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ABSTRACT

In this paper, we discuss fractional differential equations, including the Fokker-Planck equation and fractional
diffusion differential equations, which are closely related to chemistry and engineering. To solve these equations, we
employ the Laplace Variational Iteration Method (LVIM), which combines the Laplace transform with He’s Variational
Iteration Method. To demonstrate the efficiency and validity of LVIM, we consider two 1-D Fokker-Planck equations
and three fractional diffusion equations in 1-D, 2-D, and 3-D. We solve these equations using LVIM, and the results are
presented analytically in tables and graphically using MATLAB for different values of the fractional order and these
results are then compared with those obtained by existing methods. The solutions obtain as infinite series, and for certain
values of the fractional order, they are found to be similar to the exact results.
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Introduction:

Fractional-order differential equations, in which an unknown function has a fractional-order derivative, have recently
received a lot of interest. This interest stems from both the rapid growth of theoretical knowledge and the numerous
applications of these differential equations in various scientific and engineering domains and was first mentioned in a

Nomenclature

a Fractional order of derivative

fe Alpha times derivatives of function f

D¥ Riemann fractional derivative of order a with respect to x

¢Da Caputo fractional derivative of order @ with respect to x, at the point a
E, (&) Mittag-Leffler function
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1695 letter from Leibniz to L’Hopital [1, 2]. Several recent studies have employed fractional-order differential models to
analyze real-world biological systems. Shah et al. [3] proposed a COVID-19 model using the Caputo derivative,
accounting for natural death in all compartments. Naik et al. [4] applied Caputo-Fabrizio and Atangana-Baleanu operators
to enzyme-catalyzed processes to capture hereditary behaviors. In 2024, a fractional model using Caputo derivatives was
developed for HIV-HCV co-infection [5]. Another study used a Caputo-based optimal control model for RSV
transmission, exploring solution properties, stability, bifurcation, and control strategies [6]. Many FDEs do not have exact
solutions, therefore mathematicians have been focusing on numerical solutions of these equations. Among them most
useful method to find the approximate or numerical solutions are the Adomian Decomposition Method (ADM),
Variational Iteration Method (VIM), Fractional Difference Method (FDM), Differential Transform Method (DTM), and
Homotopy Perturbation Method (HPM). Classical solution techniques like the Laplace transform method, Fractional
Green’s function method, Mellin transform method, and the method of orthogonal polynomials are also employed [11].
VIM and ADM are particularly noteworthy for their ability to provide both symbolic and numerical solutions to linear
and nonlinear differential equations without requiring linearization or discretization [8,9,10,11]. A key advantage of using
fractional derivatives over ordinary differential equations is their ability to demonstrate how a curve’s slope transitions
into a horizontal line, parallel to the x-axis, across varying values of «a (« is fractional order i.e. @ € R). For example, if
we graph the equation y = 5x% for both cases ie. ordinary derivatives and fractional derivatives at a =
0.2,0.4,---,1.0, -, 2.0 and the function we can easily observe this effect (Shown in the figure 1).
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Figure 1: (a) Function and its 1% & 2" derivatives (b) Function and its fractional derivatives for different values of «

The Brownian motion of particles is modeled by the Fokker-Planck equation, which was first proposed by Fokker and
Planck [12]. It is widely used in domains, such as chemistry, biology, astrophysics, economics, nucleation, electron
relaxation in gases, optical bi-stability, polymer dynamics, quantum optics, reactive systems, and many more [13].
The Fokker-Planck equation describes the evolution of the probability distribution of a random variable over space and
time, making it particularly useful for modeling solute transport. The general form of the Fokker-Planck equation for a
concentration field ¢(x, t) in one spatial dimension and at time t is as follows,
o 2

oD [%A(x,t)—%B(x,t)]Mx,t) =0 (1.1)
The initial condition ¢p(x,0) = f(x), x € R, Here, A(x,t)is the drift coefficient and B(x,t) > 0 is diffusion
coefficient.
The more general FPE is non-linear FPE can be written as follows,

P00 1 [2 At §) — 2Bt )| d(xt) = 0 (1.2)

Fractional nonlinear Fokker-Planck-like equations are used to analyze physical situations involving anomalous diffusion,
which often includes a combination of nonlinear terms and fractional derivatives [14, 15]. These equations are effective
in numerous contexts, such as frequency-dependent damping of materials, viscoelasticity, and diffusion processes.

The distribution of heat or temperature fluctuation within a region over time is described by the heat equation, a significant
partial differential equation that Joseph Fourier created in 1822. This formula is noteworthy in several fields of science.

It is closely related to ‘Brownian motion’ through the Fokker-Planck equation and is a standard example of a parabolic
partial differential equation in mathematics [16]. Studies of chemical diffusion and other related phenomena use the
diffusion equation, an extended version of the heat equation. According to the heat equation, if no additional heat is
introduced, the temperature of a heated item submerged in cold water will gradually drop and approach equilibrium [17].
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Now, we consider the general structure of fractional heat equations.

2 2 2
Di¥(x,y,z,t) = f(x,y,2, t)%‘{’(x,y,z, )+g9(xy,z t)aa—yz‘}’(x,y, z,t) + h(x,y,z, t)%‘}’(x,y,z, t);0<a<1
with the initial value W(x,y,z,0) = H(x,y,z,t),¥(x,y,2,0) = m(x,y, z). (1.3)

This paper is organized as follows: In Section 2, we present some basic definitions and theorems relevant to the study. In
Section 3, we explain the Laplace Variational Iteration Method along with its stability and convergence. In Section 4,
numerical examples are discussed with graphical representations and numerical tables. Finally, the concluding remarks
of this paper with future plan.

Preliminaries:

In this section, we provide the essential definitions and properties of fractional calculus and Laplace transform theory
along with the conditions for Picard’s T-stability and convergence based on the Banach fixed point theorem, which will
be used throughout the paper.

Definitions:

2.1 Grunwald - Letnikov Fractional Derivative [18]
a . —
f(x) = lim (1) Yi=o(—1)’ (“) f(x — jh), where, h = =2, a < x, h is known as step size.
n—oo h J n
2.2 Riemann Integral for fractional calculus
1%(f) = %f:(x —w)* ! f(wdu, a < «x.
2.3 Riemann Liouville’s Fractional Derivative
an _ an 1 —a—
DI =25 B () = 1 vy Ji(x =)t f(D)dt, forn—1<a<nn€N,t>0.

2.4 Caputo Fractional Derivative
—g (am™ 1 —a—1(d"
CPEF(x) = I a{dx—n f(x)} = [Fa-pre 1{m.c}dt, forn—1<a<nneN,t>0.

2.5 Relation between Riemann-Liouville and Caputo fractional derivative [19]
a—k

DY, 1) = REDUP(x, 6) = TZd r ey ¥V (6 0)-
2.6 Laplace transform of the Caputo fractional derivative [20, 21]

L{GDZ f(x)} = s“F(s) — ZkZo s f(0).
2.7 The Mittag-Leffler function E, (¢) with ¢ > 0

k
Eo(§) = Efoori—.a >0, {EC.

I(ak+1)

Theorem:

2.1 Let (X, d) be a Banach space and T: X — X be a self-map of X satisfying d(Tx, Ty) < Bd(x, Tx) +yd(x,y),
forallx,y € X, =0, 0 <y < 1. Then T is Picard T — stable [22].

2.2 Let X = (X, d) be a metric space. A mapping T: X — X is called a contraction on X if there is a nonnegative real
number y < 1 such that, forall X,y € X, d(Tx, Ty) < yd(x,y),0 <y < 1.

Banach fixed point theorem: Consider a metric space X = (X, d), where X = @. Suppose that X is complete, and let
T:X — Xbe a contraction on X. Then T has a unique fixed point [22].

In the following paper, the Caputo fractional derivative is preferred due to its effectiveness in modeling real-world
problems, handling initial value problems, and its compatibility with the Laplace transform, while also providing a smooth
transition to classical models [23, 24].

Laplace Variational Iteration Method (LVIM):

LVIM is a combination of Laplace transform and Variational Iteration Method. To demonstrate the fundamental concept
of this method, first, we consider a general fractional nonlinear nonhomogeneous partial differential equation along with
the initial conditions of the form:

YEE ) = LYE D) + NW(E0) + (1) 3.1)
with the initial values given by W"(¢,0) = h,(¢,0),n=10,1,23,---, m—1
where, a is the order of fractional Caputo derivative and L, N denote the Linear and non-linear differential equation. Using
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(2.6) in the left side of the equation (3.1) in order to convert the fractional differential equation into a partial differential
equation [13].

LI¥(E 0] = 5 Zmd P71 W (E,0) + 5 LIF(E, 0] + LILY(E, £) + N¥(, 1)] (3.2)
Taking inverse Laplace transform in both 51des, we have

Y(E =171 [ T seTiTrwn (g, 0) + SigL[f(f, t)]] + LMLILY (&, t) + N¥ (&, 0)]] (3.3)
Differentiating equation (3.3) with respect to t, we get

HEO 2y [59 S SO W (g, 0) + S LIF(E, t)]] + L [LILW(E &) + N9(E 0] } (3.4)

This is the 1* order partial differential equation. Now constructing the correction functional for solving the following
fractional differential equation
a¥n(¢e) a

Woa(§0) = Wl 0+ [ 4|0 - 2 (1o [ Lwmeg SO n (s, 0) + LI 01| + LG+
NY(E o)]] }| de (3.5)

where, A denotes the Lagrange multiplier. To compute its value, Equation (3.5) is reformulated based on the stationary
theory [25],
a¥n(¢,e) a

OWna (€)= 69 (6,0 + 8 7 2[20ED _ 2 [y [Lgmoa go-imn (g, 0) + L£ (6 0] +
L [L[Lw (g e) + NBE ]| }] (@e)?

here, P (¢, €) is the restricted variation, meaning that, ¥(&,¢) = 0
So, from variation theory, taking the coefficient of §W to zero, we get,
0
;—9 A, e) =0 &1+A|.- =0, therefore, A(§, t) = —
And begin with the primary iteration [8]

W (§,t) = W(E,0) + tW.(§,0), (3.6)
and the exact solution can be found as W(¢,t) = lim W, (¢, t).
n—-oo

Stability and convergence analysis

In the following, we establish an important result concerning the stability of the LVIM. To verify Picard stability, it is
sufficient to show that the iterative operator associated with LVIM satisfies the conditions specified in theorem (2.1).

Theorem 3.1 Let (X, || - ||) be a Banach space and T: X — X be a self-map of X. Then the LVIM iteration procedure
defined by

Pnaa GO = T () = Wo G0 + [A[20E9 — 2 (11 |3y 5010 wn (5, 0) + LI V)| +
LY LW s) +N¥(E )] }] de (3.7)
is Picard T-stable provided that [26]
i) |¥,(&0) =W, (&, 0| < 6lI¥n(é,t) — Wi (&, )| for some 8y > 0 and for any t in the domain;
i) [ FPog a0t) = i (Pod 108D 3z Pn(PrE 0a) = 3z YmPrE, @1, e || € EIWR(E ) = W (€, O
for some 6y > 0,
iy y=8,+6 ||—F(;+1)|| <1

Proof: Let us consider equation (3.7) as
t

Yni1(§,8) = Pr (S t) + f AR, (x, €)de
0
where R, represents the entire integrand involving derivatives, inverse Laplace, linear and nonlinear terms in the
functional.
That is, R,

Now,

Tlpn(f' t) - Tl'pm(fv t) = l/)n+1(€, t) - lpm+1(€! t) = lpn(f, t) - lpm(f, t) + fOtA[Rn(X, 8) - Rm(x! S)]dE

aLIJn(E s) a
de de

{L‘ [SBZ A L¢3 0+ L LIf(E, 1)] ]+L‘1[L [LY(§€) + NW(E, e)]]}
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Taking Norm in both sides, we get

Wne1 (6 8) = Pruaa (6 O < (6, 0) = P (O + | 5 ATRA( £) = Rin (21| (33)

Let all the operator and function are satisfy a Lipschitz-type condition and the Laplace transform and its inverse are
linear and bounded operators, then we assume
IRn - le < 81|lpn - llJml
So the integral becomes:
t

J-)\(Rn —Rp)de| < 84 fl)\ll‘l'n — ¥, |de
0
here, Lagrange multiplier is defined by [27],4 = £y’ 1) (t — €)1, so, f |Alde =
Taking Norm in both sides, we get,
t t? . .
||f0 AR, — )ds” <8&;. m [Py — Yoll; |5 — W ll is constant with respect to €

r(e+1)

From initial condition (i) we have,
1% (S, 0) = ¥ (S, 0)| < 8o [|Pn — Whnel
So combining all these we have, from (3.8)

I I
Whi1 — Vsl < 8ollWh — Wil + 51-@ |Wh — Wil = YIIWh — Will ;s here, y = 8o + 51-@ <1

therefore, we have, ||T%, — TW,ll = |Whe1 — Pmaall S VW0 — Wil (3.9)
”Tq"n - T"pm” < .B”lpn - l'pm” + yqun - l'I"m”; ﬂ =0
BlII¥, — || reflects how much this residual influences stability.
Hence, by the theorem (2.1) LVIM is Picard T-stable if y < 1.

In this section, we establish the convergence of the Laplace Variational Iteration Method using the Banach fixed point
theorem.
Theorem 3.2 Let (X, *) be a Banach space and T:X — X, a mapping associated with LTVIM, be defined by
¢n+1(§: t) = Tlpn (E' t)
Then T has a unique fixed point and the sequence {¥,, }y=q generated by LTVIM with an initial value ¥, € X converges
to this fixed point [26]
Proof: Combination of theorem (2.1), (2.2), and equation (3.9) implies that 7 has a unique fixed point. Let ¥, € X and
consider the sequence {¥, };~; generated by LVIM with ¥,,,; = ¥, , observe that
§1=T&o, &=T&E=T?&y, =+, & = T, (3.10)
Equation (3.10) illustrates a sequence of iterates obtained by repeatedly applying the operator T to the initial point ;.
The convergence of the LTVIM can be ensured by proving that this sequence is Cauchy sequence.
By combining (3.9) and (3.10) we obtain
Whi1 — Wrll = ITW, — TWn4ll
y”Lpn - Lpn—l”
14 ”TLPn 1 TLPn—Z”
”Lpn 17 n 2 ”

I/\ I IA

< Vn ||Lp1 Lpo" (3.11)
By the triangle inequality and equation (3.10), for any m,n € N such thatn > m, we have
”me - l'I”n” ”Lp m+1 + l'I”m+1 l'I”m+2 + lym+2 +oet Lpn—1 - lpn”
< ”lp m+1|| + ”l‘pm+1 l’pm+2 ” + - ”lpn—l - l'pn”
= ”T"pm—l - T"pm" + ”Tlpm - Tl'pm+1” + ”Tl'pn—z - Tlpn—lll
S YW = Yol + Y™ Wy — Woll + -y |9 — Wl
=@My A Y™ ey H|[Y — W
=y"(1+ y+yi 4y - Yl
Since 0 <y < 1,thesum 1+ y +y?% + .-+ y" ™ 1 represents a finite geometric progression whose total sum is
—_yn—-m
Enl At Therefore,
1-y

1- m _
19— Wall <y (7)1 = Wll < 2119, = Wollas 1—y" ™ < 1 (3.12)

Since 0 < y < 1and [|¥; — Wl is fixed, by choosing m sufficiently large, the right-hand side of equation (3.12) can
be made arbitrarily small. Consequently, the sequence {¥n} is Cauchy and thus convergent.

Let, {¥,} converge to ¥ € X. To complete the proof, it is necessary to demonstrate that the limit W satisfies T¥ = ¥
thereby establishing that it is the unique fixed point of the operator T. From the triangle inequality and equation (3.10),
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we have,
1P TP < |¥ = Pull + ¥ — TVl
= ¥ = Wpll + IT¥-y — TY|
S ¥ = Wall + ¥ |Pn-1 — Il
=0asn—> o
This implies that ||¥ — TW|| = 0. Since ||. || is a metric, we have T¥ = ¥ , i.e., ¥ is the fixed point of 7 which is
unique.

Hllustrative Examples:

In this section five illustrative examples are solved by LVIM to demonstrate the efficiency of this method. The results
are presented in a couple of tables (Table 1-Table 10) in order to understanding the behavior of the result and finally
shown by graphically and compared them with existing method also that is Fractional Power Series Method (FPSM) or
Fractional Variational Homotopy Perturbation Iteration Method (FVHPIM).

Example 1: The Time Fokker-Planck Equation

%W(xt) _ d¥(xt) , 92W(xt) |
e~ ox a2 s 0<asl (4.1)
with initial condition W(x,0) = x [27]

Solution: Using the initial condition, our primary iteration is Wy (x,t) = W(x, 0) + tu,(x,0) = x ;

2
Using Laplace transform in (4.1) L[¥(x, t)] = Sia S Wo(x, 0) + SiaL [a ;:Ef’t) aly;i’t))]
%W (xt)  A¥(x,t))

0x2 ox ]
Taking inverse Laplace transform on both sides, we get, W(x,t) = x + L~ {sa L[a ;J)Ef By %]} 4.2)

6‘P(x t) i -1 02W(xt) . a¥(xt)
at L {S"‘L ax? ax ]}

=X+ i

Differentiating both sides of (4.2) with respect to t,
Now the correction functional for this problem is

Wh(xe) 0 ,_1(1 2WL(x,t) | WL (xt)
V() = W0+ 4[] B2 8 7 £ [P0y o] @

From variation theory, A can be found using by 1 + A|;—y = 0 so,A = —1
So our 1% iteration will be taking n = 0 in (4.3)

Wi (x, 1) = Wo(x,0) — ff [Hem _ 2 poa L [FYe0) | ¥kl g

de sa ax? ax
ta

+ I'a+1)

Similarly, W, (x, t) = x + s Wi(x, t) =

F( +1)

The nth term will be then W, (x,t) = x +

F((x +1)
a

I'(a+1)
The general solution of equation (4.1) can be found taking by n — o

W 1) = Do a0 = X+ o (4.4)
Table 1: Numerical values of (x, t) at x = 0.2 Table 2: Numerical values of (x, t) at x = 0.5

t=0.25 t =0.50 t =0.75 t=1.0 t =0.25 t =0.50 t=0.75 t =1.00
a=02 | 1025402 | 1.148138 | 1228229 | 1.289124 a=02 1325402 | 1.448138 | 1528229 | 1.589124
a=04 0.847326 1.054152 1.204550 1.327060 a=04 1.147326 1.354152 1.504550 1.627060
a=0.6 0.687149 0.938380 1.141748 1.319175 a=0.6 0.987149 1.238380 1.441748 1.619175
a=0.38 0.554179 0.816662 1.052944 1.273671 a=0.8 0.854179 1.116662 1.352944 1.573671
a=1.0 0.450000 0.700000 0.950000 1.200000 a=1.0 0.750000 1.000000 1.250000 1.500000
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3D Piot of #ix, f] for » = 0.03

wix)

3D Plot of ¥(x, ) for o =1

(©
Figure 2: Three-dimensional graph of equation (4.4) by (a) FPSM at « = 0.03 (b) LVIM at a = 0.03
(c) Exact result at « = 1.0 by LVIM

Example 2: The time fractional Fokker Planck equation

Y (x,t) 6‘P(x t) t. 2 92¥(x,t)

s = (Lt xX)———=+e'x"—==;
with initial condition lI’(x 0) =1+x[27]

Solution: Taking the Laplace transform for fractional differential equation (4.5)

L¥(x,0)] = 1W(x, 0)+ L1+ x) I g2 XD

+e'x 2

) ox
L [(1 + ) B‘P(x f) t 2 3°¥(x,t)

Taking inverse Laplace transform in the both sides

dx2
2
Wi t) =1+ x+ L7 {ZL[(1 40 ZED 4 ety2 2220) (4.6)

ox2
Differentiating both sides of (4.6) with respect to t
W(xt) _ _ a‘l—’(x t) t.20%¥(xt)
at ot [L {SaL [(1 tx) 5 tex dx2 }] 4.7
The Correction functional of (4.7) for LVIM is given by
Wt (0 8) = Wt t) + A f) [a‘""(’“) 21 {Sa L [ Ex? M + (1 +x) T t)]}] de (4.8)
Now takingn = 0 and 4 = —1,we get, the 1St iteration is

Wi (x, 1) = W, 0) — fy [P0 _ 2 ot L oty ¥ 4 (1 4 ) @I g
_ (1+ ) f [0(1+x) 9 L1 {Sal‘[ t 202 (1+x)+(1+ )a(1+x)md

de

=+ + ) [2 1 G Llex .o+(1+x).1]}]
=1+ + [y [ 1L+ 01| de

=1+x+ a+x)t*
I'(a +1)

1+x)t% | (1+20)t2%
Similarly,W,(x,t) =1+ x + ——— ras) T reain’
(1+0)t% | (1+2)t2% | (1+x)t3%
I'(a+1) r2a +1) r(3a +1)

1+x

Yo(x,t)=1+x+

0O<a<1 (4.5)
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The nth term is
_ (1+x)t% | (1+0)t2%  (1+x)t3@ (1+x)t"®
P, ) =1+x+ r(a +1) r@a+1) = r(a+1) r(na +1)
=(1+00+5 +(” +E2 4
2a! 3a!
The general solution of (4 5) is P(x,t)=X (@+xye”” =1+x)3X2 e =1+ x)e* 4.9)
! ’ n=0T(ng +1) =0 I (na +1) ’
Table 3: value of Y (x, t) for x = 0.5 Table 4: value of P (x, t) for x = 1.0
t=2 t=4 t=6 t=28 t=2 t=4 t=6 t=28
a=0.7 12.5202 | 42.3102 99.7506 192.4925 a=0.7 16.6936 56.4136 133.0008 256.6567
a=0.8 119175 | 46.3715 | 123.5618 | 263.2825 a=0.8 15.8900 61.8287 164.7490 351.0433
a=09 11.2223 | 49.4483 | 148.1629 | 347.9500 a=09 14.9631 65.9311 197.5506 463.9333
a=1.0 10.5000 | 51.5000 | 172.5000 | 445.5000 a=1.0 14.0000 68.6667 230.0000 594.0000

3D Graph of ' [x.t) for »=0.01

.,(c) x
Figure 3: Third order approximate solution of equation (4.9) (a) by FPSM at a = 0.01 (b) by LVIM at a = 0.01
(c) Exact solution of equation (4.9) by LVIM at a = 0.01

Example 3: One-dimensional time-fractional diffusion equation

A% (xt) _ d¥(xt) | 92¥(xt),
% = ox + oz O0<ac<1 (4.10)
with initial condition W(x, 0) = e* ; xe[0,1]; u(0,t) = E,(2t%) [28]

Solution: Taking Laplace transform in (4.10)
L[¥(x, 6)] _—+ L[a LW + =W (x, t)]

o) = o (s e ey
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The correction functional of LVIM for this problem can be constructed as follows,

_ t ) 0[,_1(1 MWy (x,e) | 32¥,(x,e)
Wit (6, 8) = W, 0) + [ 2 [E‘Pn(x,s) —E[L 1{S—a[L{ nle) 4 2 }]}]] de @.11)
Now, putting n = 0,4 = —1 in (4.11) for getting 1*' approximation
_ _rt | A rEYES Wo(x,e) . 9%Wo(x,8)
0= 10— [ [0~ [ (3]s 52 2
_x, 2eMt®
- [(a+1)
. _x ., 2e%t% | 4e¥t?® _ox, 2e%t% | 4e¥t?® 6e¥t3%
Similarly, ¥, (x,t) = e* + T(a+1) + r(2a+1)’ Ws(x,t) = e’ + [(a+1) T[(2a+1) TGBa+1)
. eXangna
Then, the nth term will be, W, (x,t) = et D) (4.12)
The complete and general solution to the problem (4.10) can be developed by considering, n — o
Xonsna
Y(x, t) =Ynp errzlai1 = e*E,(2t%), Where, E, (2t%) is Mittag - Leffler function (4.13)
Table 5: value of Y (x, t) for x = 0.5 Table 6: value of ¥ (x, t) for x = 1.0
t=0.1 t=0.2 t=0.3 t=0.4 t=0.1 t=0.2 t=0.3 t=04
a=0.7 2.6424 3.6701 4.9623 6.6258 a=0.7 2.6424 3.6701 49623 6.6258
a=0.8 2.3457 3.0938 4.0127 5.1624 a=20.8 2.3457 3.0938 4.0127 5.1624
a=09 2.1495 2.7191 3.4129 4.2670 a=09 2.1495 2.7191 3.4129 4.2670
a=1.0 2.0138 2.4596 3.0042 3.6693 a=1.0 2.0138 2.4596 3.0042 3.6693

3D Plot of ¥(x,t)for c = 0.85

3D Plot of #fx, t) for =1

(c)
Figure 4: The tenth-order approximate solution of Eq. (4.13) by (a) FVHPIM at a = 0.85 (b) LVIM at a = 0.85

(c) Exact solution of Eq. (4.13) by LVIM at a = 1.0
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Example 4: Two-dimensional time-fractional diffusion equation [28]

YW (xyt) _ 0%W(xyt) | 92W(xyt) Y (x,y.t)
= x
atx dx2 + ay? + ax ty

Subject to the initial condition, W(x,y,0) = x +y

and the boundary conditions ¥(0,y,t) = yE,(3t%),¥Y(1,y,t) = (1 + y)E,(3t%); ¥(x,0,t) = xE,(3t%);
Y(x,1,t) = (x+ DE,(3t%);t = 0;

Solution: First of all, we consider the initial guess by using the following formula

Yolx,y,t) =¥(x,v,0) + t¥.(x,y,0); Therefore, Wo(x,y,t) =x+y
Now, taking the Laplace transform in both sides of the equation (4.14), we get

6‘P(x y,t)

+2¥(x,y,t);0<a <1 (4.14)

2

L[‘P(x, y, t)] x+y + L [6 ll»‘(xy t) + 3] ‘l;(;céy,t) +x 6‘1’(6x);y,t) n yallJ(xy ,t) +2W(x, y, t)]
Taking inverse Laplace transform

oY (xyt) _ - 2W(x,yt) |, 02W(xyt) AP (x,y,t) 6‘~P(x V,t)

WD _ 2 [ {1 [P0y P20 o WOy VO ()]} @.15)
Now, constructing the correction functional for solving the problem (4 15) taking by n = 0,4 = —1 is given by

OW¥o(xy€) 0 ;1 2Wo(x,y,€) |, 32Wo(x,y.€) OWo(x,y,€) AWy (x,y,€)
WY, (x,y,t) = Po(x,y,t) — f [7 oL {SaL[ ot T TX Tty

2W¥,(x,y, e)]}] de

d| 0 1

=x+y—f 0- {L { L(O+0+x+y+2x+2y)}}]
0
ty

e [ 2 22

=x+y+ft- { a(3x+33’)}]d6

a+1
ol s

3(x+y)t%
I'(a+1)

=x+y+
Proceeding in this way,
a 2a

W,(x,y, t) = x + y + 2o ST

>

I'(a+1) r'(2a+1)
_ 3(x+y)t%  9(x+y)t2® 27(x+y)t3%
Yy ) =x+y+ [(a+1) (2a+1) T(Ba+1)
(x+y)3k ka

We can find the k-the term, Wi (x, y, t) = TtkatD (4.16)

So, the required solution to the problem is that means the general solution of equation (4.14) can be found by taking, k —
(ee]
(x+y)3ktka

Y(x,y,t) = Yre T(kat D =(x + y)E,(3t%) 4.17)
E,(3t%) is Mittag-Leffler function; which is the exact solution [28] of the problem (4.14) at « = 1.0

Table 7: value of ¥ (x,y,t) for different values of x = Table 8: value of ¥ (x,y,t) for different values of x =
03&y=0.6 0.45 &y = 0.75
t=0.1 t=0.2 t=0.3 t=04 t=0.1 t=0.2 t=0.3 t=04
a=0.75 1.6837 2.7192 4.2824 6.6748 a=0.75 2.2449 3.6256 5.7099 8.8998
a= 0.8 1.5412 2.376 3.591 5.3819 a= 0.8 2.0549 3.1679 4.788 7.1758
a = 0.95 1.2726 1.7657 2.4387 3.3611 a =0.95 1.6967 2.3543 3.2516 4.4815
a=1.0 1.2149 1.6399 2.2136 2.9881 a=1.0 1.6198 2.1865 2.9515 3.9841
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3D Plot of w(x, y. t) for o = 0.95

>

v

S — N

(c)
Figure 5: The tenth-order approximate solution of Eq. (4.17) by (a) FVHPIM at a« = 0.95 and y = 0.5
(b) LVIM at « = 0.95 and y = 0.5 (c¢) Exact solution of eq. (4.17) by LVIM at « = 0.95 and y = 0.5

Example 5: Three-dimensional time-fractional diffusion equation [28]

W (x,y,zt)  02W(x,y,zt) , 02W(xy.zt) . 02W(xyzt) V¥ (x,y,z,t) oW (x,y,z,t) oW (x,y,zt)

Py = P 3y? + Py +x P + 3y +z 2 + 3% (x,y,z,t) (4.18)
The initial condition is given by W(x,y,z,t) = (x + y + z)? and the boundary conditions
Y(0,y,zt) =3+ +2)2)E,(5t*) — 3E,(3t*); ¥(1,vy,z,t) = B+ (1 + y + 2)»)E,(5t%) — 3E,(3t%); ¥(x,0,z,t) = (3 +
(x + 2)2)E,(5t%) — 3E,(3t%); W(x,1,z,t) = B3+ (x + 1+ 2)2)E,(5t%) — 3E,(3t*); ¥(x,v,0,t) = (3 + (x + y)?)E,(5t%) —

3E,(3t*); P(x,v,1,t) = B+ (x + y + D?E,(5t%) — 3E,(3t*);t = 0

Solution: The initial guess is then Wy (x,y,2,t) = (x + y + 2)?
Let, ¥ = ¥(x,y,z,t)
To solve the fractional differential equation, firstly, we take Laplace transformation on both sides of the equation (4.18)

— Lym-1.a-1-n yn Ay orw otw 9w 9w oY 9%
LIW(x,y,2,t)] = Saznza s Y1(x,y,z0) + {L ozt 372 toztxty By tzo -+ 3‘{’]} (4.19)
Taking inverse Laplace on both sides, and differentiating, we get,
0 _D il [P 0ty ot o o ov  av
a—t‘}’(x,y,z, t) = atL {s“ L w2 T ay2 toztx -ty % tz -+ 3W]} (4.20)

Now, we construct correction functional of LVIM for (4.20)

t oW, (x,y,2,€ 2 1)1 2W,(x,y,z,e) . *Wh(xy,ze) , 0°W,(x,y,2.) oW, (x,y,2,€)
Fana(y,2,0) = (3,20 + 2 (SO0 T “HL( e
y TRGIED y pTVID 1 3w, (x,7,2, £)>}} de @.21)

So, 1* iteration taking by A = —1 & n = 0 in (4.21)
Wy, zt)=(x+y+2)2+ [ [% {L-l {S%{L{6 +2x(x+y+2)+ 2y(x+y+2) +2z(x+y + z)}}}}] de
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6 5(x+y+z)z} a

— 2
=G +y+2)°+ {F(a+1) T(a+1)

In this way, 2" and 3¢ iteration

_ 2 6 5(x+y+z)2} a { 48 25(x+y+z)z} 2
Y(nyz0) = (x+y+2)°+ {F(a+1) + '(a+1) r(2a+1) r2a+1)
_ 2 6 5(x+y+2)2) o 48 25(x+y+2)?) ,2q , {(294+125(x+y+2)?}t3%
Yy zt) =(x+y+2)°+ {F(a+1) T(a+1) } {F(2a+1) r(2a+1) } r(Ga+1)
Proceeding in this way, the nth term will be
_ (3(5™-3™M)+5™(x+y+2)2t"%)
Wn(x,y,2,6) = [(na+1)
The general solution to the problem can be found in taking, n — oo
T n T o  (3(5™-3M)+5™(x+y+z)%t"%)
l{J(x, Y,z t) - 111_1;?0 Zk:O lp1’1 (x' Y,z t) - kltl—{?o Zn:O I'(na+1)
This result is also written in the form of the Mittag-Leffler function as follows,
Y(x,y,z,t) = B+ X +y+2z)2)E,(5t%) — 3E,(3t%) (4.22)
Which provides the exact solution [28] to the problem at & = 1.0
Table 9: value of ¥ (x,y,t) for different values of x = Table 10: value of ¥ (x,y,t) for different values of x =
02,y=04,z=0.6 03,y=052z=0.7
t=0.1 t=0.2 t=0.3 t=0.1 t=0.2 t=0.3
a=0.7 10.145690 35.298330 107.975532 a=0.7 13.135242 43.681975 130.892917
a=08 6.071240 16.453191 40.005178 a=0.8 8.116044 20.899623 49.487124
a=0.9 4.245446 9.719085 20.426793 a=09 5.836724 12.660829 25.809748
a=1.0 3.270746 6.602815 12.519890 a=1.0 4.606210 8.804623 16.150058

3D Plot of W(x,y,z,t)for =1

wix, y.z, t)

3D Plot of ¥(x, .2, 1) for o = 0.95

Figure 6: The tenth-order approximate solution of Eq. (4.22) by (a) FVHPIM at a = 0.95 and x =z = 0.5 (b) LVIM at
a = 0.95and x =z = 0.5 (c) Exact solution of eq. (4.22) by LVIM at a = 1.0 and x = z = 0.5
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Results and Discussion:

If we consider the five mathematical examples (combining first, second, and third-order cases), our numerical solutions
are found to be very close to the exact solutions, shown in Figure 2 - Figure 6. Once the numerical solutions were obtained,
we compiled the results into a couple of tables for each problem, displaying the outcomes for various values of the
fractional order and the independent variable. This approach enabled us to observe how changes in the fractional order
affected the behavior of the solutions. Following the tabular presentation, we visually represented the results through 3-
D plots (see, Figure2-Figure6). These graphical representations not only highlighted the numerical solutions but also
facilitated direct comparisons with existing methods. The combination of numerical, tabular, and graphical analyses
provided a comprehensive understanding of the behavior of these equations under various conditions.

The results show that the method is both accurate and stable, and it yields the exact solution when the fractional order
a = 1. Moreover, the method is easy to implement and computationally efficient, often producing the exact solution
within just 2-3 iterations. In each case, we compared our solutions with those obtained by the Fractional Power Series
Method (FPSM) or the Fractional Variational Homotopy Perturbation Iteration Method (FVHPIM). In all examples, our
numerical solutions using LVIM were found to be very close to those produced by FPSM or FVHPIM.

Conclusion:

This paper introduces the Laplace Variational Iteration Method as an accessible approach for solving fractional Fokker-
Planck and fractional diffusion equations. Through tables and graphical representations, it provides accurate values for
both fractional and non-fractional cases, illustrating how the function behaves with different values of the independent
variables. The results show a strong agreement with those obtained by existing methods, indicating that the proposed
method is highly effective in significantly reducing the computational cost of solving such problems. The method does
not need any linearization or perturbation, which helps it produce more reliable series solutions that usually converge fast
in real physical problems.

Future research may focus on applying LVIM to real-world problems across various scientific and engineering fields. Its
ability to handle complex nonlinear systems without linearization makes it a valuable tool for solving a wide range of
fractional models.
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