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ABSTRACT

Cryptography is the technique to protect sensitive information from unauthorized persons by encryption. Cryp-
tographers have invented various systems of cryptography to make it befitting. In the age of modern science,
the use of mathematical theories has added a new dimension to cryptography. Prime factorization-based cryp-
tography is widely used and effective. In 1977, Rivest, Shamir, and Adlerman proposed the first practical public
key cryptosystem based on the prime factorization of large numbers known as the RSA cryptosystem. Later in
1979, Michael Oser Rabin developed a technique based on prime-factorization known as Rabin Cryptosystem.
Several variants of these systems have been developed further by many famous mathematicians and computer
scientists, aiming to increase security, reduce cost, time, and memory usage, and enhance overall performance.
Tsuyoshi Takagi and Hugh C. Williams proposed such two famous variants. In this paper, we have first analyzed
the traditional cryptosystems and existing variants. Identifying the security strength and field of improvement
of these systems and their variants, we have proposed two new variants. The encryption-decryption techniques
are described by employing them in several applications. The effectiveness of the proposed variants is demon-
strated by a comparative analysis of these variants with others. Numerical experiments show that the proposed
Rabin’s variant performs almost the same as the base algorithm. However, the proposed variant of RSA algo-
rithm reduces computational time significantly, approximately 91% reduction from traditional RSA and 90%
reduction from multi-prime RSA.
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1 Introduction

“Cryptography” refers to secure information and communication methods that are created using algorithms
to create messages that are difficult to read [1, 2, 3, 4, 5]. It safeguards data and communication so that
the information that is sent can be read by only the intended recipients. Cryptosystems are the deterministic
algorithms utilized to create cryptographic keys, digital signatures, data privacy protection verification, online
browsing, and private correspondence including emails and credit card transactions.
The word cryptography is derived from the Greek word kryptos meaning hidden. Encryption [6, 7] is the process
of converting regular text into ciphertext and Decryption is the process of getting the original text back.
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In ancient times cryptography was based on some typical tools and techniques [8, 9] which were not diffi-
cult to break. Using mathematics in breaking these techniques made them vulnerable and cryptographers were
supposed to take measures to keep their message secure. These leads cryptography to modernization day by day.

The theory of mathematics and computer science are major foundations of modern cryptography[10, 11,
12, 13]. Computational hardness is the premise that cryptographic methods are difficult for adversaries to
crack in real-world scenarios [12, 14]. Although it is theoretically conceivable to breach a well-designed sys-
tem, doing so is not practical in real life. These methods are referred to as “computationally secure” if they
are well-designed. However, as computer technology progresses and theory evolves (such as improvements in
integer factorization algorithms), these designs should be regularly reviewed and, if needed, modified. The
finest theoretically breakable but computationally secure techniques are far easier to employ in practice than
information-theoretically safe schemes, such as the one-time pad [15], which are presumably impossible to break
even with infinite computer power.

1.1 Motivation

Cryptography involves a vast area of research. In the age of supercomputers, the most secure cryptography
process depends on mathematical theories. Almost all the ancient [16] and analog cryptosystems are breakable
at present. However, factoring large integers is still a difficult problem. So this particular type of cryptography
can make the future [17, 18]. Much research has been done and is still ongoing [19, 20].

In 1978 Rivest-Shamir-Adleman introduced the foundation of public key cryptosystem [21]. This technique
uses two large primes, an encryption key and a decryption key. The idea behind RSA cryptosystem was that
though multiplying large prime numbers is simple, but factoring a large number into prime numbers is a great
challenge. In 1979, Rabin introduced a similar technique using two primes of a particular class. In [22] Rabin
used a fixed encryption key 2. The encryption process is quite similar to RSA but the decryption is different.
Then in [23] Williams proposed another modification of RSA in 1980.

To reduce the computational time and overall cost of the RSA and Rabin scheme Takagi proposed a fast
type of RSA in 1998. In [24] Takagi used two primes and one of them was taken multiple times. For fast
computation, he used the concept of n-adic expansion in [25]. In integer factorization cryptosystems, the size
of public and private keys is important in decreasing the cost and time of encryption and decryption. So this
dynamic process needs a huge amount of research and proposing a technique that reduces the time and cost
of encryption and decryption is much needed. So we have worked on the variants of RSA and Rabin’s and
proposed two variants that can reduce the size of encryption and decryption keys.

1.2 Our Contribution

In this research, we have worked on the prime factorization-based cryptosystems. We have worked on RSA
and Rabin’s and some of their variants. Our main contribution in this paper is

• We have proposed one variant of RSA modulo prqs to reduce the size of encryption and decryption keys
as well as to reduce the cost and required time, where p, q are two primes and k, l are integers. The size
of the decryption key got a remarkable reduction in our proposed variant compared with the original RSA
and its existing variants.

• We have proposed a variant of Robin Cryptosystem with the same modulo as RSA. The proposed variant
reduces the size of the decryption key. However, the computational time is almost the same as the
traditional Robin and better than its variants Williams.

1.3 Paper Organization

The RSA and Rabin cryptosystems, which rely on integer factorization, are the primary subjects of this
study. In the next section, we have discussed the basic concept of cryptography and the background study of
cryptography. The mathematical theory behind integer factorization-based cryptography is discussed in the
following section where we have discussed the textbook RSA and Rabin’s. On the way, we have incorporated
some most renowned variants of RSA and Rabin’s. In section 3, we have proposed two variants, one of RSA
and one of the Rabin’s. We have applied our proposed approach and the existing approaches for the encryption
and decryption of several messages and compared the computational time in section 4. We have concluded our
article in section 5.
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2 Background

In number theory, integer factorization means the process of breaking down a positive integer into the
product of integers in number theory. Any positive integer larger than one is either prime or can be expressed
as the product of primes. Though small composite numbers can be factored into by calculation, greater numbers
require advanced factorization procedures [26, 27, 28, 29], especially utilizing computers. Whenever a factor
arises, a prime factorization method usually checks to see if it is prime. There isn’t an effective non-quantum
integer factorization algorithm when the numbers are big enough. It hasn’t been shown, nonetheless, that there
isn’t such an algorithm. A b-bit number n can be factored in O(bk) time for any constant k. It should be noted
that any method has not yet been developed to factor all integers in polynomial time, It is generally believed
that such algorithms do not exist. Also, their presence or nonexistence has not been demonstrated. For this
reason, the issue does not fall within class P (Possible). Though it hasn’t been demonstrated, it is generally
believed that even though the issue is obviously in class NP, it is not NP-complete.

2.1 RSA Cryptosystem

Rivest, Shamir, and Adlemans’s RSA is the base of the modern asymmetric cryptosystem [13, 21, 30, 31, 32].
It is the first public key encryption. RSA cryptography encrypts messages using both public and private keys.
To decrypt a message, the reverse of the encryption key is used. This quality is one of the reasons why RSA
has become the most extensively used asymmetric algorithm [33, 34].

Algorithm 1: RSA
Key Generation : Let n = pq, Now define,

κ = {(n, a) : GCD(a, ϕ(n)) = 1}.

where ϕ(n) = (p− 1)(q − 1) know as Euler’s Totient Function. Select (n, e) and (n, d) from κ such that
ed ≡ 1(mod ϕ(n)). Then (n, e) is the encryption key and (n, d) is the decryption key.

Encryption : For plaintext M , using the public key (n, e), calculate the encrypted text C by,

C = Me (mod n)

Decryption: Use the decryption key (n, d and compute the decrypted message.

M1 = Cd (mod n)

Here, M1 equals the plaintext M. The values (n, e) comprise the public key which is known to all, and the
values (n, d) form the private key which is kept secretly. The RSA cryptosystem relies on the assumption that
finding two big prime numbers is trivial; but computing the initial primes from the total or factoring is seen
as impracticable owing to the time involved, even with today’s supercomputers. This is because, the function
F : M −→ C is a one-way trapdoor function because it can be computed quickly using the fast exponentiation
method, but calculating its inverse, F−1 : C −→ M1, is challenging as it requires factoring n and computing
phi(n) for those who do not know the private key. Nonetheless, the computation of F−1 is as simple for those
who know the private key.

Remark 1: The RSA trapdoor is made up of the four RSA parameters {d, p, q, ϕ(n)}. Each of the four
facts is equally significant. The RSA encryption is broken if one of them is known, as this divulges information
about the remaining three. If RSA encryption is not utilized appropriately, it may be cracked without knowing
about {d, p, q, ϕ(n)}. Encrypting a single message using many exponents e1, e2, ..., er allows anybody to retrieve
the plaintext if the gcd is equal to 1. M can be obtained by anyone without factoring n or utilizing any of the
trapdoor data {d, p, q, ϕ(n)}. The proof is given for 2 exponents as follows:

Theorem 1. If

C1 ≡ Me1 (mod n)
C2 ≡ Me2 (mod n)

where e1 ̸= e2 and gcd(e1, e2) = 1 then M can be recovered easily without knowledge of any secret key.
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Proof : Since gcd(e1, e2) = 1, then by the extended Euclid’s algorithm e1x+ e2y = 1 with x, y ∈ Z. Thus,

Cx
1C

y
2 ≡ (Me1)x(Me2)y (mod n)
≡ Me1x+e2y

≡ M (mod n)

Hence M is recovered.
So, for each given modulus, one should employ no more than one encryption exponent.

Remark 2: (Choice of e) Encryption can be done faster with a small exponent e, and decryption with
a small exponent d. Of course, we can’t choose both to be little since once one is chosen, the other is dictated
by the congruence. This is not quite correct because e = 1 implies d = 1, implying that both d and e are tiny.
Taking e = 1 is a terrible idea, as the plaintext and ciphertext are identical. We cannot use e = 2 because
e must have multiplicative inverse and for that, it should be relative prime to (p − 1)(q − 1). Thus, the least
number for e is e = 3. Taking e = 3 is equally safe as taking a higher value of e.

2.1.1 Existing Variants of RSA

Being a highly valuable, computationally light, and extensively utilized public key cryptosystem, researchers
are working on several variants of RSA algorithms to reduce the bit side of decryption key d.

Multi-prime RSA
Multiprime RSA was proposed by Collins, Hopkins, Langford, and Sabin in 1997 [35]. In this method, the
authors choose n to be the product of k > 2 primes. This will speed up the encryption and decryption process.
The algorithm is described below:

Algorithm 2: Multi-prime RSA
Key Generation: Let n = p1, p2, ..., pk , ϕ(n) = (p1 − 1) · (p2 − 1) · ... · (pk − 1). As in the case of RSA
e and d are such that ed ≡ 1 (mod ϕ(n).
Encryption: For the plaintext M compute the ciphertext C by

C ≡ Me (mod n)

Decryption: Using the privet key (n, d) , the plaintext M can be retrieved by

M ≡ Cd (mod n)

Using the Chinese Remainder Theorem and parallel calculations (using conventional arithmetic), a ciphertext

may be decrypted in a maximum of 3
2r3 (log2(n))

3
bit operations. This is the first advantage. It is shown that

using the Chinese Remainder Theorem instead of single exponentiation speeds up the calculation three times
in the case of two primes. Using three primes leads to an extra 1.9 speed improvement above the 2-prime case,
for a total speed increase of around 5.7. Using four primes results in an overall speed improvement of around
8.9, which is 1.6 quicker than using three. The second benefit is space-related: by using the Chinese Remainder
Theorem once again, the space needed for each decryption computation up to the last (recombining) step is

reduced to log2pr space, where pr is the greatest prime of the modulus. If all the primes are about log2(n)
r big

(balanced primes), then the space required decreases with each additional prime added to the modulus.

Takagi Variant of RSA
Tsuyoshi Takagi [25] proposed an RSA-type cryptosystem that uses the modulo n = pkq. This scheme enhances
the performance of the RSA by reducing the size of the decryption key d as well as the decryption cost. The
sizes of the secret primes p and q should be selected appropriately.
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Algorithm 3: Takagi variant of RSA
Key Generation: Let n = pkq Determine e, d that satisfies ed ≡ 1 (mod L ) and
GCD(e, p) = GCD(e, L) = 1 by computing L = LCM(p − 1, q − 1). Then, the secret keys are
(d, p, q, k), and the public keys are (e, n).

Encryption: For the plaintext M . ciphertext is calculated by,

C ≡ Me (mod n).

Decryption: With the secret key (d, p, q, k), solving Mp ≡ M (mod pk) and Mq ≡ M (mod q) using
Chinese Remainder Theorem (CRT) the plaintext M can be retrieved. In this case, Mp is calculated
using the fast algorithm given in [25], and Mq is calculated using Mq ≡ Cd (mod q).

2.2 Rabin Cryptosystem

As discussed in remark 2, the smallest possible value of e in RSA is 3. Micheal Oser Rabin [22] proposed
a scheme based on e = 2. The advantage of the Rabin trapdoor function is that, unlike the RSA trapdoor
function, its inversion has a mathematical proof [22] that indicates it is as difficult to solve as factoring integers.
Rabin’s algorithm is given in as follows:

Algorithm 4: Rabin
Key Generation : Let n = pq, where p and q satisfies

p ≡ q ≡ 3 (mod 4)

Encryption : The encryption is done by

C ≡ M2 (mod n)

Decryption : For the decryption, a system of congruences is obtained

Mp ≡
√
C(modp)

Mq ≡
√
C(modq)

The above system of congruences can be solved using the CRT to get the four solutions ±Mp,±Mq and
one of these will be the actual plaintext M.
The Rabin’s function disadvantage is that each output can be created by any one of the four potential inputs.
Thus the decryption becomes more complicated to establish which of the four possible inputs was the real plain-
text. Decrypting creates three false outputs in addition to the correct one. This is the Rabin cryptosystem’s
fundamental shortcoming and one of the reasons it has not found broad practical application. It is not difficult
to predict whether the plaintext is intended to represent a text message; but, if the plaintext is intended to
represent a numerical value, a disambiguation approach must be used to manage the situation. To get around
this issue, you can use plaintexts with certain structures or add padding. Blum and Williams proposed a solu-
tion to the ambiguity of inversion: the two primes that are utilized can only be primes that are equivalent to 3
modulo 4. Additionally, the domain of the squaring is limited to the set of quadratic residues. These constraints
remove the uncertainty by creating a trapdoor permutation from the squaring function.[36] Even though Rabin
cryptography is not as commonly used as some other public-key algorithms, such as RSA, it is nonetheless an
appealing subject for research in the field of cryptography and provides the broader context of data security
and secure communication.

2.2.1 Williams Cryptosystem

In 1980, Hug William proposed a variant of Rabin’s cryptosystem called Rabin’s M2 system. The algorithm
proposed by William [23] is as follows
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Algorithm 5: Williams
Key Generation : Let n = pq, where p and q are primes satisfying,

p ≡ 3 (mod 8)
q ≡ 7 (mod 8)

We select the value e such that (e, λ(n)) = 1, where λ(n) = LCM(p− 1, q − 1 )

Encryption: Suppose M be a positive integer such that 2(2M + 1) < n when (2M + 1|n) = −1 and
4(2M + 1) < n when (2M + 1|n) = 1. Assume K be the set of all such M. For all M ∈ K, define

N = E1(M) ={
4(2M + 1), when (2M + 1 | n) = 1

2(2M + 1), when (2M + 1 | n) = −1
(2.1)

Then, C = E2(N) ≡ N2e (mod n)

Decryption : For the decryption, L = D2(C) ≡ Cd(mod n)

Then, M = D1(L) =

L
4 −1

2 , when L ≡ 0 (mod 4)
n−L

4 −1

2 , when L ≡ 1 (mod 4)
L
2 −1

2 , when L ≡ 2 (mod 4)
n−L

2 −1

2 , when L ≡ 3 (mod 4)

(2.2)

It should be noted that Williams encryption requires several calculations for decryption.

3 Proposed Approach

3.1 Proposed Variant of RSA

Let the moduli of the be RSA system N = Ax ·By where, A & B are primes and the powers x, y are large.
This will enhance memory usage. The algorithm of the scheme is described as follows:
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Algorithm 6: Proposed variant of RSA

Key Generation: We choose two primes A and B and assume the moduli N = Ax · By. We
compute λ = λ(N) = LCM((A− 1) · (B − 1)) and assume the encryption key e such that GCD(e,A) =
GCD(e,B)=GCD(e, λ) = 1. Then we calculate d that satisfies ed ≡ 1 (mod λ).
Now we take,

dA ≡ d (mod (A− 1))
dB ≡ d (mod (B − 1))

Thus we have the public key (N, e) and the privet key is (A,B, dA, dB , x, y).
Encryption: There is no difference in encryption with the original RSA. Let the plaintext be converted
to an integer 1 ≤ M ≤ N which is necessarily coprime to N . We use the public key (N,e) and compute
the ciphertext C as:

C ≡ Me (mod N)

Decryption: We first decrypt MA ≡ Cd (mod Ax) and MB ≡ Cd (mod By) using the secret key
(A,B, dA, dB , x, y). Then using CRT M can be recovered.

Here, MA and MB are computed by the fast algorithm using n-adic expansion described in [24]. For this,
first we consider the A− adic and B − adic expansion of MA and MB respectively,

MA = K0 +AK1 +A2K2 + ...+Ax−1Kx−1 (mod Ax)
MB = L0 +BL1 +B2L2 + ...+By−1Ly−1 (mod By).

As discussed in [24], at first K0 and L0 are calculated by ,

K0 ≡ CdA (mod A)
L0 ≡ CdB (mod B)

Then the blocks K1,K2, ...,Kx−1 and L1, L2, ..., Ly−1 can be decrypted by the following procedure.
Define a function Fi(R0, R1, ..., Ri) as follows:

Fi(R0, R1, ..., Ri) = (R0 +AR1 + ...+AiRi)
e
,

where i = 0, 1, ..., x−1 and Fx−1 = (R0 +AR1 + ...+Ax−1Rx−1)
e
is the function which is same as that encrypts

the plaintext MA. Reducing modulo Ai+1,
we get,

Fi(R0, R1, ..., Ri) = Fi−1 +AiGi−1Ri (mod Ai+1),

where Fi−1 = (R0 +AR1 + ...+Ai−1Ri−1)
e
, Gi−1 = e(R0 +AR1 + ...+Ai−1Ri−1)

e−1
. The values ofK1,K2, ...,Kx−1

can be successively calculated by using the following relationship recursively. For i = 1, the following linear
equation of R1 has a solution of K1:

C ≡ F0(K0) +AG0(K0)R1 ( mod A2).

Using the values of K1,K2, ...,Ki−1, Fi−1=Fi−1(K0, ...,Ki−1) and Gi−1= Gi−1(K0, ...,Ki−1) is obtained. The
following linear equation of Ri is then solved by Ki:

C ≡ Fi−1 +AiGi−1Ri (mod Ai+1).

Because GCD(K0, A) = GCD(e,A) = 1, it is evident that (Gi−l, A) = 1, allowing us to decrypt Ki uniquely.
We may calculate K0,K1, ...,Kx−1, and then we can calculate MA (mod Ax). Similarly, we may calculate
L0, L1, ..., Ly−1, and then we can calculate MB (mod By). Lastly, using the CRT, MA (mod Ak), and MB

(mod B) values, the plaintext M (mod AxBy) is also calculated.
Notably, we can evaluate K0,K1, ...,Kk−1 without using the secret exponent d as dA ≡ d ( mod A − 1) and
dB ≡ d (mod B − 1) hold, then Cd ≡ CdA (mod A) and Cd ≡ CdB (mod B) hold as well.
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Problem1: Consider the plaintext message M = 102908. The message can be encrypted by using the
proposed algorithm as follows:
Key Production: Choose the primes A = 29 and B = 37 with the exponents x = 3, y = 5.Then the moduli
N becomes,

N = Ax ·By = 293 · 375 = 1691229767273

Also,

λ(N) = LCM((A− 1), (B − 1)) = LCM(28, 36) = 252

The encryption exponent e can be chosen as e = 5 since 5 is coprime with 252. Then, the solution of the
congruence

5d ≡ 1 (mod 252)

gives d = 101. Thus

dA ≡ d (mod (A− 1))
≡ 101 (mod 28) ≡ 17 (mod 28)

dB ≡ d (mod (B − 1))
≡ 101 (mod 36) ≡ 29 (mod 36)

Hence the public key is (1691229767273, 5) and the secret key is (29, 37, 17, 29).
Encryption: At this step, take the plaintext M = 102908 and calculate the ciphertext C by,

C ≡ Me (mod N)
≡ 1029085 (mod 1691229767273)
≡ 1409436177262 (mod 1691229767273)

Now message 1409436177262 is sent.

Decryption: To decrypt the message find MA & MB such that,

MA ≡ 1409436177262101 (mod 293)
MB ≡ 1409436177262101 (mod 375)

Using n-adic expansion,

MA = K0 + 29K1 + 292K2 (mod 293)
MB = L0 + 37L1 + 372L2 + 373L3 + 374L4 (mod 375).

using the procedures explained in above we have K0 = 16,K1 = 10,K2 = 6 which gives MA = 5352 and also
L0 = 11, L1 = 6, L2 = 1, L3 = 2, L4 = 0 , then MB = 102908. Then applying the CRT on the following
congruences the original text M is,

Z ≡ 5352 (mod 293)
Z ≡ 102908 (mod 375)

Finally, the decrypted message Z = 102908 is the same as the plaintext M .

3.2 Proposed Variant of Rabin Cryptosystem

In this section, we propose another variant of Rabin’s which is slightly different from the previous one. We
propose the moduli of the form

N = AxBy
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where A&B are our primes such that p ≡ 3 (mod 4) and q ≡ 3 (mod 4). There remain only four square roots:-
two square roots modulo Ax and two square roots modulo By. Using Hensel lifting these correspond to two
square roots modulo A and two square roots modulo B respectively. As a result, we can employ precisely the
same kind of redundancy schemes as conventional Rabin. We can expedite the computation of square roots
using Hensel lifting [37] and the CRT. Thus, we expect a benefit to using Rabin this way. The proposed scheme:

Algorithm 7: Proposed variant of Rabin

Key Generation: First, we choose e two primes A,B, and then let N = AxBy. N is the public key
and the primes A and B are kept secret.

Encryption: Assume the plaintext be M . We will calculate the ciphertext by

C ≡ M2 (mod N)

Decryption: Let MA and MB be the solution of

X2 ≡ C (mod Ax) and
X2 ≡ C (mod By)

respectively. After calculating MA and MB , we use CRT to calculate M because,

MA ≡
√
C (mod Ax)

MB ≡
√
C (mod By)

M ≡
√
C (mod AxBy)

Now our main concern is to find MA and MB . So let the A− adic and B − adic expansion of MA and MB

be

MA = K0 +AK1 +A2K2 + ...+Ax−1Kx−1(mod Ax)
MB = L0 +BL1 +B2L2 + ...+By−1Ly−1 (mod By)

respectively. The first blocks K0 and L0 are the solutions of

X2 ≡ C (mod A)
X2 ≡ C (mod B)

respectively. Then we try to decrypt the other blocks K0,K1, ...,Kx−1 and L0, L1, ..., Ly−1. This can be done
as we showed in the previous section. To find the block K1 consider the linear equation modulo A2,

K0
2 + 2AK0X ≡ C (mod A2)

After calculating K0,K1, ...,Ki−1, Ki can be decrypted uniquely by solving the linear equation ,

(K0 +K1 + ...+Ki−1)
2
+ 2Ai(K0 +K1 + ...+Ki−1)X = C (mod Ai+1)

Thus, all plaintext blocks K0,K1,K2, ...,Kx−1 can be decrypted. Similarly, we can find the plaintext blocks
L0, L1, L2, ..., Ly−1. Finally, we have got the plaintexts MA and MB which gives us the original plaintext M .
The disadvantage of this scheme is that it gives results after deciphering. One of the four results is the original
plaintext message. We have to add some redundancy schemes for unique decryption. It is as impossible to
decipher the system’s plaintext as it is to break factoring or the original RSA. So there is no concern about
the security of this scheme. Also, the encryption and decryption are very fast. All the formulas for encryption-
decryption of each of the discussed algorithms are given in table 3.1
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Method Variant The Moduli N The keys Ecryption Decryption

RSA
Traditional n = pq ed = 1(mod(p − 1)(q − 1) C = Me (mod n) M1 = Cd (mod n)

Mulitiprime n = p1 . . . pk ed = 1(mod(p1 − 1) . . . (pk − 1) C = Me (mod n) M1 = Cd (mod n)

Takagi n = pkq ed = 1(mod LCM(p − 1, q − 1) C = Me (mod n) Mp = M (mod pk), Mq = M (mod q)

Proposed n = AxBy ed = 1(mod LCM(A − 1, B − 1) C = Me (mod n) MA = M (mod Ax), MB = M (mod By)

Rabin
Traditional n = pq p ≡ q ≡ 3 (mod 4) C = M2 (mod n) Mp =

√
C(mod p), Mq =

√
C(mod q)

Williams n = pq p ≡ 3(mod 8), q ≡ 7(mod 8) C ≡ N2e(modn) Decryption in Algorithm 5

Proposed n = AxBy A ≡ B ≡ 3 (mod 4) C = M2 (mod n) MA =
√
C(mod Ax), MB =

√
C(mod By)

Table 3.1: Table of Formulas

Problem 2: Suppose a plaintext message M = 10829 is to be sent in a way such that the message is
unreadable to anyone except the receiver. The sender can use our proposed variant of Rabin to encode his
message and send it to the receiver.
Key Production: The sender can choose the primes A = 31 and B = 33 with the exponents x = 3, y = 2.
Then the moduli N becomes,

N = Ax ·By = 313 · 232 = 15759439

Encryption: To encrypt the message, compute

C ≡ M2 (mod n)
≡ 108292 (mod 15759439)
≡ 6951168 (mod 15759439)

Decryption: Now for decryption we use n-adic expansion and compute,{
MA ≡ ±10829(mod(313))

MB ≡ ±249(mod(232))

This leads to 4 systems of congruences {
M ≡ 10829(mod313)

M ≡ 249(mod(232))
(3.1)

{
M ≡ −10829(mod313)

M ≡ 249(mod(232))
(3.2)

{
M ≡ −10829(mod313)

M ≡ −249(mod(232)
(3.3)

{
(M ≡ 10829)(mod313)

M ≡ −249(mod(232)
(3.4)

These systems of congruences on solving using the CRT give, M=10829, M=1776631, M=15748610, and
M=1398208 respectively. Among these 4 values, M=10829 is the expected original message.

4 Numerical Results

In this section, we have tested traditional RSA, traditional Rabin, and all of the variants with different sizes
of the moduli n. We have generated several 2 to 16-digit numbers and compared the total encryption-decryption
time of different cryptosystems. We ran 10-40 different instances for each of the number of different lengths and
reported some representatives of the results. It is observed that for each of the algorithms, the required time
for encryption-decryption increases with the bit length of moduli n. The results are shown in tables as well as
using histogram graphs for each of the cryptosystems.
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4.1 Technical Specification

All the tests were carried out using MATLAB 24.2.0.2729000 (R2024b). The technical specifications of the
computer used for the computation is presented in Table.

Components Specification

Ram 4 GB
Processor Intel(R), Core(TM) i5-4210U CPU @ 1.70GHz 2.40 GHz

System type 64-bit operating system, x64- based processor

4.2 RSA and Its Variants

First, we compare the time taken to implement the traditional RSA and two of its variants - Multiprime
RSA and Our proposed Scheme that we described in the earliest section.

Figure 4.1: Time in Traditional RSA, Time in Multiprime RSA, Time in Proposed Variant of RSA
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Variants Length of N (number of digits) The Moduli N Ecryption - Decryption Time (s)

RSA
2 15 0.432721
2 35 0.431319
2 65 0.432187
2 51 0.431129
4 4757 0.436528
4 1147 0.436312
4 1517 0.436356
4 3127 0.436510
8 39601813 0.441366
8 10017221 0.440123
8 10169717 0.439871
8 13859099 0.440019
16 3941455467744143 0.604202
16 1000000166758057 0.598356
16 2505004802300129 0.602367
16 2505023420943677 0.605128

Multiprime
2 70 0.445105
4 5083 0.451680
4 2387 0.448907
4 1005 0.448231
4 3965 0.450091
8 10681031 0.462916
8 29884301 0.467865
8 68719771 0.466719
8 99677881 0.468902
16 3376192575450451 0.553894
16 2881479796602431 0.551786
16 5123911108009009 0.555723
16 5782119654252079 0.556003

Proposed Variant
2 63 0.038185
2 75 0.038713
2 99 0.038765
4 3025 0.043276
4 1573 0.041762
4 5491 0.043519
4 2783 0.042987
8 42599173 0.047758
8 13409477 0.045823
8 14386373 0.045811
8 19915757 0.046109
16 1173607064999641 0.0529195
16 1274795891413019 0.0530137
16 1835707307416979 0.0552131
16 4546045013659463 0.0570816

Table 4.1: Time comparison between variants of RSA

Table 4.1 shows that the proposed algorithm reduces computational time significantly. Approximately 91%
reduction from RSA and 90% reduction from multi-prime RSA. For Takagi’s algorithm with y = 1 in our
proposed variant, the encryption-decryption time lies between the time taken by multi-prime RSA and the
proposed variant. The results are not included in this article. It can be seen from Table 4.1 as well as from
figure 4.1 that as the value of n gets large, the computational time of the proposed variant differs significantly
from other variants. For higher values of n, exploring the performance of these approaches leaves a scope for
further study.



M. M. Hasan, S. Jahan / GANIT J. Bangladesh Math. Soc. 44.2 (2024) 001–016 13

4.3 Rabin and its Variants

A similar comparison for the Textbook Rabin and two of its variants- Williams Cryptosystem and Our
Proposed Scheme are shown in table

Variants Length of N (number of digits) The Moduli N Ecryption - Decryption Time (s)

Rabin
2 21 0.469409
2 77 0.469821
4 3953 0.474206
4 4757 0.474228
4 5609 0.475006
4 8549 0.475212
8 32455613 0.499597
8 64400429 0.501211
8 45037457 0.499721
8 75916333 0.501503
16 2500005300002773 0.540895
16 6400004000000621 0.541798
16 3600002040000253 0.541005
16 4900004900001161 0.541276

Williams
2 77 0.481578
4 4757 0.497845
4 4189 0.497586
4 8549 0.498516
4 2021 0.493982
8 46416869 0.503511
8 75916333 0.503871
8 45927533 0.503523
8 94887077 0.503897
16 4609992424453861 0.531504
16 4900009100002781 0.532812
16 3600002040000253 0.529316
16 7569042630047029 0.531672

Proposed Variant
2 63 0.468358
4 9317 0.475541
4 1127 0.472167
4 2783 0.4726179
4 8303 0.477213
8 39651821 0.496770
8 75355727 0.497129
8 35806223 0.496113
8 31885367 0.495678
16 1776339597932567 0.531652
16 4546045013659463 0.531802
16 2557173760459463 0.531913
16 5753519498148047 0.5320512

Table 4.2: Time comparison between variants of Rabins cryptosystem

In terms of computation, the proposed variant shows similar performance to the traditional Rabin and
slightly better than its other variant Williams which can be observed in table 4.2. We have shown the results
for the number n up to 16 digits due to the limitation of using a personal computer. The use of supercomputers
for higher digit numbers could be interesting to explore.
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5 Conclusion

The application of mathematical theories and the use of modern computers made cryptosystems much more
secure at present. The difficulty of finding the prime factors of large composite numbers is such a mathematical
theory. If sufficient processing power is available, it is now feasible to factor numbers with more than 250 decimal
digits, and factoring a hundred decimal digits is a simple task thanks to recent significant advancements in the
most well-known integer factorization algorithms. Though none of the algorithms run in polynomial time, the
problem of integer factorization still looks challenging from a theoretical and practical standpoint—especially
for numbers with more than 100 decimal digits.[27]

Although it is not flawless, cryptography is a strong tool for secure communication. A cryptographic system
can be attacked in a variety of ways, and new attacks are continually being found. It is now a crucial component
of cybersecurity, used to safeguard the integrity of data and guard against illegal access. Cryptography will
continue to be essential for protecting data as the world becomes more computerized.
With a powerful enough quantum computer, the mathematical operations that the majority of conventional
cryptography algorithms rely on could be broken. Many researchers are working on cryptanalysis of different
cryptosystems [38]. As with the RSA, the proposed variant can be scrutinized for vulnerabilities. Different
attacks on this variant can be implemented to test its strength compared to that of RSA and its other variants.

In this paper, we have discussed integer factorization-based cryptosystems such as the RSA and Rabin with
some variants. Two new variants of RSA and Rabin’s are proposed. The existing algorithms and the proposed
algorithms are tested with different sizes of the moduli n. Several 2 to 16-digit numbers are generated and
the performances are compared in terms of the total encryption-decryption time of different cryptosystems.
Numerical experiments show that the proposed Rabin’s variant per- forms almost the same as the base algo-
rithm, whereas the proposed RSA variant outperforms the existing approaches and reduces computational time
significantly, with approximately 91% reduction from traditional RSA and 90% reduction from multi-prime
RSA.
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