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ABSTRACT 

     In this paper, we discuss fractional differential equations, including the Fokker-Planck equation and fractional 

diffusion differential equations, which are closely related to chemistry and engineering. To solve these equations, we 

employ the Laplace Variational Iteration Method (LVIM), which combines the Laplace transform with He’s Variational 

Iteration Method. To demonstrate the efficiency and validity of LVIM, we consider two 1-D Fokker-Planck equations 

and three fractional diffusion equations in 1-D, 2-D, and 3-D. We solve these equations using LVIM, and the results are 

presented analytically in tables and graphically using MATLAB for different values of the fractional order and these 

results are then compared with those obtained by existing methods. The solutions obtain as infinite series, and for certain 

values of the fractional order, they are found to be similar to the exact results. 

 

 

 

© 2025 Published by Bangladesh Mathematical Society 

Received: May 21, 2025      Accepted: September 03, 2025  Published Online: December 30, 2025 

Keywords: Fractional differential equations; Laplace transform; Laplace Variational Iteration Method; Caputo 
derivative; Mittag-Leffler function. 
 

AMS Subject Classifications 2025: 34A08, 44A10, 65M99.  

 

Introduction:   

 Fractional-order differential equations, in which an unknown function has a fractional-order derivative, have recently 

received a lot of interest. This interest stems from both the rapid growth of theoretical knowledge and the numerous 

applications of these differential equations in various scientific and engineering domains and was first mentioned in a  

 

Nomenclature  

𝛼 Fractional order of derivative 

𝑓𝛼  Alpha times derivatives of function 𝑓 

𝐷𝑥
𝛼         Riemann fractional derivative of order 𝛼 with respect to 𝑥 

𝐷𝑥
𝛼

𝑎
𝐶        Caputo fractional derivative of order 𝛼 with respect to 𝑥, at the point 𝑎 

𝐸𝛼(𝜉)    Mittag-Leffler function 
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1695 letter from Leibniz to L’Hopital [1, 2]. Several recent studies have employed fractional-order differential models to  

analyze real-world biological systems. Shah et al. [3] proposed a COVID-19 model using the Caputo derivative, 

accounting for natural death in all compartments. Naik et al. [4] applied Caputo-Fabrizio and Atangana-Baleanu operators 

to enzyme-catalyzed processes to capture hereditary behaviors. In 2024, a fractional model using Caputo derivatives was 

developed for HIV-HCV co-infection [5]. Another study used a Caputo-based optimal control model for RSV 

transmission, exploring solution properties, stability, bifurcation, and control strategies [6]. Many FDEs do not have exact 

solutions, therefore mathematicians have been focusing on numerical solutions of these equations. Among them most 

useful method to find the approximate or numerical solutions are the Adomian Decomposition Method (ADM), 

Variational Iteration Method (VIM), Fractional Difference Method (FDM), Differential Transform Method (DTM), and 

Homotopy Perturbation Method (HPM). Classical solution techniques like the Laplace transform method, Fractional 

Green’s function method, Mellin transform method, and the method of orthogonal polynomials are also employed [11]. 

VIM and ADM are particularly noteworthy for their ability to provide both symbolic and numerical solutions to linear 

and nonlinear differential equations without requiring linearization or discretization [8,9,10,11]. A key advantage of using 

fractional derivatives over ordinary differential equations is their ability to demonstrate how a curve’s slope transitions 

into a horizontal line, parallel to the x-axis, across varying values of 𝛼 (𝛼 is fractional order i.e. 𝛼 ∈ ℛ). For example, if 

we graph the equation 𝑦 = 5𝑥2 for both cases i.e. ordinary derivatives and fractional derivatives at 𝛼 =
0.2,0.4, ⋯ ,1.0, ⋯ , 2.0 and the function we can easily observe this effect (Shown in the figure 1). 

 

                                                   (a) 
 

(b) 

Figure 1: (a) Function and its 1st & 2nd derivatives (b) Function and its fractional derivatives for different values of α 

The Brownian motion of particles is modeled by the Fokker-Planck equation, which was first proposed by Fokker and 

Planck [12]. It is widely used in domains, such as chemistry, biology, astrophysics, economics, nucleation, electron 

relaxation in gases, optical bi-stability, polymer dynamics, quantum optics, reactive systems, and many more [13].  

The Fokker-Planck equation describes the evolution of the probability distribution of a random variable over space and 
time, making it particularly useful for modeling solute transport. The general form of the Fokker-Planck equation for a 

concentration field ϕ(x, t) in one spatial dimension and at time t is as follows,  
∂αϕ(𝑥,t)

∂tα + [
∂

∂𝑥
A(𝑥, t) −

∂2

∂𝑥2 B(𝑥, t)] ϕ(𝑥, t) = 0                                                                                                  (1.1) 

The initial condition 𝜙(𝑥, 0) = 𝑓(𝑥),    𝑥 ∈ 𝑅, Here,    A(𝑥, t)is the drift coefficient and  B(𝑥, t) > 0 is diffusion 

coefficient. 

The more general FPE is non-linear FPE can be written as follows,  
∂αϕ(𝑥,t)

∂tα
+ [

∂

∂x
A(𝑥, t, ϕ) −

∂2

∂x2
B(𝑥, t, ϕ)] ϕ(𝑥, t) = 0        (1.2) 

 Fractional nonlinear Fokker-Planck-like equations are used to analyze physical situations involving anomalous diffusion, 

which often includes a combination of nonlinear terms and fractional derivatives [14, 15]. These equations are effective 

in numerous contexts, such as frequency-dependent damping of materials, viscoelasticity, and diffusion processes.  

The distribution of heat or temperature fluctuation within a region over time is described by the heat equation, a significant 

partial differential equation that Joseph Fourier created in 1822. This formula is noteworthy in several fields of science. 

It is closely related to ‘Brownian motion’ through the Fokker-Planck equation and is a standard example of a parabolic 

partial differential equation in mathematics [16]. Studies of chemical diffusion and other related phenomena use the 

diffusion equation, an extended version of the heat equation. According to the heat equation, if no additional heat is 

introduced, the temperature of a heated item submerged in cold water will gradually drop and approach equilibrium [17]. 
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Now, we consider the general structure of fractional heat equations. 

𝐷𝑡
𝛼Ψ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(𝑥, 𝑦, 𝑧, 𝑡)

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑦, 𝑧, 𝑡) + 𝑔(𝑥, 𝑦, 𝑧, 𝑡)
𝜕2

𝜕𝑦2 Ψ(𝑥, 𝑦, 𝑧, 𝑡) + ℎ(𝑥, 𝑦, 𝑧, 𝑡)
𝜕2

𝜕𝑧2 Ψ(𝑥, 𝑦, 𝑧, 𝑡) ; 0 < 𝛼 ≤ 1    

with the initial value Ψ(𝑥, 𝑦, 𝑧, 0) = 𝐻(𝑥, 𝑦, 𝑧, 𝑡), Ψt(𝑥, 𝑦, 𝑧, 0) = 𝑚(𝑥, 𝑦, 𝑧).                                                            (1.3) 

 

This paper is organized as follows: In Section 2, we present some basic definitions and theorems relevant to the study. In 

Section 3, we explain the Laplace Variational Iteration Method along with its stability and convergence. In Section 4, 

numerical examples are discussed with graphical representations and numerical tables. Finally, the concluding remarks 

of this paper with future plan. 

Preliminaries:  

 In this section, we provide the essential definitions and properties of fractional calculus and Laplace transform theory 

along with the conditions for Picard’s T-stability and convergence based on the Banach fixed point theorem, which will 

be used throughout the paper. 

Definitions:  

2.1 Grunwald - Letnikov Fractional Derivative [18] 

            𝑓𝛼(𝑥) = lim
𝑛→∞

(
1

ℎ
)

𝛼
∑ (−1)𝑗  (𝛼

𝑗
)  𝑓(𝑥 − 𝑗ℎ)𝑛

𝑗=0 , where, ℎ =
𝑥−𝑎

𝑛
, 𝑎 < 𝑥, h is known as step size. 

2.2 Riemann Integral for fractional calculus 

    𝐼𝛼(𝑓) =
1

Γ𝛼
∫ (𝑥 − 𝑢)𝛼−1𝑥

𝑎
𝑓(𝑢)𝑑𝑢,   𝑎 < 𝑥.    

2.3 Riemann Liouville’s Fractional Derivative 

    𝐷𝑥
𝛼𝑓(𝑥) =

𝑑𝑛

𝑑𝑥𝑛  𝐼𝑥
𝑛−𝛼𝑓(𝑥) =

𝑑𝑛

𝑑𝑥𝑛  
1

Γ(𝑛−𝛼)
∫ (𝑥 − 𝑡)𝑛−𝛼−1𝑥

𝑎
𝑓(𝑡)𝑑𝑡, for 𝑛 − 1 ≤ 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑡 > 0. 

2.4 Caputo Fractional Derivative 

   𝐷𝑥
𝛼

𝑎
𝐶 𝑓(𝑥) = 𝐼𝑥

𝑛−𝛼 {
𝑑𝑛

𝑑𝑥𝑛  𝑓(𝑥)} =
1

Γn−α
∫ (𝑥 − 𝑡)𝑛−𝛼−1𝑥

𝑎
{

𝑑𝑛

𝑑𝑥𝑛 . 𝑐} 𝑑𝑡, for 𝑛 − 1 ≤ 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑡 > 0. 

2.5 Relation between Riemann-Liouville and Caputo fractional derivative [19] 

    𝐷𝛼
0
𝐶 𝜓(𝑥, 𝑡) = 𝐷𝛼

0
𝑅𝐿 𝜓(𝑥, 𝑡) − ∑

𝑥𝛼−𝑘

Γ(α − k + 1)
𝑛−1
𝑘=0 𝜓𝑘(𝑥, 0).  

2.6 Laplace transform of the Caputo fractional derivative [20, 21] 

     𝐿{ 𝐷𝑥
𝛼𝑓(𝑥)0

𝐶 } = 𝑠𝛼𝐹(𝑠) − ∑ 𝑠𝛼−𝑘−1𝑛−1
𝑘=0 𝑓𝑘(0). 

2.7 The Mittag-Leffler function 𝐸𝛼(𝜉) with 𝛼 > 0 

      𝐸𝛼(𝜉) = ∑
𝜉𝑘

Γ(αk+1)

∞
𝑘=0  , 𝛼 > 0, 𝜉 ∈ ℂ. 

Theorem: 

2.1 Let (𝑋, 𝑑) be a Banach space and 𝑇: 𝑋 → 𝑋 be a self-map of 𝑋 satisfying  d(T𝑥, Ty) ≤  βd(𝑥, T𝑥) + γ d(𝑥, y), 
for all 𝑥, y ∈ X, β ≥ 0, 0 ≤ γ < 1. Then T is Picard T – stable [22]. 

2.2 Let X = (X, d) be a metric space. A mapping T: X → X is called a contraction on 𝑋 if there is a nonnegative real 

number  γ < 1 such that, for all x, y ∈ X,  d(T𝑥, Ty) ≤ γ d(𝑥, y), 0 ≤ γ < 1. 
Banach fixed point theorem: Consider a metric space X = (X, d), where X = ∅. Suppose that 𝑋 is complete, and let 

T: X → X be a contraction on 𝑋. Then T has a unique fixed point [22]. 

  

  In the following paper, the Caputo fractional derivative is preferred due to its effectiveness in modeling real-world 

problems, handling initial value problems, and its compatibility with the Laplace transform, while also providing a smooth 

transition to classical models [23, 24]. 

Laplace Variational Iteration Method (LVIM): 

 LVIM is a combination of Laplace transform and Variational Iteration Method. To demonstrate the fundamental concept 

of this method, first, we consider a general fractional nonlinear nonhomogeneous partial differential equation along with 

the initial conditions of the form: 

𝜓𝑡
𝛼(𝜉, 𝑡) = 𝐿Ѱ(𝜉, 𝑡) + 𝑁Ѱ(𝜉, 𝑡) + 𝑓(𝜉, 𝑡)                                                                                                               (3.1)  

with the initial values given by  Ѱ𝑛(𝜉, 0) = ℎ𝑘(𝜉, 0), 𝑛 = 0,1,2,3, ⋯ , 𝑚 − 1  

where, 𝛼 is the order of fractional Caputo derivative and 𝐿, 𝑁 denote the Linear and non-linear differential equation. Using 
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(2.6) in the left side of the equation (3.1) in order to convert the fractional differential equation into a partial differential 

equation [13]. 

𝐿[Ѱ(𝜉, 𝑡)] =
1

𝑆𝜃
∑ 𝑆𝜃−1−𝑛𝑚−1

𝑛=0 Ѱ𝑛(𝜉, 0) +
1

𝑆𝜃 𝐿[𝑓(𝜉, 𝑡)] + 𝐿[𝐿Ѱ(𝜉, 𝑡) + 𝑁Ѱ(𝜉, 𝑡)]                                                  (3.2) 

Taking inverse Laplace transform in both sides, we have  

Ѱ(𝜉, 𝑡) = 𝐿−1 [
1

𝑆𝜃
∑ 𝑆𝜃−1−𝑛𝑚−1

𝑛=0 Ѱ𝑛(𝜉, 0) +
1

𝑆𝜃 𝐿[𝑓(𝜉, 𝑡)]] + 𝐿−1[𝐿[𝐿Ѱ(𝜉, 𝑡) + 𝑁Ѱ(𝜉, 𝑡)]]                                      (3.3) 

Differentiating equation (3.3) with respect to 𝑡, we get 

𝜕Ѱ(𝜉,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑡
{𝐿−1 [

1

𝑆𝜃
∑ 𝑆𝜃−1−𝑛𝑚−1

𝑛=0 Ѱ𝑛(𝜉, 0) +
1

𝑆𝜃 𝐿[𝑓(𝜉, 𝑡)]] + 𝐿−1[𝐿[𝐿Ѱ(𝜉, 𝑡) + 𝑁Ѱ(𝜉, 𝑡)]] }                                (3.4)   

This is the 1st order partial differential equation. Now constructing the correction functional for solving the following 

fractional differential equation  

 Ѱ𝑛+1(𝜉, 𝑡) =  Ѱ𝑛(𝜉, 𝑡) + ∫ 𝜆 [
𝜕Ѱ𝑛(𝜉,𝜀)

𝜕𝜀
− 

𝜕

𝜕𝜀
{𝐿−1 [

1

𝑆𝜃
∑ 𝑆𝜃−1−𝑛𝑚−1

𝑛=0 Ѱ𝑛(𝜉, 0) + 
1

𝑆𝜃 𝐿[𝑓(𝜉, 𝑡)]] +  𝐿−1[𝐿[𝐿Ѱ(𝜉, 𝜀)        +
𝑡

0

                     𝑁Ѱ(𝜉, 𝜀)]] }] 𝑑𝜀                                                                                       (3.5) 

where, λ denotes the Lagrange multiplier. To compute its value, Equation (3.5) is reformulated based on the stationary 

theory [25],  

 𝛿Ѱ𝑛+1(𝜉, 𝑡) = 𝛿Ѱ𝑛(𝜉, 𝑡) + 𝛿 ∫ 𝜆 [
𝜕Ѱ𝑛(𝜉,𝜀)

𝜕𝜀
−

𝜕

𝜕𝜀
{𝐿−1 [

1

𝑆𝜃
∑ 𝑆𝜃−1−𝑛𝑚−1

𝑛=0 Ѱ𝑛(𝜉, 0) +
1

𝑆𝜃 𝐿[𝑓(𝜉, 𝑡)]] +
𝑡

0

                       𝐿−1 [𝐿[𝐿Ѱ(𝜉, 𝜀) + 𝑁Ψ̃(𝜉, 𝜀)]] }] (𝑑𝜀)𝜃 , 

here, Ψ̃(𝜉, 𝜀) is the restricted variation, meaning that,  Ψ̃(𝜉, 𝜀) = 0 

So, from variation theory, taking the coefficient of 𝛿Ψ to zero, we get,   

       
𝜕𝜃

𝜕𝜀𝜃  𝜆(𝜉, 𝜀) = 0   & 1 + λ|𝜖=𝑡 = 0,  therefore, λ(ξ, t) = −1. 

And begin with the primary iteration [8] 

 Ψ0(𝜉, 𝑡) = Ψ(𝜉, 0) + 𝑡Ψ𝑡(𝜉, 0),                                     (3.6) 

and the exact solution can be found as Ψ(𝜉, 𝑡) = lim
𝑛→∞

Ψ𝑛(𝜉, 𝑡). 

Stability and convergence analysis  

 In the following, we establish an important result concerning the stability of the LVIM. To verify Picard stability, it is 

sufficient to show that the iterative operator associated with LVIM satisfies the conditions specified in theorem (2.1). 

 

Theorem 3.1 Let (𝑋, || · ||) be a Banach space and 𝑇: 𝑋 → 𝑋 be a self-map of 𝑋. Then the LVIM iteration procedure   

defined by  

ψn+1(ξ, t) = Tψn(ξ, t) = Ѱn(ξ, t) + ∫ λ [
∂Ѱn(ξ,ε)

∂ε
−

∂

∂ε
{L−1 [

1

Sθ
∑ Sθ−1−nm−1

n=0 Ѱn(ξ, 0) +
1

Sθ L[f(ξ, t)]] +
t

0

                                                                                                                                       L−1[L[LѰ(ξ, ε) + NѰ(ξ, ε)]] }] dε           (3.7) 

is Picard T-stable provided that [26]  

i) ‖Ψ𝑛(𝜉, 0) − Ψ𝑚(𝜉, 0)‖ ≤ 𝛿0‖Ψ𝑛(𝜉, 𝑡) − Ψ𝑚(𝜉, 𝑡)‖  for some 𝛿0 > 0  and for any 𝑡 in the domain; 

ii) ‖𝑓(Ψ𝑛(𝑝0𝜉, 𝑞0𝑡) − Ψ𝑚(𝑝0𝜉, 𝑞0𝑡),
𝜕

𝜕𝜉
 Ψ𝑛(𝑝1𝜉, 𝑞1𝑡) −

𝜕

𝜕𝜉
 Ψ𝑚(𝑝1𝜉, 𝑞1𝑡), … … ‖ ≤ 𝛿1‖Ψ𝑛(𝜉, 𝑡) − Ψ𝑚(𝜉, 𝑡)‖ 

for some 𝛿0 > 0; 

iii) 𝛾 =  𝛿0 + 𝛿1 ‖
𝑡𝛼

Γ(𝛼+1)
‖ < 1.  

Proof: Let us consider equation (3.7) as     

𝜓𝑛+1(𝜉, 𝑡) = Ѱ𝑛(𝜉, 𝑡) + ∫ 𝜆Rn(𝑥, ε)𝑑𝜀

𝑡

0

 

where 𝑹𝒏 represents the entire integrand involving derivatives, inverse Laplace, linear and nonlinear terms in the 

functional.  

That is, 𝐑𝐧 =
∂Ѱn(ξ,ε)

∂ε
−

∂

∂ε
{L−1 [

1

Sθ
∑ Sθ−1−nm−1

n=0 Ѱn(ξ, 0) +
1

Sθ L[f(ξ, t)]] + L−1[L[LѰ(ξ, ε) + NѰ(ξ, ε)]] }  

Now,  

    TΨ𝑛(𝜉, 𝑡) − TΨ𝑚(𝜉, 𝑡) = 𝜓𝑛+1(𝜉, 𝑡) − 𝜓𝑚+1(𝜉, 𝑡) = Ψ𝑛(𝜉, 𝑡) − Ψ𝑚(𝜉, 𝑡) + ∫ 𝜆[Rn(𝑥, ε) − Rm(𝑥, ε)]dε
𝑡

0
 



Abusaleh and Aman Ullah / GANIT J. Bangladesh Math. Soc. 45.2 (2025) 031–044                           35 

 

Taking Norm in both sides, we get 

 ‖𝜓𝑛+1(𝜉, 𝑡) − 𝜓𝑚+1(𝜉, 𝑡)‖ ≤ ‖Ψ𝑛(𝜉, 𝑡) − Ψ𝑚(𝜉, 𝑡)‖ + ‖∫ 𝜆[Rn(𝑥, ε) − Rm(𝑥, ε)]dε
𝑡

0
‖                                       (3.8)  

Let all the operator and function are satisfy a Lipschitz-type condition and the Laplace transform and its inverse are 

linear and bounded operators, then we assume 

|𝐑𝐧 − 𝐑𝐦| ≤ 𝛅𝟏|𝚿𝐧 − Ψ𝑚| 
So the integral becomes: 

|∫ λ(Rn − Rm)dε

𝑡

0

| ≤ 𝛅𝟏 ∫|λ||𝚿𝐧 − Ψ𝑚|dε

𝑡

0

 

here, Lagrange multiplier is defined by [27],𝜆 =
(−1)𝜃

Γθ
(𝑡 − 𝜀)𝜃−1, so,  ∫ |λ|dε

𝑡

0
=  

𝑡𝜃

Γ(θ+1)
 

Taking Norm in both sides, we get,  

‖∫ λ(Rn − Rm)dε
𝑡

0
‖ ≤ 𝛅𝟏.

𝑡𝜃

Γ(θ+1)
‖𝚿𝐧 − Ψ𝑚‖; ‖𝚿𝐧 − Ψ𝑚‖ is constant with respect to ε 

From initial condition (i) we have, 

‖Ψ𝑛(𝜉, 0) − Ψ𝑚(𝜉, 0)‖ ≤ 𝛿0‖𝚿𝐧 − Ψ𝑚‖ 

So combining all these we have, from (3.8) 

‖𝚿𝐧+𝟏 − Ψ𝑚+1‖ ≤ 𝛿0‖𝚿𝐧 − Ψ𝑚‖ + 𝛅𝟏.
𝑡𝜃

Γ(θ+1)
‖𝚿𝐧 − Ψ𝑚‖ = γ‖𝚿𝐧 − Ψ𝑚‖ ; here, γ = 𝛿0 + 𝛅𝟏.

𝑡𝜃

Γ(θ+1)
< 1  

therefore, we have,  ‖𝐓𝚿𝐧 − TΨ𝑚‖ = ‖𝚿𝐧+𝟏 − Ψ𝑚+1‖ ≤ γ‖𝚿𝐧 − Ψ𝑚‖                                                                (3.9) 

                ‖𝐓𝚿𝐧 − TΨ𝑚‖ < 𝛽‖𝚿𝐧 − Ψ𝑚‖ + γ‖𝚿𝐧 − Ψ𝑚‖;   𝛽 ≥ 0 

             𝛽‖𝚿𝐧 − Ψ𝑚‖ reflects how much this residual influences stability. 

Hence, by the theorem (2.1) LVIM is Picard T-stable if 𝛾 < 1. 
 

  In this section, we establish the convergence of the Laplace Variational Iteration Method using the Banach fixed point 

theorem. 

Theorem 3.2 Let (X, ·) be a Banach space and 𝑇: 𝑋 → 𝑋, a mapping associated with LTVIM, be defined by  
𝜓𝑛+1(𝜉, 𝑡) = 𝑇𝜓𝑛(𝜉, 𝑡) 

Then T has a unique fixed point and the sequence {Ψ𝑛}𝑛=1
∞  generated by LTVIM with an initial value 𝛹0 ∈ 𝑋 converges 

to this fixed point [26] 

Proof: Combination of theorem (2.1), (2.2), and equation (3.9) implies that T has a unique fixed point. Let 𝛹0 ∈ 𝑋 and 

consider the sequence {Ψ𝑛}𝑛=1
∞  generated by LVIM with 𝛹𝑛+1 =  𝛹𝑛 , observe that  

                        𝜉1= 𝑇𝜉0,    𝜉2= 𝑇𝜉1= 𝑇2𝜉0,  ⋯,    𝜉𝑛 =  𝑇𝑛𝜉0, ⋯                                                                                                               (3.10)  

Equation (3.10) illustrates a sequence of iterates obtained by repeatedly applying the operator 𝑻 to the initial point 𝜉0. 

The convergence of the LTVIM can be ensured by proving that this sequence is Cauchy sequence.  

By combining (3.9) and (3.10) we obtain 

‖Ψ𝑛+1 − Ψ𝑛‖ =  ‖𝑇Ψ𝑛 − TΨ𝑛−1‖  
≤  𝛾‖Ψ𝑛 − Ψ𝑛−1‖  

                                                                                 =  𝛾 ‖TΨ𝑛−1 − TΨ𝑛−2‖ 
                                                                                 ≤  𝛾2 ‖Ψ𝑛−1 − Ψ𝑛−2‖  
                                                                                  ⋯         ⋯           ⋯  

  ≤ 𝛾𝑛  ‖Ψ1 − Ψ0‖                                                                                       (3.11)  
By the triangle inequality and equation (3.10), for any 𝑚, 𝑛 ∈ 𝑁 such that𝑛 >  𝑚, we have  

                      ‖Ψ𝑚 − Ψ𝑛‖ = ‖Ψ𝑚 − Ψ𝑚+1 + Ψ𝑚+1 − Ψ𝑚+2 + Ψ𝑚+2 + ⋯ + Ψ𝑛−1 − Ψ𝑛‖  

≤ ‖Ψ𝑚 − Ψ𝑚+1‖ + ‖Ψ𝑚+1 − Ψ𝑚+2 ‖ + ⋯ ‖Ψ𝑛−1 − Ψ𝑛‖ 

= ‖TΨ𝑚−1 − TΨ𝑚‖ + ‖TΨ𝑚 − TΨ𝑚+1‖ + ⋯ + ‖TΨ𝑛−2 − TΨ𝑛−1‖ 

≤ 𝛾𝑚  ‖Ψ1 − Ψ0‖ + 𝛾𝑚+1 ‖Ψ1 − Ψ0‖ + ⋯ 𝛾𝑛−1 ‖Ψ1 − Ψ0‖ 

= (𝛾𝑚 + 𝛾𝑚+1 + 𝛾𝑚+2 + ⋯ + 𝛾𝑛−1)‖Ψ1 − Ψ0‖ 

                                           = 𝛾𝑚(1 +  𝛾 + 𝛾2 + ⋯ + 𝛾𝑛−𝑚−1)‖Ψ1 − Ψ0‖ 

Since 0 ≤ 𝛾 < 1, the sum 1 +  𝛾 + 𝛾2 + ⋯ + 𝛾𝑛−𝑚−1 represents a finite geometric progression whose total sum is    
1−𝛾𝑛−𝑚

1− 𝛾
. Therefore,  

‖Ψm − Ψn‖ ≤ 𝛾𝑚 (
1−𝛾𝑛−𝑚

1− 𝛾
) ‖Ψ1 − Ψ0‖ ≤

𝛾𝑚

1− 𝛾
‖Ψ1 − Ψ0‖, 𝑎𝑠 1 − 𝛾𝑛−𝑚 ≤ 1                         (3.12) 

Since 0 ≤  𝛾 <  1 and ‖Ψ1 − Ψ0‖ is fixed, by choosing m sufficiently large, the right-hand side of equation (3.12) can 

be made arbitrarily small. Consequently, the sequence {𝛹𝑛} is Cauchy and thus convergent. 

Let, {Ψ𝑛} converge to 𝛹 ∈ 𝑋. To complete the proof, it is necessary to demonstrate that the limit Ψ satisfies 𝑇Ψ = Ψ 

thereby establishing that it is the unique fixed point of the operator 𝑇. From the triangle inequality and equation (3.10), 
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we have, 

‖Ψ − 𝑇Ψ‖ ≤ ‖Ψ − Ψ𝑛‖ + ‖Ψ𝑛 − 𝑇Ψ‖ 

                                                                                   = ‖Ψ − Ψ𝑛‖ + ‖TΨ𝑛−1 − 𝑇Ψ‖ 

                                                                                  ≤ ‖Ψ − Ψ𝑛‖ + 𝛾‖Ψ𝑛−1 − Ψ‖ 

                   = 0 𝑎𝑠 𝑛 → ∞ 

This implies that ‖Ψ − 𝑇Ψ‖ = 0. Since ‖. ‖ is a metric, we have 𝑇Ψ = Ψ , i.e., Ψ is the fixed point of T which is 

unique. 

 

Illustrative Examples:  

   In this section five illustrative examples are solved by LVIM to demonstrate the efficiency of this method. The results 

are presented in a couple of tables (Table 1-Table 10) in order to understanding the behavior of the result and finally 

shown by graphically and compared them with existing method also that is Fractional Power Series Method (FPSM) or 

Fractional Variational Homotopy Perturbation Iteration Method (FVHPIM).  

 

Example 1: The Time Fokker-Planck Equation  

𝜕𝛼Ѱ(𝑥,𝑡)

𝜕𝑡𝛼 =
𝜕Ѱ(𝑥,𝑡)

𝜕𝑥
+

𝜕2Ѱ(𝑥,𝑡)

𝜕𝑥2   ;  0 < 𝛼 ≤ 1                                                                                                                     (4.1)  

with initial condition Ѱ(𝑥, 0) = 𝑥  [27] 

Solution: Using the initial condition, our primary iteration is  Ѱ0(𝑥, 𝑡) =  Ѱ(𝑥, 0) + 𝑡𝑢𝑡(𝑥, 0) = 𝑥 ; 

Using Laplace transform in (4.1) L[Ѱ(𝑥, 𝑡)] =
1

𝑆𝛼 . 𝑆𝛼−1. Ѱ0(𝑥, 0) +
1

𝑆𝛼 𝐿 [
𝜕2Ѱ(𝑥,𝑡)

𝜕𝑥2 +
𝜕Ѱ(𝑥,𝑡))

𝜕𝑥
]  

   =
𝑥

𝑆
+

1

𝑆𝛼 𝐿[
𝜕2Ѱ(𝑥,𝑡)

𝜕𝑥2 +
𝜕Ѱ(𝑥,𝑡))

𝜕𝑥
]  

Taking inverse Laplace transform on both sides, we get,Ѱ(𝑥, 𝑡) = 𝑥 + 𝐿−1 {
1

𝑆𝛼 𝐿[
𝜕2Ѱ(𝑥,𝑡)

𝜕𝑥2 +
𝜕Ѱ(𝑥,𝑡)

𝜕𝑥
]}                         (4.2)  

Differentiating both sides of (4.2) with respect to t, 
𝜕Ѱ(𝑥,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑡
 𝐿−1 {

1

𝑆𝛼 𝐿[
𝜕2Ѱ(𝑥,𝑡)

𝜕𝑥2 +
𝜕Ѱ(𝑥,𝑡)

𝜕𝑥
]} 

Now the correction functional for this problem is 

Ѱ𝑛+1(𝑥, 𝑡) = Ѱ𝑛(𝑥, 𝑡) + 𝜆 ∫ [
𝜕Ѱn(𝑥,𝜀)

𝜕𝜀
−

𝜕

𝜕𝜀
 𝐿−1 {

1

𝑆𝛼 𝐿 [
𝜕2Ѱn(𝑥,𝑡)

𝜕𝑥2 +
𝜕Ѱn(𝑥,𝑡)

𝜕𝑥
]}]

𝑡

0
𝑑𝜀                                                   (4.3) 

From variation theory, λ can be found using by 1 + λ|ε=t = 0  so, λ = −1 

So our 1st iteration will be taking 𝑛 = 0 in (4.3) 

Ѱ1(𝑥, 𝑡) = Ѱ0(𝑥, 𝑡) − ∫ [
𝜕Ѱ0(𝑥,𝜀)

𝜕𝜀
−

𝜕

𝜕𝜀
 𝐿−1 {

1

𝑆𝛼
𝐿 [

𝜕2Ѱ0(𝑥,𝑡)

𝜕𝑥2
+

𝜕Ѱ0(𝑥,𝑡)

𝜕𝑥
]}]

𝑡

0
𝑑𝜀  

                    = 𝑥 +
𝑡𝛼

𝛤(𝛼 +1)
  

Similarly, Ѱ2(𝑥, 𝑡) = 𝑥 +
𝑡𝛼

𝛤(𝛼 +1)
 ; Ѱ3(𝑥, 𝑡) = 𝑥 +

𝑡𝛼

𝛤(𝛼 +1)
 

The nth term will be then Ѱ𝑛(𝑥, 𝑡) = 𝑥 +
𝑡𝛼

𝛤(𝛼 +1)
  

The general solution of equation (4.1) can be found taking by  𝑛 → ∞ 

 ψ(x, t) = ∑ Ѱn(x, t) = x +
tα

Γ(α +1)
∞
n=0                                                                                                                            (4.4) 

 

Table 1: Numerical values of 𝜓(𝑥, 𝑡) at 𝑥 = 0.2 

 𝑡 = 0.25 𝑡 = 0.50 𝑡 = 0.75 𝑡 = 1.0 

α = 0.2 1.025402 1.148138 1.228229 1.289124 

𝛼 = 0.4 0.847326 1.054152 1.204550 1.327060 

𝛼 = 0.6 0.687149 0.938380 1.141748 1.319175 

𝛼 = 0.8 0.554179 0.816662 1.052944 1.273671 

𝛼 = 1.0 0.450000 0.700000 0.950000 1.200000 
 

Table 2: Numerical values of 𝜓(𝑥, 𝑡) at 𝑥 = 0.5 

 𝑡 = 0.25 𝑡 = 0.50 𝑡 = 0.75 𝑡 = 1.00 

𝛼 = 0.2 1.325402 1.448138 1.528229 1.589124 

𝛼 = 0.4 1.147326 1.354152 1.504550 1.627060 

𝛼 = 0.6 0.987149 1.238380 1.441748 1.619175 

𝛼 = 0.8 0.854179 1.116662 1.352944 1.573671 

𝛼 = 1.0 0.750000 1.000000 1.250000 1.500000 
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Example 2: The time fractional Fokker Planck equation  

𝜕𝛼Ѱ(𝑥,𝑡)

𝜕𝑡𝛼 = (1 + 𝑥)
𝜕Ѱ(𝑥,𝑡)

𝜕𝑥
+ 𝑒𝑡𝑥2 𝜕2Ѱ(𝑥,𝑡)

𝜕𝑥2   ;  0 < 𝛼 ≤ 1                                                                                            (4.5) 

with initial condition Ѱ(𝑥, 0) = 1 + 𝑥 [27] 

Solution: Taking the Laplace transform for fractional differential equation (4.5) 

𝐿[Ѱ(𝑥, 𝑡)] =
1

𝑆
Ѱ(𝑥, 0) +

1

𝑆𝛼
𝐿 [(1 + 𝑥)

𝜕Ѱ(𝑥,𝑡)

𝜕𝑥
+ 𝑒𝑡𝑥2 𝜕2Ѱ(𝑥,𝑡)

𝜕𝑥2
]  

                  =
1+𝑥

𝑆
+

1

𝑆𝛼 𝐿 [(1 + 𝑥)
𝜕Ѱ(𝑥,𝑡)

𝜕𝑥
+ 𝑒𝑡𝑥2 𝜕2Ѱ(𝑥,𝑡)

𝜕𝑥2 ]  

Taking inverse Laplace transform in the both sides 

Ѱ(𝑥, 𝑡) = 1 + 𝑥 + 𝐿−1 {
1

𝑆𝛼 𝐿 [(1 + 𝑥)
𝜕Ѱ(𝑥,𝑡)

𝜕𝑥
+ 𝑒𝑡𝑥2 𝜕2Ѱ(𝑥,𝑡)

𝜕𝑥2 ]}                                               (4.6) 

Differentiating both sides of (4.6) with respect to t  
𝜕Ѱ(𝑥,𝑡)

𝜕𝑡
=

𝜕 

𝜕𝑡
[𝐿−1 {

1

𝑆𝛼 𝐿 [(1 + 𝑥)
𝜕Ѱ(𝑥,𝑡)

𝜕𝑥
+ 𝑒𝑡𝑥2 𝜕2Ѱ(𝑥,𝑡)

𝜕𝑥2 ]}]                                                                                (4.7) 

The Correction functional of (4.7) for LVIM is given by 

Ѱ𝑛+1(𝑥, 𝑡) = Ѱ𝑛(𝑥, 𝑡) + 𝜆 ∫ [
𝜕Ѱn(𝑥,𝜀)

𝜕𝜀
−

𝜕

𝜕𝜀
 𝐿−1 {

1

𝑆𝛼 𝐿 [𝑒𝑡𝑥2 𝜕2Ѱn(𝑥,𝑡)

𝜕𝑥2 + (1 + 𝑥)
𝜕Ѱn(𝑥,𝑡)

𝜕𝑥
]}]

𝑡

0
𝑑𝜀                               (4.8)                       

Now taking n = 0  and 𝜆 = −1,we get, the 1st iteration is  

  Ѱ1(𝑥, 𝑡) = Ѱ0(𝑥, 𝑡) − ∫ [
𝜕Ѱ0(𝑥,𝜀)

𝜕𝜀
−

𝜕

𝜕𝜀
 𝐿−1 {

1

𝑆𝛼 𝐿 [𝑒𝑡𝑥2 𝜕2Ѱ0(𝑥,ε)

𝜕𝑥2 + (1 + 𝑥)
𝜕Ѱ0(𝑥,ε)

𝜕𝑥
]}]

𝑡

0
𝑑𝜀   

= (1 + 𝑥) − ∫ [
𝜕(1+x)

𝜕𝜀
−

𝜕

𝜕𝜀
 𝐿−1 {

1

𝑆𝛼 𝐿 [𝑒𝑡𝑥2 𝜕2(1+x)

𝜕𝑥2 + (1 + 𝑥)
𝜕(1+x)

𝜕𝑥
]}]

𝑡

0
𝑑𝜀  

= (1 + 𝑥) + ∫ [
𝜕

𝜕𝜀
 𝐿−1 {

1

𝑆𝛼 𝐿[𝑒𝑡𝑥2. 0 + (1 + 𝑥). 1]}]
𝑡

0
𝑑𝜀  

= (1 + 𝑥) + ∫ [
𝜕

𝜕𝜀
 𝐿−1 {

1

𝑆𝛼 𝐿[(1 + 𝑥)]}]
𝑡

0
𝑑𝜀  

= 1 + 𝑥 +
(1+𝑥)𝑡𝛼

𝛤(𝛼 +1)
   

Similarly,Ѱ2(𝑥, 𝑡) = 1 + 𝑥 +
(1+𝑥)𝑡𝛼

𝛤(𝛼 +1)
+

(1+𝑥)𝑡2𝛼

𝛤(2𝛼 +1)
 ; 

 Ѱ3(𝑥, 𝑡) = 1 + 𝑥 +
(1+𝑥)𝑡𝛼

𝛤(𝛼 +1)
+

(1+𝑥)𝑡2𝛼

𝛤(2𝛼 +1)
+

(1+𝑥)𝑡3𝛼

𝛤(3𝛼 +1)
  

 

  

       (a) (b) 

( 

(c) 

Figure 2: Three-dimensional graph of equation (4.4) by (a) FPSM at 𝛼 = 0.03  (b) LVIM at  𝛼 = 0.03  

(c) Exact result at 𝛼 = 1.0 by LVIM 
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The nth term is  

     Ѱ𝑛(𝑥, 𝑡) = 1 + 𝑥 +
(1+𝑥)𝑡𝛼

𝛤(𝛼 +1)
+

(1+𝑥)𝑡2𝛼

𝛤(2𝛼 +1)
+

(1+𝑥)𝑡3𝛼

𝛤(3𝛼 +1)
+ ⋯ +

(1+𝑥)𝑡𝑛𝛼

𝛤(𝑛𝛼 +1)
  

                    = (1 + 𝑥)(1 +
𝑡𝛼

𝛼!
+

(𝑡𝛼)2

2𝛼!
+

(𝑡𝛼)3

3𝛼!
+ ⋯) 

The general solution of (4.5) is   Ѱ(𝑥, 𝑡) = ∑
(1+𝑥)𝑡𝑛𝛼

𝛤(𝑛𝛼 +1)
∞
𝑛=0 = (1 + 𝑥) ∑

𝑡𝑛𝛼

𝛤(𝑛𝛼 +1)
∞
𝑛=0  =(1 + 𝑥)𝑒𝛼𝑡                               (4.9) 

 

Table 3: value of 𝜓(𝑥, 𝑡) for 𝑥 = 0.5 

 𝑡 = 2 𝑡 = 4 𝑡 = 6 𝑡 = 8 

𝛼 = 0.7 12.5202 42.3102 99.7506 192.4925 

𝛼 = 0.8 11.9175 46.3715 123.5618 263.2825 

𝛼 = 0.9 11.2223 49.4483 148.1629 347.9500 

𝛼 = 1.0 10.5000 51.5000 172.5000 445.5000 
 

Table 4: value of 𝜓(𝑥, 𝑡) for 𝑥 = 1.0 

 𝑡 = 2 𝑡 = 4 𝑡 = 6 𝑡 = 8 

𝛼 = 0.7 16.6936 56.4136 133.0008 256.6567 

𝛼 = 0.8 15.8900 61.8287 164.7490 351.0433 

𝛼 = 0.9 14.9631 65.9311 197.5506 463.9333 

𝛼 = 1.0 14.0000 68.6667 230.0000 594.0000 
 

 

 

 

 

 

Example 3: One-dimensional time-fractional diffusion equation 

        
𝜕𝛼Ѱ(𝑥,𝑡)

𝜕𝑡𝛼 =
𝜕Ѱ(𝑥,𝑡)

𝜕𝑥
+

𝜕2Ѱ(𝑥,𝑡)

𝜕𝑥2 ;       0 < 𝛼 ≤ 1                                                                                                    (4.10) 

with initial condition  Ѱ(𝑥, 0) = 𝑒𝑥 ; 𝑥𝜖[0,1];  𝑢(0, 𝑡) = 𝐸𝛼(2𝑡𝛼)   [28] 

Solution: Taking Laplace transform in (4.10) 

                𝐿[Ψ(𝑥, 𝑡)] =
𝑒𝑥

𝑠
+

1

𝑠𝛼  𝐿 [
𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) +
𝜕

𝜕𝑥
Ψ(𝑥, 𝑡) ]  

          ∴  
∂

 ∂t
[Ψ(𝑥, 𝑡)] =

𝜕

𝜕𝑡
[𝐿−1 {

1

𝑠𝛼
[𝐿 {

𝜕Ѱ(𝑥,𝑡)

𝜕𝑥
+

𝜕2Ѱ(𝑥,𝑡)

𝜕𝑥2
}]}]  

  

(a) (b) 

(c) 

Figure 3: Third order approximate solution of equation (4.9) (a) by FPSM at α = 0.01  (b) by LVIM at α = 0.01   

(c) Exact solution of equation (4.9) by LVIM at α = 0.01 
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The correction functional of LVIM for this problem can be constructed as follows, 

Ψn+1(𝑥, 𝑡) = Ψn(𝑥, 𝑡) + ∫ 𝜆 
𝑡

0
[

𝜕

𝜕𝜀
Ψn(𝑥, 𝜀) −

𝜕

𝜕𝜀
[𝐿−1 {

1

𝑠𝛼 [𝐿 {
𝜕Ѱ𝑛(𝑥,𝜀)

𝜕𝑥
+

𝜕2Ѱ𝑛(𝑥,𝜀)

𝜕𝑥2 }]}]] 𝑑𝜀                                           (4.11) 

Now, putting n = 0, 𝜆 = −1 in (4.11) for getting 1st approximation 

  Ψ1(𝑥, 𝑡) = Ψ0(𝑥, 𝑡) − ∫  
𝑡

0
[

𝜕

𝜕𝜀
Ψ0(𝑥, 𝜀) −

𝜕

𝜕𝜀
[𝐿−1 {

1

𝑠𝛼 [𝐿 {
𝜕Ѱ0(𝑥,𝜀)

𝜕𝑥
+

𝜕2Ѱ0(𝑥,𝜀)

𝜕𝑥2 }]}]] 𝑑𝜀  

= 𝑒𝑥 +
2𝑒𝑥𝑡𝛼

Γ(𝛼+1)
  

Similarly, Ψ2(𝑥, 𝑡) = 𝑒𝑥 +
2𝑒𝑥𝑡𝛼

Γ(𝛼+1)
+

4𝑒𝑥𝑡2𝛼

Γ(2𝛼+1)
 ; Ψ3(𝑥, 𝑡) = 𝑒𝑥 +

2𝑒𝑥𝑡𝛼

Γ(𝛼+1)
+

4𝑒𝑥𝑡2𝛼

Γ(2𝛼+1)
+

6𝑒𝑥𝑡3𝛼

Γ(3𝛼+1)
 

Then, the nth term will be,   Ψn(𝑥, 𝑡) =
𝑒𝑥2𝑛𝑡𝑛𝛼

Γ(n𝛼+1)
                                                                                         (4.12) 

The complete and general solution to the problem (4.10) can be developed by considering, 𝑛 → ∞  

Ψ(𝑥, 𝑡) = ∑
𝑒𝑥2𝑛𝑡𝑛𝛼

Γn𝛼+1
∞
𝑛=0 = 𝑒𝑥𝐸𝛼(2𝑡𝛼), Where, 𝐸𝛼(2𝑡𝛼) is Mittag - Leffler function                                       (4.13) 

 
Table 5: value of 𝜓(𝑥, 𝑡) for 𝑥 = 0.5 

 𝑡 = 0.1 𝑡 = 0.2 𝑡 = 0.3 𝑡 = 0.4 

𝛼 = 0.7 2.6424 3.6701 4.9623 6.6258 

𝛼 = 0.8 2.3457 3.0938 4.0127 5.1624 

𝛼 = 0.9 2.1495 2.7191 3.4129 4.2670 

𝛼 = 1.0 2.0138 2.4596 3.0042 3.6693 
 

Table 6: value of 𝜓(𝑥, 𝑡) for 𝑥 = 1.0 

 𝑡 = 0.1 𝑡 = 0.2 𝑡 = 0.3 𝑡 = 0.4 

𝛼 = 0.7 2.6424 3.6701 4.9623 6.6258 

𝛼 = 0.8 2.3457 3.0938 4.0127 5.1624 

𝛼 = 0.9 2.1495 2.7191 3.4129 4.2670 

𝛼 = 1.0 2.0138 2.4596 3.0042 3.6693 
 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

  

(a) (b)  

(c) 

Figure 4: The tenth-order approximate solution of Eq. (4.13) by (a) FVHPIM at α =  0.85 (b) LVIM at α =  0.85   

(c) Exact solution of Eq. (4.13) by LVIM at α =  1.0  
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Example 4: Two-dimensional time-fractional diffusion equation [28] 

𝜕𝛼Ψ(𝑥,𝑦,𝑡)

𝜕𝑡𝛼 =
𝜕2Ψ(𝑥,𝑦,𝑡)

𝜕𝑥2 +
𝜕2Ψ(𝑥,𝑦,𝑡)

𝜕𝑦2 + 𝑥
𝜕Ψ(𝑥,𝑦,𝑡)

𝜕𝑥
+ 𝑦

𝜕Ψ(𝑥,𝑦,𝑡)

𝜕𝑦
+ 2Ψ(𝑥, 𝑦, 𝑡) ; 0 < 𝛼 ≤ 1                                    (4.14) 

Subject to the initial condition, Ψ(𝑥, 𝑦, 0) = 𝑥 + 𝑦  

and the boundary conditions Ψ(0, 𝑦, 𝑡) = 𝑦𝐸𝛼(3𝑡𝛼), Ψ(1, 𝑦, 𝑡) = (1 + 𝑦)𝐸𝛼(3𝑡𝛼); Ψ(𝑥, 0, 𝑡) = 𝑥𝐸𝛼(3𝑡𝛼); 

     Ψ(𝑥, 1, 𝑡) = (𝑥 + 1)𝐸𝛼(3𝑡𝛼); 𝑡 ≥ 0;  

Solution: First of all, we consider the initial guess by using the following formula  

    Ψ0(𝑥, 𝑦, 𝑡) = Ψ(𝑥, 𝑦, 0) + 𝑡Ψt(𝑥, 𝑦, 0) ;      Therefore,   Ψ0(𝑥, 𝑦, 𝑡) = 𝑥 + 𝑦 

Now, taking the Laplace transform in both sides of the equation (4.14), we get 

       L[Ψ(𝑥, 𝑦, 𝑡)] =
𝑥+𝑦

𝑠
+

1

𝑠𝛼 𝐿 [
𝜕2Ψ(𝑥,𝑦,𝑡)

𝜕𝑥2 +
𝜕2Ψ(𝑥,𝑦,𝑡)

𝜕𝑦2 + 𝑥
𝜕Ψ(𝑥,𝑦,𝑡)

𝜕𝑥
+ 𝑦

𝜕Ψ(𝑥,𝑦,𝑡)

𝜕𝑦
+   2Ψ(𝑥, 𝑦, 𝑡)]  

Taking inverse Laplace transform,  
∂Ψ(𝑥,𝑦,𝑡)

∂t
=

𝜕

𝜕𝑡
[𝐿−1 {

1

𝑠𝛼 𝐿 [
𝜕2Ψ(𝑥,𝑦,𝑡)

𝜕𝑥2 +
𝜕2Ψ(𝑥,𝑦,𝑡)

𝜕𝑦2 + 𝑥
𝜕Ψ(𝑥,𝑦,𝑡)

𝜕𝑥
+ 𝑦

𝜕Ψ(𝑥,𝑦,𝑡)

𝜕𝑦
+ 2Ψ(𝑥, 𝑦, 𝑡)]}]                                     (4.15) 

Now, constructing the correction functional for solving the problem (4.15) taking by n = 0, 𝜆 = −1 is given by  

Ψ1(𝑥, 𝑦, 𝑡) = Ψ0(𝑥, 𝑦, 𝑡) − ∫ [
𝜕Ψ0(𝑥,𝑦,𝜖)

𝜕𝜖
−

𝜕

𝜕𝜖
𝐿−1 {

1

𝑠𝛼 𝐿 [
𝜕2Ψ0(𝑥,𝑦,𝜖)

𝜕𝑥2 +
𝜕2Ψ0(𝑥,𝑦,𝜖)

𝜕𝑦2 + 𝑥
𝜕Ψ0(𝑥,𝑦,𝜖)

𝜕𝑥
+ 𝑦

𝜕Ψ0(𝑥,𝑦,𝜖)

𝜕𝑦
+

𝑡

0

2Ψ0(𝑥, 𝑦, 𝜖)]}] 𝑑𝜖  

= 𝑥 + 𝑦 − ∫ [0 −
𝜕

𝜕𝜖
{𝐿−1 {

1

𝑠𝛼
𝐿(0 + 0 + 𝑥 + 𝑦 + 2𝑥 + 2𝑦)}}]

𝑡

0

𝑑𝜖 

= 𝑥 + 𝑦 + ∫ [
𝜕

𝜕𝜖
{𝐿−1 (

3𝑥 + 3𝑦

𝑠𝛼+1 )}]
𝑡

0

𝑑𝜖 

= 𝑥 + 𝑦 + ∫ [
𝜕

𝜕𝜖
{
𝜖𝛼(3𝑥 + 3𝑦)

𝑠𝛼+1
}]

𝑡

0

𝑑𝜖 

= 𝑥 + 𝑦 +
3(𝑥+𝑦)𝑡𝛼

Γ(𝛼+1)
  

Proceeding in this way,  

Ψ2(𝑥, 𝑦, 𝑡) = 𝑥 + 𝑦 +
3(𝑥+𝑦)𝑡𝛼

Γ(𝛼+1)
+

9(𝑥+𝑦)𝑡2𝛼

Γ(2𝛼+1)
  ; 

 Ψ3(𝑥, 𝑦, 𝑡) = 𝑥 + 𝑦 +
3(𝑥+𝑦)𝑡𝛼

Γ(𝛼+1)
+

9(𝑥+𝑦)𝑡2𝛼

Γ(2𝛼+1)
+

27(𝑥+𝑦)𝑡3𝛼

Γ(3𝛼+1)
 

We can find the k-the term, Ψk(𝑥, 𝑦, 𝑡) =
(𝑥+𝑦)3𝑘𝑡𝑘𝛼

Γ(k𝛼+1)
                                                                                                   (4.16) 

So, the required solution to the problem is that means the general solution of equation (4.14) can be found by taking,  𝑘 →
∞ 

Ψ(𝑥, 𝑦, 𝑡) = ∑
(𝑥+𝑦)3𝑘𝑡𝑘𝛼

Γ(k𝛼+1)

∞ 
𝑘=1 =(𝑥 + 𝑦)𝐸𝛼(3𝑡𝛼)                                                                                           (4.17) 

𝐸𝛼(3𝑡𝛼) is Mittag-Leffler function; which is the exact solution [28] of the problem (4.14) at 𝛼 = 1.0 

 

Table 7: value of  𝛹(𝑥, 𝑦, 𝑡) for different values of 𝑥 =
0.3 & 𝑦 = 0.6 

 𝑡 = 0.1 𝑡 = 0.2 𝑡 = 0.3 𝑡 = 0.4 

𝛼 = 0.75 1.6837 2.7192 4.2824 6.6748 

𝛼 =  0.8 1.5412 2.376 3.591 5.3819 

𝛼 = 0.95 1.2726 1.7657 2.4387 3.3611 

𝛼 = 1.0 1.2149 1.6399 2.2136 2.9881 
 

Table 8: value of  𝛹(𝑥, 𝑦, 𝑡) for different values of 𝑥 =
0.45 & 𝑦 = 0.75 

 𝑡 = 0.1 𝑡 = 0.2 𝑡 = 0.3 𝑡 = 0.4 

𝛼 = 0.75 2.2449 3.6256 5.7099 8.8998 

𝛼 =  0.8 2.0549 3.1679 4.788 7.1758 

𝛼 = 0.95 1.6967 2.3543 3.2516 4.4815 

𝛼 = 1.0 1.6198 2.1865 2.9515 3.9841 
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Example 5: Three-dimensional time-fractional diffusion equation [28] 

𝜕𝛼Ψ(𝑥,𝑦,𝑧,𝑡)

𝜕𝑡𝛼 =
𝜕2Ψ(𝑥,𝑦,𝑧,𝑡)

𝜕𝑥2 +
𝜕2Ψ(𝑥,𝑦,𝑧,𝑡)

𝜕𝑦2 +
𝜕2Ψ(𝑥,𝑦,𝑧,𝑡)

𝜕𝑧2 + 𝑥
𝜕Ψ(𝑥,𝑦,𝑧,𝑡)

𝜕𝑥
+ 𝑦

𝜕Ψ(𝑥,𝑦,𝑧,𝑡)

𝜕𝑦
+ 𝑧

𝜕Ψ(𝑥,𝑦,𝑧,𝑡)

𝜕𝑧
+ 3Ψ(𝑥, 𝑦, 𝑧, 𝑡)       (4.18) 

The initial condition is given by Ψ(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥 + 𝑦 + 𝑧)2  and the boundary conditions  
Ψ(0, 𝑦, 𝑧, 𝑡) = (3 + (𝑦 + 𝑧)2)𝐸𝛼(5𝑡𝛼) − 3𝐸𝛼(3𝑡𝛼); Ψ(1, 𝑦, 𝑧, 𝑡) = (3 + (1 + 𝑦 + 𝑧)2)𝐸𝛼(5𝑡𝛼) − 3𝐸𝛼(3𝑡𝛼);  Ψ(𝑥, 0, 𝑧, 𝑡) = (3 +
(𝑥 + 𝑧)2)𝐸𝛼(5𝑡𝛼) − 3𝐸𝛼(3𝑡𝛼); Ψ(𝑥, 1, 𝑧, 𝑡) = (3 + (𝑥 + 1 + 𝑧)2)𝐸𝛼(5𝑡𝛼) − 3𝐸𝛼 (3𝑡𝛼); Ψ(𝑥, 𝑦, 0, 𝑡) = (3 + (𝑥 + 𝑦)2)𝐸𝛼(5𝑡𝛼) −
3𝐸𝛼(3𝑡𝛼); Ψ(𝑥, 𝑦, 1, 𝑡) = (3 + (𝑥 + 𝑦 + 1)2)𝐸𝛼(5𝑡𝛼) − 3𝐸𝛼(3𝑡𝛼); 𝑡 ≥ 0 
 

Solution:  The initial guess is then Ψ0(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥 + 𝑦 + 𝑧)2  

Let, Ψ = Ψ(𝑥, 𝑦, 𝑧, 𝑡) 

To solve the fractional differential equation, firstly, we take Laplace transformation on both sides of the equation (4.18) 

𝐿[Ψ(𝑥, 𝑦, 𝑧, 𝑡)] =
1

𝑠𝛼
∑ 𝑠𝛼−1−𝑛 𝑚−1

𝑛=𝛼 Ψn(𝑥, 𝑦, 𝑧, 0) +
1

𝑠𝛼 {𝐿 [
𝜕2Ψ

𝜕𝑥2 +
𝜕2Ψ

𝜕𝑦2 +
𝜕2Ψ

𝜕𝑧2 + 𝑥
𝜕Ψ

𝜕𝑥
+ 𝑦

𝜕Ψ

𝜕𝑦
+ 𝑧

𝜕Ψ

𝜕𝑧
+ 3Ψ]}              (4.19) 

Taking inverse Laplace on both sides, and differentiating, we get, 
∂

∂t 
Ψ(𝑥, 𝑦, 𝑧, 𝑡) =

𝜕

𝜕𝑡
𝐿−1 {

1

𝑠𝛼  𝐿 [
𝜕2Ψ

𝜕𝑥2 +
𝜕2Ψ

𝜕𝑦2 +
𝜕2Ψ

𝜕𝑧2 + 𝑥
𝜕Ψ

𝜕𝑥
+ 𝑦

𝜕Ψ

𝜕𝑦
+ 𝑧

𝜕Ψ

𝜕𝑧
+ 3Ψ]}                                  (4.20) 

Now, we construct correction functional of LVIM for (4.20) 

Ψn+1(𝑥, 𝑦, 𝑧, 𝑡) = Ψn(𝑥, 𝑦, 𝑧, 𝑡) + ∫ 𝜆 
𝑡

0
[

𝜕Ψ𝑛(𝑥,𝑦,𝑧,𝜀)

𝜕𝜀
−

𝜕

𝜕𝜀
 {𝐿−1 {

1

𝑠𝛼 {𝐿 (
𝜕2Ψn(𝑥,𝑦,𝑧,𝜀)

𝜕𝑥2 +
𝜕2Ψn(𝑥,𝑦,𝑧,𝜀)

𝜕𝑦2 +
𝜕2Ψn(𝑥,𝑦,𝑧,𝜀)

𝜕𝑧2 +  𝑥
𝜕Ψn(𝑥,𝑦,𝑧,𝜀)

𝜕𝑥
+

                                                                              𝑦
𝜕Ψn(𝑥,𝑦,𝑧,𝜀)

𝜕𝑦
+ 𝑧

𝜕Ψn(𝑥,𝑦,𝑧,𝜀)

𝜕𝑧
+ 3Ψn(𝑥, 𝑦, 𝑧, 𝜀))}}}] 𝑑𝜀                                          (4.21) 

So, 1st iteration taking by 𝜆 = −1 & 𝑛 = 0 in (4.21) 

Ψ1(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥 + 𝑦 + 𝑧)2 + ∫  
𝑡

0
[

𝜕

𝜕𝜀
 {𝐿−1 {

1

𝑠𝛼 {𝐿{6 + 2𝑥(𝑥 + 𝑦 + 𝑧) +  2𝑦(𝑥 + 𝑦 + 𝑧) + 2𝑧(𝑥 + 𝑦 + 𝑧)}}}}] 𝑑𝜀  

(a) 
(b) 

(c) 

Figure 5: The tenth-order approximate solution of Eq. (4.17) by (a) FVHPIM at α =  0.95  and 𝑦 = 0.5 

(b) LVIM at 𝛼 =  0.95  and 𝑦 = 0.5 (c) Exact solution of eq. (4.17) by LVIM at 𝛼 = 0.95 and 𝑦 = 0.5 
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= (𝑥 + 𝑦 + 𝑧)2 + {
6

Γ(𝛼+1)
+

5(𝑥+𝑦+𝑧)2

Γ(𝛼+1)
} 𝑡𝛼  

In this way, 2nd and 3rd iteration 

Ψ2(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥 + 𝑦 + 𝑧)2 + {
6

Γ(𝛼+1)
+

5(𝑥+𝑦+𝑧)2

Γ(𝛼+1)
} 𝑡𝛼 + {

48

Γ(2𝛼+1)
+

25(𝑥+𝑦+𝑧)2

Γ(2𝛼+1)
} 𝑡2𝛼  

Ψ3(𝑥, 𝑦, 𝑧, 𝑡) = (𝑥 + 𝑦 + 𝑧)2 + {
6

Γ(𝛼+1)
+

5(𝑥+𝑦+𝑧)2

Γ(𝛼+1)
} 𝑡𝛼 + {

48

Γ(2𝛼+1)
+

25(𝑥+𝑦+𝑧)2

Γ(2𝛼+1)
} 𝑡2𝛼 +

{(294+125(𝑥+𝑦+𝑧)2}𝑡3𝛼

Γ(3𝛼+1)
  

Proceeding in this way, the nth term will be  

Ψ𝑛(𝑥, 𝑦, 𝑧, 𝑡) =
(3(5𝑛−3𝑛)+5𝑛(𝑥+𝑦+𝑧)2𝑡𝑛𝛼)

Γ(n𝛼+1)
  

The general solution to the problem can be found in taking,  𝑛 → ∞ 

Ψ(𝑥, 𝑦, 𝑧, 𝑡) = lim
𝑘→∞

∑ Ψn(𝑥, 𝑦, 𝑧, 𝑡)𝑛
𝑘=0 = lim

𝑘→∞
∑

(3(5𝑛−3𝑛)+5𝑛(𝑥+𝑦+𝑧)2𝑡𝑛𝛼)

Γ(n𝛼+1)

∞
𝑛=0   

This result is also written in the form of the Mittag-Leffler function as follows, 

Ψ(𝑥, 𝑦, 𝑧, 𝑡) = (3 + (x + y + z)2)𝐸𝛼(5𝑡𝛼) − 3𝐸𝛼(3𝑡𝛼)                                                                                     (4.22) 

Which provides the exact solution [28] to the problem at 𝛼 = 1.0   

 

Table 9: value of  𝛹(𝑥, 𝑦, 𝑡) for different values of 𝑥 =
0.2, 𝑦 = 0.4, 𝑧 = 0.6 

 𝑡 = 0.1 𝑡 = 0.2 𝑡 = 0.3 

𝛼 = 0.7 10.145690 35.298330 107.975532 

𝛼 = 0.8 6.071240 16.453191 40.005178 

𝛼 = 0.9 4.245446 9.719085 20.426793 

𝛼 = 1.0 3.270746 6.602815 12.519890 
 

Table 10:  value of  𝛹(𝑥, 𝑦, 𝑡) for different values of 𝑥 =
0.3, 𝑦 = 0.5, 𝑧 = 0.7 

 𝑡 = 0.1 𝑡 = 0.2 𝑡 = 0.3 

𝛼 = 0.7 13.135242 43.681975 130.892917 

𝛼 = 0.8 8.116044 20.899623 49.487124 

𝛼 = 0.9 5.836724 12.660829 25.809748 

𝛼 = 1.0 4.606210 8.804623 16.150058 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) 
(b) 

(c) 

Figure 6: The tenth-order approximate solution of Eq. (4.22) by (a) FVHPIM at α = 0.95  and x = z = 0.5 (b) LVIM at 

 α = 0.95 and x = z = 0.5  (c) Exact solution of eq. (4.22) by LVIM at α = 1.0 and x = z = 0.5 
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Results and Discussion: 
 

If we consider the five mathematical examples (combining first, second, and third-order cases), our numerical solutions 

are found to be very close to the exact solutions, shown in Figure 2 - Figure 6. Once the numerical solutions were obtained, 

we compiled the results into a couple of tables for each problem, displaying the outcomes for various values of the 

fractional order and the independent variable. This approach enabled us to observe how changes in the fractional order 

affected the behavior of the solutions. Following the tabular presentation, we visually represented the results through 3-

D plots (see, Figure2-Figure6). These graphical representations not only highlighted the numerical solutions but also 

facilitated direct comparisons with existing methods. The combination of numerical, tabular, and graphical analyses 

provided a comprehensive understanding of the behavior of these equations under various conditions. 

The results show that the method is both accurate and stable, and it yields the exact solution when the fractional order 

α = 1. Moreover, the method is easy to implement and computationally efficient, often producing the exact solution 

within just 2–3 iterations. In each case, we compared our solutions with those obtained by the Fractional Power Series 

Method (FPSM) or the Fractional Variational Homotopy Perturbation Iteration Method (FVHPIM). In all examples, our 

numerical solutions using LVIM were found to be very close to those produced by FPSM or FVHPIM. 

Conclusion: 

This paper introduces the Laplace Variational Iteration Method as an accessible approach for solving fractional Fokker-

Planck and fractional diffusion equations. Through tables and graphical representations, it provides accurate values for 

both fractional and non-fractional cases, illustrating how the function behaves with different values of the independent 

variables. The results show a strong agreement with those obtained by existing methods, indicating that the proposed 

method is highly effective in significantly reducing the computational cost of solving such problems. The method does 

not need any linearization or perturbation, which helps it produce more reliable series solutions that usually converge fast 

in real physical problems.  
Future research may focus on applying LVIM to real-world problems across various scientific and engineering fields. Its 

ability to handle complex nonlinear systems without linearization makes it a valuable tool for solving a wide range of 

fractional models. 
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