𝑀, we obtain 𝑏 = 0 or 𝑎 = 0. □ 

We are now ready to establish our main results as follows. 

Theorem 2.1 Let 𝑀 fulfils the condition (*) and let	𝐽 be a subring of 𝑀 as well. If 𝜑:𝑀 → 𝑀 is an automorphism 
fulfilling 𝜑(𝑎𝛼𝑎) = 𝜑(𝑎)𝛼𝜑(𝑎) ∀ 𝑎 ∈ 𝐽 and 𝛼 ∈ Γ, then 𝜑(𝑎𝛼𝑏) = 𝜑(𝑎)𝛼𝜑(𝑏) or	𝜑(𝑎𝛼𝑏) = 𝜑(𝑏)𝛼𝜑(𝑎) ∀ 𝑎, 𝑏 ∈ 𝐽 
and 𝛼 ∈ Γ. 

Proof. First we assume that 𝐽 is commutative. By Lemma 2.4, we then get 𝐽 ⊆ 𝑍(𝑀).  
Applying this fact to Lemma 2.5(i), ∀ 𝑎, 𝑏 ∈ 𝐽 and 𝛼 ∈ Γ, we obtain 

(1) 2𝜑(𝑎𝛼𝑏) = 𝜑(𝑎)𝛼𝜑(𝑏) + 𝜑(𝑏)𝛼𝜑(𝑎). 
Again since 𝐽 is a commutative Jordan ideal and a subring of 𝑀, we find that 

(2) [𝑎, 𝑏]! = 0 ∀ 𝑎, 𝑏 ∈ 𝐽 and 𝛼 ∈ Γ. 
Hence 𝜑([𝑎, 𝑏]!) = 𝜑(0) = 0. 
This implies that [𝜑(𝑎), 𝜑(𝑏)]! = 0 ∀ 𝑎, 𝑏 ∈ 𝐽 and 𝛼 ∈ Γ. 
We thus get 𝜑(𝑎)𝛼𝜑(𝑏) = 𝜑(𝑏)𝛼𝜑(𝑎). 
Substituting this result in (1), we get 2𝜑(𝑎𝛼𝑏) = 2𝜑(𝑎)𝛼𝜑(𝑏). 
The 2-torsion freeness of 𝑀 then gives 𝜑(𝑎𝛼𝑏) = 𝜑(𝑎)𝛼𝜑(𝑏). 
Likewise, we also get 2𝜑(𝑎𝛼𝑏) = 2𝜑(𝑏)𝛼𝜑(𝑎), and hence 𝜑(𝑎𝛼𝑏) = 𝜑(𝑏)𝛼𝜑(𝑎). 

Now onward we shall assume that 𝐽 ⊈ 𝑍(𝑀).  
Since we know from [7, Corollary 3.1] that 𝑀 has no non-zero nilpotent ideal, so 𝐽 has a non-zero ideal (by [8, Theorem 
3.4]).  
Therefore, by Lemma 2.3, 𝐽 is a prime Γ-ring.  
Now 𝜑|): 𝐽 → 𝑀 is a Jordan homomorphism, and so, by Lemma 2.10, we get  

(3) Φ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Ψ!(𝑎, 𝑏) + Ψ!(𝑎, 𝑏)𝛽𝜑(𝑚)𝛾Φ!(𝑎, 𝑏) = 0  
∀ 𝑎, 𝑏,𝑚 ∈ 𝐽 and 𝛼, 𝛽, 𝛾 ∈ Γ. 

For any 𝑎, 𝑏, 𝑐 ∈ 𝜑(𝐽) and 𝛼, 𝛽, 𝛾 ∈ Γ, it is clear that  
𝜑*+(𝑎𝛼𝑏𝛽𝑐 + 𝑐𝛼𝑏𝛽𝑎) = 𝜑*+(𝑎)𝛼𝜑*+(𝑏)𝛽𝜑*+(𝑐) + 𝜑*+(𝑐)𝛼𝜑*+(𝑏)𝛽𝜑*+(𝑎). 

Now (3) can be treated by means of 𝜑*+, it is then found that  
𝜑*+(Φ!(𝑎, 𝑏))𝛽𝜑*+(𝜑(𝑚))𝛾𝜑*+(Ψ!(𝑎, 𝑏)) + 𝜑*+(Ψ!(𝑎, 𝑏))𝛽𝜑*+(𝜑(𝑚))𝛾𝜑*+(Φ!(𝑎, 𝑏)) = 0 

∀ 𝑎, 𝑏,𝑚 ∈ 𝐽 and 𝛼, 𝛽, 𝛾 ∈ Γ. 
It gives us 𝜑*+(Φ!(𝑎, 𝑏))𝛽𝑚𝛾𝜑*+(Ψ!(𝑎, 𝑏)) + 𝜑*+(Ψ!(𝑎, 𝑏))𝛽𝑚𝛾𝜑*+(Φ!(𝑎, 𝑏)) = 0 ∀ 𝑎, 𝑏,𝑚 ∈ 𝐽 and 𝛼, 𝛽, 𝛾 ∈ Γ. 
In view of Lemma 2.11, we obtain 𝜑*+(Φ!(𝑎, 𝑏)) = 0 or 𝜑*+QΨ!(𝑎, 𝑏)R = 0. 
If 𝜑*+(Φ!(𝑎, 𝑏)) = 0 ∀ 𝑎, 𝑏 ∈ 𝐽 and 𝛼 ∈ Γ, then Φ!(𝑎, 𝑏) = 0 ∀ 𝑎, 𝑏 ∈ 𝐽 and 𝛼 ∈ Γ.  
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On the other hand, if 𝜑*+QΨ!(𝑎, 𝑏)R = 0 ∀ 𝑎, 𝑏 ∈ 𝐽 and 𝛼 ∈ Γ, then we find that Ψ!(𝑎, 𝑏) = 0 ∀ 𝑎, 𝑏 ∈ 𝐽 and 𝛼 ∈ Γ. 
We thus get Φ!(𝑎, 𝑏) = 0 or Ψ!(𝑎, 𝑏) = 0 ∀ 𝑎, 𝑏 ∈ 𝐽 and 𝛼 ∈ Γ. 
That is, 𝜑 is an automorphism or 𝜑 is an anti-automorphism. □ 
 
 
Conflict of Interests  

The authors declare no conflict of interest.  
 
 
Acknowledgements  

We are thankful to the reviewer for giving valuable comments and suggestions to improve this article significantly.   
 
 
Funding 

We gratefully acknowledge the active support of the Research Grant 2021-22 provided by SUST Research Centre during 
this research work.  
 
 
References 

[1] A. Ali, M. Ashraf and S. Ali, Jordan automorphisms on Jordan ideals of prime rings, Journal of Jilin University, 
Science Edition, 41 (2003), 1-7. 

[2] W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 18 (1966), 411-422. 
[3] K. K. Dey and A. C. Paul, Generalized derivations acting as homomorphisms and anti-homomorphisms of gamma 

rings, J. Sci. Res., 4(1) (2012), 33-37. 
[4] I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, 1969. 
[5] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964), 81-89. 
[6] L. Oukhtite, S. Salhi and L. Taoufiq, 𝜎-Lie ideals with derivations as homomorphisms and anti-homomorphisms, 

Internat. J. Algebra, 1(5) (2007), 235-239. 
[7] A. C. Paul and S. Chakraborty, Derivations acting as homomorphisms and as anti-homomorphisms in 𝜎-Lie ideals 

of 𝜎-prime gamma rings, Mathematics and Statistics, Horizon Research Publishing Corporation, 3(1) (2015), 10-
15. doi: 10.13189/ms.2015.030103. 

[8] A. C. Paul and M. S. Uddin, Lie and Jordan structure in simple gamma rings, Journal of Physical Sciences, 14 
(2010), 77-86. 


