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ABSTRACT

The transmission dynamics of the dengue disease with imperfect vaccination and re-infection are being consid-
ered & analyzed. The model exhibits backward bifurcation when the basic reproduction number (R0) is less
than 1. However, using the Lyapunov function as well as the LaSalle Invariance Principle, it is demonstrated
that with perfect vaccination and no re-infection, the DFE point is globally asymptotically stable. If R0 > 1,
there exists a distinct endemic equilibrium that is locally asymptotically stable. Numerical results of the model,
using relevant parameter values, indicate that the increasing rate of vaccination waning resulted in the increase
of infected individuals. Further numerical results suggest that the disease will continue in the community in the
presence of re-infection. It also suggests that the dengue virus can be controlled effectively using the perfect
vaccine.
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1 Introduction

Aedes mosquitoes can transmit the virus to human beings through their bite [1]. Almost all age groups,
including infants and adults, are susceptible to dengue. Symptoms of dengue usually start to show 3–14 days
after a mosquito bite [1]. The infected person is more likely to get dengue shock syndrome or dengue hemorrhagic
fever 12 weeks later [2]. After recovering from one dengue serotype, a person gains lifetime immunity to that
serotype but is still susceptible to the other three serotypes. In 2019, the world saw the highest number of
cases ever reported. In the past 20 years, the number of cases has more than doubled, from 505, 430 in 2000
to over 2.4 million in 2010 and 5.2 million in 2019, according to WHO. Between 2000 and 2015, the overall
number of deaths jumped from 960 to 4032 with the youngest age groups bearing the worst impact. In 2020 and
2021, the number of illnesses and deaths that are reported seems to be going down [1]. The dengue outbreak
in Bangladesh is being prolonged by inadequate sanitation, improper hygiene systems and a dense population.
To stop the spread of the disease, government representatives, non-governmental organizations, policymakers,
and institutions must start taking quick nationwide action (e.g., mosquito control and vaccine deployment).
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Therefore, the reduction of mosquitoes, through acts like larvaciding, adulticiding, and eliminating breeding
grounds, as well as use of human protection (health care), are the primary strategies for preventing dengue
transmission. Although research is ongoing, none of the four serotypes of the virus presently has a specific,
effective human vaccination [1]. The potential effects of dengue vaccines are being evaluated using a variety
of mathematical models that have been developed [3, 4, 5, 6]. Ferguson et al. [4] used a partial differential
formulation that takes infection history into account to test the hypothesis that the Dengvaxia vaccine functions
similarly to a hidden natural infection in increasing host immunity. According to research by Chao et al. [7], a
vaccine with a 70% to 90% success rate has the potential to drastically decrease the frequency and severity in
the short and medium term [8]. Gonzales-Morales et al. [8] demonstrated that vaccination programs can reduce
the frequency and size of dengue outbreaks using mathematical modeling depending on vaccine interaction and
dengue strain type. Backward bifurcation in the kinetics of dengue transmission was demonstrated by Garba et
al.[3]. A fractional order model was suggested by Al-Sulami and Hamdan et al. [9, 10]. Also, Iboi and Gumel
[11] mathematically evaluated the effectiveness of the vaccine immunization.
Here, we formulated a new model with imperfect vaccination and in the presence of re-infection in line with
the model described in Garba et al. [3] by considering a compartment for the vaccinated infected human class
and re-infection of the recovered human class. The model is formulated in section 2. The basic mathematical
analysis and stability of the equilibrium points are presented in section 3. In section 4, numerical simulations
and discussions are performed.

2 Model Formulation

The human individual is classified as: susceptible human(Sh) , vaccinated human(Bh) , exposed human (Eh) ,
infected human(Ih) , vaccinated infected human(Ihb), recovered human(Rh) . So, the all population at time t is
Nh = Sh +Bh +Eh + Ih + Ihb +Rh. Similarly, the vector population is classified as: susceptible mosquito(Sv) ,
exposed mosquito(Ev) , infected mosquito(Iv) and so, the total mosquito population is Nv = Sv + Ev + Iv.
We have considered the given assumptions in formulating the model:

A1: The susceptible individuals(Sh) are recruited into the human population at a constant rate Πh.

A2: The susceptible mosquito population(Sv) is being produced at a constant rate Πv.

A3: Exposed individuals are less infectious than infected individuals.

A4: Vaccinated infected individuals are less infectious than infected individuals.

The susceptible human population is generated via recruitment of humans (by birth or immigration) into the
community (at a constant rate, Πh). This population is decreased following infection which can be acquired via
effective contact with an exposed or infectious vector at a rate λh (the force of infection of humans), given by

λh =
Chv (ηvEv + Iv)

Nh
, (2.1)

where, 0 < ηv < 1 represents the low transmissibility of the exposed mosquitoes compared to the infected
mosquitoes.
Similarly, it can be shown that the force of infection of mosquitoes (denoted by λv), is given by

λv =
Chv (η1Eh + Ih + η2Ihb)

Nh
, (2.2)

here, 0 ≤ η1, η2 < 1 accounts for the relative infectiousness of exposed humans and vaccinated infected humans
in relation to infected humans.
Now, we construct the following system of NDE to represent the transmission dynamics of the dengue virus
while taking into account all of the assumptions:
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dSh

dt
= Πh + ωBh − ζSh − λhSh − µhSh,

dBh

dt
= ζSh − λh(1− e)Bh − ωBh − µhBh,

dEh

dt
= λh

[
Sh + (1− e)Bh + αRh

]
− σhEh − µhEh,

dIh
dt

= pσhEh − ϕhIh − (µh + δh) Ih,

dIhb
dt

= (1− p)σhEh − ϕhbIh − (µh + δhb) Ihb, (2.3)

dRh

dt
= ϕhIh + ϕhbIhb − µhRh − αλhRh,

dSv

dt
= Πv − λvSv − µvSv,

dEv

dt
= λvSv − σvEv − µvEv,

dIv
dt

= σvEv − µvIv − δvIv.

Figure 2.1 illustrates the flow diagram of the model (2.3), while Table 2.1 describes the model’s associated
parameters.
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Figure 2.1: Model (2.3) flowchart.
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Table 2.1: Model (2.3) parameters with descriptions.
Parameters Description

Πh Recruitment rate of human

Πv Recruitment rate of mosquito

Chv Infection rate of mosquito

δh Disease-induced death rate for human

δhb Disease-induced death rate for vaccinated human

λh The force of infection of human population

λv The force of infection of mosquito population

µh Natural death rates for human

µv Natural death rate for mosquito

e Vaccine efficacy

ζ Vaccination rate

ω Waning rate of vaccine

ϕh, ϕhb Recovery rate

σh Progression rate from Eh to Ih class

σv Progression rate from Ev to Iv class

α, p, η1, η2, ηv Modification parameters

3 Analysis of the Model

3.1 Positivity and boundedness of the model solutions

We have the following lemma:

Lemma 1. The region, Ω =
{(

Sh, Bh, Eh, Ih, Ihb, Rh, Sv, Ev, Iv
)
: Sh+Bh+Eh+ Ih+ Ihb+Rh ≤ Πh

µh
, Sv +

Ev + Iv ≤ Πv

µv

}
⊂ R9

+, is positively invariant and attracting for the fundamental model (2.3).

The lemma can be proved using the procedure described in [12].

3.2 Disease-free equilibrium(DFE)

The DFE of the model (2.3) is given by

E0 =
(
S∗
h, B

∗
h, E

∗
h, I

∗
h, I

∗
hb, R

∗
h, S

∗
v , E

∗
v , I

∗
v

)
,

=
( Πh (ω + µh)

µh (ζ + ω + µh)
,

Πhζ

µh (ζ + ω + µh)
, 0, 0 0, 0,

Πv

µv
, 0, 0

)
.

3.3 Local Stability of DFE

The transmission matrix F (associated with new infection terms) and the transition matrix V (considering
transferred terms) are calculated using the idea in [13, 14] and are given by

F =


0 0 0 Chvηvk8 Chvk8
0 0 0 0 0
0 0 0 0 0

Chvη1Πvµh

µvΠh

ChvΠvµh

µvΠh

Chvη2Πvµh

µvΠh
0 0

0 0 0 0 0

 ,
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and

V =


k1 0 0 0 0

−pσh k2 0 0 0
− (1− p)σh 0 k3 0 0

0 0 0 k4 0
0 0 0 −σv k5

 ,

where, k1 = σh + µh, k2 = ϕh + µh + δh, k3 = ϕhb + µh + δhb, k4 = σv + δv, k5 = µv + δv. Therefore, R0 is
expressed as

R0 =
Chv

√
−k1k2k3k4k5µvΠhµhΠvk8 (ηvk5 + σv)

[
η2k2 (−1 + p)σh − η1k2k3 − pσhk3

]
k1k2k3k4k5µvΠh

. (3.1)

Theorem 1. The DFE, E0, of the model (2.3) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

3.4 Effect of Perfect Vaccination and No re-infection

3.4.1 Global stability of the DFE in the case of perfect vaccination (ω = 0) and no re-infection
(α = 0)

Theorem 2. When R0 < 1, the DFE, E0, is globally asymptotically stable.

Proof. Let the Lyapunov function

F = f1Eh + f2Ih + f3Ihb + f4Ev + f5Iv, (3.2)

where,

A =
√
−k1k2k3k4k5k8µhµvΠhΠv (ηvk5 + σv)

[
η2k2 (−1 + p)σh − η1k2k3 − pσhk3

]
,

B = pη2k2σh − pk3σh − η1k2k3 − η2k2σh,

f1 = −Πvµhk5B (ηvk5 + σv)

A
,

f2 =
Πvµh (ηvk5 + σv) k1k3k5

A
,

f3 =
η2Πvµh (ηvk5 + σv) k1k2k5

A
,

f4 =
ηvk5 + σv

k4
,

f5 = 1.

Now, from (3.2) we have

Ḟ = f1Ėh + f2İh + f3İhb + f4Ėv + f5İv,

= −Πvµhk5B (ηvk5 + σv)

A

[
λh (S∗

h + (1− e)B∗
h)− k1Eh

]
+

Πvµhk1k3k5 (ηvk5 + σv)

A

[
pσhEh − k2Ih

]
+

η2Πvµh (ηvk5 + σv) k1k2k5
A

[
(1− p)σhEh − k3Ihb

]
+

ηvk5 + σv

k4

[λvΠv

µv
− k4Ev

]
+ σvEv − k5Iv,

=
(
ηvk5 + σv

)
ΠvChvµh

[ η1Eh

k4ΠhµvR0
+

Ih
Πhµvk4R0

+
η2Ihb

k4ΠhµvR0
+

k5Bηvk8Ev

A
+

Bk5k8Iv
A

](
R0 − 1

)
.

Thus, Ḟ < 0 if R0 < 1 and Ḟ = 0 if and only if Ėh = İh = İhb = Ėv = İv = 0. According to the LaSalle
Invariance Principle [15], the DFE, E0, is globally asymptotic stable if R0 ≤ 1.

3.5 Stability of Endemic Equilibrium

Let the endemic equilibrium point be

E1 =
(
S∗∗
h , B∗∗

h , E∗∗
h , I∗∗h , I∗∗hb , R

∗∗
h , S∗∗

v , E∗∗
v , I∗∗v

)
,
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where

S∗∗
h =

Πh

(
λ∗∗
h (1− e) + ω + µh

)(
ζ + µh + λ∗∗

h

)[
λ∗∗
h (1− e) + ω + µh

]
− ωζ

,

B∗∗
h =

ζΠh(
ζ + µh + λ∗∗

h

)[
λ∗∗
h (1− e) + ω + µh

]
− ωζ

,

E∗∗
h =

λ∗∗
h Πh

[
λ∗∗
h (1− e) + k6 + ζ(1− e)

](
µh + αλ∗∗

h

)
k1
[(
ζ + µh + λ∗∗

h

)(
λ∗∗
h (1− e) + k6

)
−A3

](
µh + αλ∗∗

h −A2λ∗∗
h

) ,
I∗∗h =

pσhλ
∗∗
h Πh

[
λ∗∗
h (1− e) + k6 + ζ(1− e)

][
µh + αλ∗∗

h

]
k1k2

[(
ζ + µh + λ∗∗

h

)(
λ∗∗
h (1− e) + k6

)
−A3

](
µh + αλ∗

h −A2λ∗∗
h

) ,
I∗∗hb =

λ∗∗
h Πhσh

[
λ∗∗
h (1− e) + k6 + ζ (1− e)

](
µh + αλ∗∗

h

)(
1− p

)
k1k3

[(
ζ + µh + λ∗∗

h

)(
λ∗∗
h (1− e) + k6

)
−A3

](
µh + αλ∗∗

h −A2λ∗∗
h

) , (3.3)

R∗∗
h =

λ∗∗
h ΠhA1

[
λ∗∗
h (1− e) + k6 + ζ (1− e)

]
k1
[(
ζ + µh + λ∗∗

h

)(
λ∗∗
h (1− e) + k6

)
−A3

](
µh + αλ∗∗

h −A2λ∗∗
h

) ,
S∗∗
v =

Πv

λ∗∗
v + µv

,

E∗∗
v =

ΠvΠv

k4
(
λ∗∗
v + µv

) ,
I∗∗v =

σvΠvΠv

k4k5
(
λ∗∗
v + µv

) .
At the endemic equilibrium state, the forces of infection (with mass action) are

λ∗∗
h = Chv

(
ηvE

∗∗
v + I∗∗v

)
; λ∗∗

v = Chv

(
η1E

∗∗
h + I∗∗h + η2I

∗∗
hb

)
. (3.4)

Using (3.3) in (3.4),we obtain

λ∗∗
h

[
A18(λ

∗∗
h )3 +A22(λ

∗∗
h )2 +A23λ

∗∗
h +A24

]
= 0, (3.5)

where,

A18 = α (1− e)ChvΠh

[
η1 +

pσh

k2
+

η2 (1− p)σh

k3

]
+ α (1− e) k1

[
1−

(
pϕhk3 + k2 (1− p)ϕhb

)
σh

k1k2k3

]
,

A22 = ChvΠh

(
η1 +

pσh

k2
+

η2 (1− p)σh

k3

)µh (1− e) + αk6 + α (1− e) ζ −
α (1− e)ChvΠv

[
ηv +

σv

k5

]
k4


+ µvk1µh

(
1− e

)
+ µvαk1

[
1−

σh

(
pϕhk3 + k2 (1− p)ϕhb

)
k1k2k3

][
ζ (1− e) + k6 + µh (1− e)

]
,

A23 = ChvµhΠh

[
η1 +

pσh

k2
+

η2 (1− p)σh

k3

](
k6 + (1− e) ζ

)
+ µvαk1

[
1−

σh

(
pϕhk3 + k2 (1− p)ϕhb

)
k1k2k3

]

−

(
ηv +

σv

k5

)(
1− e

)
µhΠhΠvC

2
hv

[
η1 +

pσh

k2
+

(1− p) η2σh

k3

]
k4

+ µvk1µh

(
(1− e) ζ + k6 + (1− e)µh

)
(
ζk6 + µhk6 − ωζ

)
,

A24 = µvµ
2
hk1

(
ζ + ω + µh

)[
1−R2

d

]
.

The root λ∗∗
h = 0 of (3.5) corresponds to the DFE and other non-zero equilibria satisfy the following equation.

f(λ∗∗) = A18(λ
∗∗
h )3 +A22(λ

∗∗
h )2 +A23λ

∗∗
h +A24, (3.6)

Backward bifurcation may occur if there are several non-zero (endemic) equilibria. The coefficient A18 is always
positive, but A24 is positive if Rd is less than one and negative if Rd is more than one, as can be seen from the
above. Hence we have the following results using [12].
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Case-1: For R2
d > 1

Table 3.1: Depending on the sign of ∆, A22, and A23, number of real positive roots
∆ A22 A23 No. of real positive roots of f(λ∗∗)

> 0 > 0 < 0 1

> 0 > 0 > 0 1

> 0 < 0 < 0 1

> 0 < 0 > 0 1 if f(λ∗∗
− ) < 0 and 3 if f(λ∗∗

− ) > 0

Case-2: For R2
d < 1

Table 3.2: Depending on the sign of ∆, A22, and A23, number of real positive roots
∆ A22 A23 No. of real positive roots of f(λ∗∗)

> 0 > 0 > 0 0

> 0 < 0 > 0 0

> 0 < 0 < 0 2

> 0 < 0 > 0 0 if f(λ∗∗
+ ) > 0 and 2 if f(λ∗∗

− ) < 0

By Table 3.2, we can observe that two endemic equilibria exist. So when A22 < 0 and A23 < 0, a phenomena
of backward bifurcation may occur.

3.6 Presence of Backward Bifurcation

We apply the centre manifold theory [13, 16] investigating the possibilities of backward bifurcation. For this, we
use change of variables. Let Sh = x1, Bh = x2, Eh = x3, Ih = x4, Ihb = x5, Rh = x6, Sv = x7, Ev = x8, Iv = x9,
such that Nh = x1 + x2 + x3 + x4 + x5 + x6 and Nv = x7 + x8 + x9. Here, the Jacobian of the system at the
DFE (E1), denoted by J(E1), is given by

J(E1) =



−ζ − µh ω 0 0 0 0 0 −ηvj1 −j1
ζ −ω − µh 0 0 0 0 0 ηvj2 j2
0 0 −k1 0 0 0 0 −ηvj3 −j3
0 0 pσh −k2 0 0 0 0 0
0 0 −(p− 1)σh 0 −k3 0 0 0 0
0 0 0 ϕh ϕhb −µh 0 0 0
0 0 −η1j4 −j4 −η2j4 0 −µv 0 0
0 0 η1j4 j4 η2j4 0 0 −k4 0
0 0 0 0 0 0 0 σv −k5


,

where,

k1 = σh + µh, k2 = ϕh + µh + δh, k3 = ϕhb + µh + δhb, k5 = µv + δv,

k6 = µh + ω, k7 =
Πh

µh (µh + ω + ζ)
, k8 =

µh + ω + ζ (1− e)

µh + ω + ζ
, g = (1− e) ,
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j1 =
Chv(µh + ω)

µh + ω + ζ
, j2 =

ζ(e− 1)Chv

µh + ω + ζ
, j3 =

Chv(eζ − ζ − ω − µh)

µh + ω + ζ
, j4 =

ΠvµhChv

µvΠh
.

When R0 = 1, we have from (3.1)

β =
k1k2k3k4k5µvΠh√

−k1k2k3k4k5µvΠhµhΠvk8 (ηvk5 + σv)
[
η2k2 (−1 + p)σh − η1k2k3 − pσhk3

] . (3.7)

Simple eigenvalues of zero exist in the Jacobian (J(E1)) (with all other eigenvalues having negative real part).
The dynamics of the model can therefore be examined using the central manifold theory [16, 17].
Eigenvectors of Jβ = J(E1) : For R0 = 1, the Jacobian denoted by (Jβ) at β has a right eigenvector with the

zero eigenvalues which is given by w = (w1, w2, w3, w4, w5, w6, w7, w8, w9, )
T
, where,

w1 = 1, w4 =
pσhw3

k2
, w7 = −η1j4w3 + j4w4 + η2j4w5

µv
,

w2 =
ζw1 + ηvj2w8 + j2w9

ω + µh
, w5 =

w3σh (1− p)

k3
, w8 =

η1j4w3 + j4w4 + η2j4w5

k4
,

w3 = 1, w6 =
ϕhw4 + ϕhbw5

µh
, w9 =

σvw8

k5
.

Moreover, The left eigenvector of Jβ is given by v = [v1, v2, v3, v4, v5, v6, v7, v8, v9] , where,

v1 = 1, v4 =
j4v8
k2

, v7 = 0,

v2 =
v1 (ζ + µh)

ζ
, v5 =

η2j4v8
k3

, v8 = 1,

v3 =
pσhv4 + v5σh (1− p) + η1j4w8

k1
, v6 = 0, v9 =

ηvj1v1 − ηvj2v2 + ηvj3v3 + k4v8
σv

.

Computation of a & b:
The expression for a is after some calculation

a =
1

k27(ζ + k6)2µv
×
[
2× ((((ηvw8 + w9)(gw2 − w3 − w4 − w5 + (α− 1)w6 − w2)y3

− (gy2w2 − y1(w5 + w6 + w2 + w3 + w4))w8ηv + (−gy2w2 + y1(w5 + w6 + w2 + w3 + w4))w9

+ w7y8(η1w3 + η2w5 + w4))k6 + (−(ηvw8 + w9)((w5 + w6 + w1 + w3 + w4)g − w6α− w1)y3

+ w8(y2(w5 + w6 + w1 + w3 + w4)g − y1w1)ηv + (y2(w5 + w6 + w1 + w3 + w4)g − y1w1)w9+

w7y8(η1w3 + η2w5 + w4))ζ)k7µv − y8Πv(η1w3 + η2w5 + w4)(w5 + w6 + w1 + w2 + w3 + w4)))Chv)
]

and the expression for b is

b =
1

k7(ζ + k6)µv
×
(
ζgηvk7µvw8y2 − ζgηvk7µvw8y3 − ζgk7µvw9y3 + ηvk6k7µvw8y1 − ηvk6k7µvw8y3

+ y2w9k6k7µv − k6k7µvw9y3 −Πvη1w3y8 −Πvη2w5y8 −Πvw4y8

)
,

> 0.

Here, the sign of a is not known. So we have to put conditions on a to exist backward bifurcation. Hence, at
R0 = 1 whenever a > 0, the model (2.3) undergoes backward bifurcation. We have some theorems. This are:

Theorem 3. If the condition a > 0 is true, the model (2.3) exhibits backward bifurcation at R0 = 1.
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4 Numerical Simulations and Discussions

The analytical results are interpreted by simulating the model (2.3) with various parameter values from Table
4.1 in this section. The phenomenon of backward bifurcation, in which a stable endemic equilibrium coexists
with a stable disease-free equilibrium, is depicted graphically in Figure 4.1. The trajectories of the model
solution are shown in Figure 4.2 whenever R0 < 1. According to this figure, the disease will be eliminated from
the community since the solution trajectory trends toward the DFE. Figure 4.3 depicts that when R0 > 1,
the solution trajectories converge to endemic equilibrium and in this case, the disease will continue to spread
throughout the community. Figure 4.4 shows that if vaccine efficacy(e) increases, the number of infected humans
decreases. The epidemiological significance is that the disease can be controlled effectively by increasing the
vaccine efficacy. This figure demonstrates that by increasing the vaccine efficacy from 50% to 75%, the peak
of daily infected humans decreases by 15%. Further, Figure 4.5 demonstrates that if the vaccine waning rate
is increased, the number of infected humans also increases. For example, when the waning rate of the vaccine
increases from 50% to 75%, the peak of daily infected humans increases by 23%. Figure 4.6 illustrates that if
the re-infection rate increases, the number of infected individuals increases. From figure 4.7, we observe that if
the vaccination rate is increased, the infected number of humans can be decreased. This figure illustrates that
when the vaccination rate increases from 50% to 80%, the peak of daily infected cases decreases by 8%. The
figure 4.8 demonstrates that increasing the modification parameter η1 correlates with reducing the number of
infected individuals.

Figure 4.1: Backward bifurcation diagram of the model (2.3) using: p = .5, α = 10, e = .92, ω = 10.9, µh =
0.195e − 1, µv = 0.16e − 1, δh = .19, δv = 0.57e − 1, δhb = .28, ϕh = .21, ϕhb = .2, σh = 0.46e − 1, σv =
0.46e− 1, η1 = .1, η2 = .2, ηv = 0.7e− 1, Πh = 100, Πv = 120, Chv = .15, ζ = 14.9. (so that a > 0 and b > 0).

Figure 4.1 graphically illustrates the phenomenon of backward bifurcation, which is characterized by the coex-
istence of a stable endemic equilibrium and a stable disease-free equilibrium.
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Figure 4.2: When R0 < 1, the solution of the model (2.3) indicates that the solution trajectory goes to DFE.

When R0 is less than 1, Figure 4.2 displays the model solution’s trajectories. This figure shows that as the
solution trajectory is trending toward the DFE, the disease will be eradicated from the community. From this
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figure, we obtain that with the increasing basic reproduction number, the infected classes and exposed classes are
increasing. At the same time, with the increasing basic reproduction number, the susceptible classes, recovered
classes, and vaccinated classes are decreasing.
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Figure 4.3: When R0 > 1, solution of the model (2.3) shows that the solution trajectory tends to EE. The
parameter values listed in Table 4.1 were used with δh = 0.99,Πh = 30,Πv = 60, Chv = 0.58, ζ = 0.96.
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The solution trajectories converge to endemic equilibrium when R0 > 1, as seen in Figure 4.3, and then the
disease continues to spread across the community.
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Figure 4.4: The impact of vaccine efficacy(e) is demonstrated using model simulations.

Figure 4.4 represents the effects of vaccine efficacy(e) for a 700 days timeline. If we do not use the vaccine, the
number of infected classes both humans and mosquitoes is highest, and the red curve represents this number
when vaccine efficacy is 0.5 then the number of infected classes is shown by the green curve. When the vaccine
efficacy is 0.75, the blue curve represents the number of infected classes.
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Figure 4.5: The impact of waning rate of vaccine(ω) is demonstrated using model simulations.

Figure 4.5 shows the effects of the waning rate of the vaccine(ω) . Our model gives the same assumption as the
real-world situation.



Rahman et al. / GANIT J. Bangladesh Math. Soc. 45.1 (2025) 016–031 29

0 50 100 150 200 250 300
0

5

10

15

20

25

Time (Days)

 I
n
fe

c
te

d
 C

la
s
s
 f
o
r 

H
u
m

a
n

 

 

α=0

α=0.55

α=0.95

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

Time (Days)

 I
n
fe

c
te

d
 C

la
s
s
 f
o
r 

M
o
s
q
u
it
o
e
s

 

 

α=0

α=0.55

α=0.95

Figure 4.6: The impact of re-infection(α) is demonstrated using model simulations.

Figure 4.6 represents that with the increase of re-infection, the number of infected classes is increasing.
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Figure 4.7: The impact of vaccination rate(ζ) is demonstrated using model simulations.

Figure 4.7 shows that with the increase of vaccination rate(ζ) , the number of infected classes also increases. It
gives the same situation as the real world.
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Figure 4.8: The impact of modification parameter(η1) is demonstrated using model simulations.

From Figure 4.8, the modification parameter(η1) is related to the exposed class. When (η1) is increasing, the
exposed class is also increasing. Figure 4.8 shows the scenario for this case.
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Table 4.1: Parameter values of the model (2.3) for simulation.
Parameters Nominal value References

Πh 80 [3]

Πv 60 [3]

µh 0.0195 [3]

µv 0.016 [3]

δh 0.1 assumed

δv 0.057 assumed

δhb 0.88 assumed

e 0.92 [3]

α 0.9 assumed

p 0.4 assumed

ω 0.9 assumed

ϕh 0.1 [3]

ϕhb 0.2 assumed

σh 0.025 [3]

σv 0.025 [3]

ζ 0.86 [3]

Chv 0.18 assumed

η1 0.1 assumed

η2 0.2 assumed

ηv 0.07 assumed

5 Conclusion

We have constructed and investigated a mathematical model to evaluate how vaccination affects the spread
of dengue disease. First, we have analyzed the model theoretically. According to the theoretical result, when
R0 < 1, the model represents backward bifurcation. The DFE point shows locally asymptotically stable when
R0 < 1. If no re-infection occurs, the DFE point is globally asymptotically stable if R0 < 1. It is demonstrated
that the model has a distinct endemic equilibrium that is locally asymptotically stable whenever the basic
reproduction number (R0) is bigger than one, taking into account the incidence of mass action. Numerical
simulation of the model shows that the number of affected individuals decreases as vaccine effectiveness rises.
The numerical results also show that the decreasing rate of vaccination waning can lessen the number of infected
individuals. Numerical result suggests that the number of infected individuals appears to decline when there is
no re-infection. It also suggests that the infected number of humans and mosquitoes decreases as the vaccination
rate increases. Our study suggests that it is possible to reduce the disease burden significantly by regulating the
transmission probability from humans to mosquitoes. Additionally, our research suggests that the elimination
of the dengue disease is possible in the absence of re-infection.
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