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ABSTRACT 

Generation of grid-scale (GS) and subgrid-scale (SGS) velocity fields is performed by direct 
filtering of DNS (Direct Numerical Simulation) data at a low Reynolds number in 
homogeneous isotropic turbulence in order to assess the spectral accuracy as well as the 
performance of filter functions for LES (Large Eddy Simulation).  The filtering is performed 
using three classical filter functions: Gaussian, Tophat and Sharp cutoff filters and in all three 
cases the results are compared with three different filter widths for LES.  Comparing the 
distributions of GS and SGS velocities, and the decay of turbulence with those from DNS 
fields through out the whole calculation we have found that among the three filter functions, 
the performance of Sharp cutoff filter is better than that of the other two filter functions in 
terms of both spatial spectra and the distribution of velocities.  Furthermore, it is shown that 
the accuracy of the filtering approach does not depend only on the filter functions but also on 
the filter widths for LES.  

 

1.   Introduction 

Direct numerical simulation (DNS) and large-eddy simulation (LES) have been widely 
used to study the physics of turbulence (Moin and Kim [1]; Viecelli [2]; Kato and 
Ikegawa [3]; Kato et al. [4]; Uddin et al. [5]). Nowadays, these numerical techniques are 
considering as the accurate and sophisticated predictive methods for flows of engineering 
interest. The DNS is considered as the exact approach to turbulence simulation but it is 
too expensive, and is only possible for simple and low Reynolds number flows. The 
recent development of supercomputers enabled to carry out the DNS of Navier-Stokes 
equations, and to explain the statistical properties and organized structures of turbulence 
for relatively high Reynolds number flows (Vincent and Meneguzzi [6]; Jimenez et al. 
[7]; Tanahashi et al. [8]; Tanahashi et al. [9]; Uddin et al. [10]) but the grid dependence is 
very high (proportional to Re9/4) and the calculation is fairly time consuming, so that the 
DNS is not appropriate to the practical use. Generally, industrial, natural or experimental 
configurations involve Reynolds numbers that are far too large to allow direct numerical 
simulation, and in these flows the only possible method is large-eddy simulation.  The 
LES is less expensive and can simulate very complex flow fields in turbulence. In LES 
method, large-scale motion is exactly calculated and the effect of subgrid-scale (SGS) 
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motions on the evolution of large scales, which is expected to be universal, is modeled. 
The characteristic of the LES calculation is fully three-dimensional and unsteady. 
Therefore, to model complex flow configurations as well as for engineering applications, 
the use of LES is becoming increasingly common day by day. 

The scale selection that the large-eddy simulation technique is based on a separation 
between large and small scales (Sagaut [11]). In order to define these two categories, a 
reference or cutoff length first has to be determined. Those scales that are of a 
characteristic size greater than the cutoff length are called large or resolved scales or grid-
scales, and others are called small or subgrid scales. The latter are included by way of a 
statistical model called a subgrid-scale (SGS) model. 

For SGS modeling, the most commonly used SGS model is Smagorinsky eddy viscosity 
model (Smagorinsky [12]). Because of growing popularity of LES, recent research has 
been aimed at developing robust LES models, such as dynamic subgrid scale model 
(Germano et al. [13]), isotropic eddy viscosity model (Yoshizawa [14]), etc. and these 
models are derived based on some assumption about the nature of the subgrid turbulence. 
However, all of the models have some defect in itself, and still today, people are doing 
their efforts to develop new and accurate SGS model for LES. Concerning the subgrid-
scale model it seems quite important to know what happened in the filtered field for LES. 

The governing equation for LES is the filtered Navier- Stokes equations, so that we need 
to filter the Navier-Stokes equations with effective filter functions. There are several 
filter functions that are used to filter the Navier-Stokes equations, and using these filter-
functions we can decompose the velocity fields into grid-scale and subgrid-scale 
velocities. Therefore, to develop the SGS model for LES, it is very important to study the 
behavior of turbulence in the filtered velocity fields. Since the DNS is considered as the 
exact solution of Navier-Stokes equations, so it would be effective to know the features 
of grid-scale and subgrid-scale turbulence by direct filtering of DNS data. 

Therefore, the objective of this study is to generate the grid-scale (GS) and subgrid-scale 
(SGS) velocity fields by direct filtering of the DNS data using three classical filter 
functions in LES. We compare the behavior of the velocity distributions as well as the 
decay of turbulence in the GS and SGS fields with the results in the DNS data with Reλ 
=30.5 to perform a priori test in homogeneous isotropic turbulence. The filter width plays 
very important role in this filtering process. Hence, the over all goal of this study is to 
show the accuracy of the filtering approach as well as to show the performance of the 
different filter functions with several filter widths. 

2.   Grid-scale and Subgrid-scale Velocity Fields 

2.1  DNS data base 

The reference DNS is performed at 643 resolutions by using a spectral code (Tanahashi et 
al. [8]; Tanahashi et al. [9]; Uddin et al. [10]) and the computation was done with non-
dimensional Δt =0.00316. At the end of calculation, the Reynolds number, Reλ, based on 
urms and Taylor microscale (λ) of the DNS data is 30.5 (t=3.792) and the maximum 
possible Reynolds number of the flow is 121.1. A sample of mesh in the periodic box is 
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shown in Fig. 1. 

           
Figure 1: A sample of mesh generation in the periodic box. Computational domain: 2π×2π×2π;  

Grid points: 64×64×64. 

 

2.2 Classical filters for LES 

In this study, three classical filters are used for performing the spatial scale separation. 
The filtering of DNS data is carried out in the Fourier space rather than in the physical 
space. For a filtered width Δi in i-direction, these filter functions in Fourier space are 
given as follows: 

(i) Gaussian filter: 
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2.3  Generation of GS and SGS velocity fields 

To generate the grid-scale (GS) and subgrid scale (SGS) velocity fields, we have directly 
filtered the DNS velocity fields using above three classical filters: Gaussian filter, Tophat 
filter and Sharp-cutoff filter for LES. In LES, a velocity component u can be decomposed 
into two components, one component is in the range of low wave-number of energy 
spectrum, called GS component and is denoted by u , and the other component is in the 
range of high wave-number of energy spectrum, called SGS component and is denoted by 
u′ . Their relation can be expressed as: 

  u u u′= +                (4) 

The filtering is represented mathematically in physical space as a convolution product 
(Leonard [15]). The filtered part u  of the variable u is defined formally by the relation: 

  ( ) ( ) ( ),
D

u x G x x u x dx′ ′ ′= − Δ∫ ,            (5) 

in which D is the entire domain, G is filter kernel function and Δ is the filter width. 

The dual definition in the Fourier space can be obtained by multiplying the spectrum 
( )kû  of u(x) by the spectrum ( )kĜ  of the kernel G(x) such that, 

  ( ) ( ) ( )ˆˆ ˆ , 0, 1, 2,........u G u= = ± ±k k k k                     (6) 

The function Ĝ  is the transfer function associated with the kernel G. 

Using three filters functions given in section 2.2 for LES in the Fourier space, one set of 
DNS data for Reλ =30.5 is filtered and the exact GS velocity fields, u are obtained. After 
generating u , the SGS velocity field can be obtained by computing the relation: 

  u u u′ = −                (7) 

Filter width plays very important role with filter functions in this process. In LES 
calculation, the characteristic filter width Δi is commonly used as the length, 
approximately proportional to the grid interval, 2x NπΔ = , where N is the number of 
grid points in any direction (Piomelli [16]; Horiuti [17]). The structures represented by 
the GS and SGS velocities consequently depend both on the grid interval and on the type 
of filter employed.  In this study, we are interested to discuss the behaviors of filtered 
DNS velocity fields by using three classical filters for LES. Therefore, three different 
filter width Δi =2Δx, 4Δx and 8Δx are considered for all three classical filters, where Δx is 
the grid distance in DNS calculation. Since, we are dealing with homogeneous isotropic 
turbulence, the filter width Δi is same in each direction and hereafter it is denoted byΔ . 

3.  Results and Discussions 

3.1  Distributions of the DNS, GS and SGS velocities 

For any integer N>0, the set of points 2jx j Nπ= , j=0,1,………..,N-1, in any direction 
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referred to as nodes or grids, where N is the number of  grid points in that direction. In 
order to understand the GS velocity field from the DNS velocity field, we have compared 
the filtered velocity with DNS velocity using several filter widths. For this purpose we 
have randomly chosen one-dimensional velocity profile, say at x1 , and have plotted 

( )11 xu and ( )11 xu  for Reλ = 30.5 in Figs. 2(a)-2(c) using three different filter widths, 

=Δ 2Δx, 4Δx and 8Δx respectively, where 2x NπΔ = . 

In all cases, we have obtained these one dimensional profiles using the three filter 
functions. The profiles in Fig. 2(a), show that the GS velocity fields with Δ =2Δx for all 
three filter functions are very close to the DNS velocity field through out the whole 
analysis. 

Figure 2(b) revealed that the profiles of GS velocity for all three filter functions with Δ = 
4Δx do not collapse with the DNS velocity field through out the whole analysis. Here in 
the lower and higher grid ranges GS velocity profiles under-estimate the DNS profile, but 
at the middle stage the GS velocity profiles over-estimates the DNS profile. Clearly we 
can see that the separation of GS velocity with sharp-cutoff filter seems to be better than 
that of the other two filter functions. The GS velocity with filter width Δ = 8Δx is highly 
separated from the DNS for all three filter functions in Fig. 2(c), but in this case the GS 
velocity has less contribution over the whole computed flow fields that will be shown in 
the later section. 

Therefore, from Figs. 2(a)-2(c) clearly we can observe that although for all three filter 
width the DNS velocity field can be separated but the filter width Δ =4Δx shows 
significant results for this Reynolds number case for all three filter functions, but with 
Δ = 8Δx most of the velocity fields accumulate to the SGS part that will be shown later. 
Moreover, among the three filter functions the Sharp cutoff filter shows better result than 
that of the other two filter functions. This suggests that accuracy of the filtering depends 
on the filter functions as well as on the filter width of the computation. 

If we choose the one-dimensional velocity profile, say at y1 or z1, we get nearly the 
similar results for all three filter functions as well as for all three filter widths. 
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Figure 2: Comparison of u-component in DNS and GS velocity fields for three filter functions with three filter 

widths, Δ = (a) 2Δx; (b) 4Δx and (c) 8Δx. 



Comparative study of the grid-scale and subgrid-scale velocity 25 

-1.00

-0.50

0.00

0.50

1.00

0 10 20 30 40 50 60 70

SGS-Gaussian
SGS-Tophat
SGS-Sharp cutoff

u-
co

m
po

ne
nt

N

(a)

 

-1.00

-0.50

0.00

0.50

1.00

0 10 20 30 40 50 60 70

SGS-Gaussian
SGS-Tophat
SGS-Sharp cutoff

u-
co

m
po

ne
nt

N

(b)

 

-1.00

-0.50

0.00

0.50

1.00

0 10 20 30 40 50 60 70

SGS-Gaussian
SGS-Tophat
SGS-Sharp cutoff

u-
co

m
po

ne
nt

N

(c)

 
Figure 3: Comparison of u-component in SGS velocity fields for the three filter functions with the filter 

widths, Δ = (a) 2Δx; (b) 4Δx and (c) 8Δx.. 
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The comparisons of the SGS velocity fields for all three filter functions with different 
filter widths are shown in order to understand the flow pattern and its development in the 
whole analysis. Figs. 3(a)-3(c) represent the one-dimensional SGS velocity profile, 

( )11 xu′  for all three filter widths and three filter functions. The profiles in Fig. 3(a) show 

that the SGS velocity fields with Δ =2Δx for all three filter functions are close to each 
other through out the whole analysis. In Fig. 3(b) for Δ =4Δx, we observe that the SGS 
velocity fields for two filter functions: Gaussian and Tophat filter collapsed to each other, 
but the results for Sharp cutoff filter function is different from that of given by the other 
two filter functions. The development of the flow fields also suggest that the separation 
of SGS fields for this filter width is better than that of given in Fig. 3(a). Here also it is 
important to note that the contribution of the SGS fields for Δ =4Δx is significant. But, in  

Fig. 3(c) for the filter width Δ =8Δx, the contribution of the SGS velocity fields is more 
larger than that of the GS velocity fields that will be shown later. 

 

3.2. Decay of turbulence in DNS, GS and SGS fields 

Three-dimensional energy spectra in DNS and GS velocity fields for all three filter 
functions with three filter widths Δ =2Δx, 4Δx and 8Δx are presented in Fig.4, in which 
energy spectrum is calculated by the definition given as follows: 

  ( ) ( ) ( )*

1 1
2 2

1 ˆ ˆ
2

k - k k

E k u u
< ≤ +

= ∑ k k            (8) 

where k is the wave number vector. Here, the GS spectra are obtained by using Gaussian, 
Tophat and Sharp-cutoff filters and then compared to the DNS spectrum. The DNS 
spectrum for this Reλ case shows the power decay close to k-5/3. Here in all figures, the 
abscissa and the ordinate of the coordinate system represent the wave number k  and 

energy spectra E(k), respectively. In Fig. 4(a) forΔ =2Δx, we see that the GS fields 
contain the velocity in a full range in case of the Gaussian and Tophat filters. But with the 
Sharp-cutoff filter the GS spectrum does not contain the velocity in a full wave number 
range. 

Since Sharp cutoff filter strictly cut or separate the wave number-range (grids in physical 
space) depending on the filter width, hence the flow field is exactly separated into two 
parts such as GS and SGS part. So we can see that the three dimensional energy spectrum 
in GS field for Sharp-cutoff filter exactly collapsed with DNS spectrum from lowest 
wave number to the cutoff wave number. This behavior also confirms the accuracy of the 
filtering process. 
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Figure 4: Comparison of three-dimensional energy spectra in DNS and GS velocity fields for three filter 

functions with three filter widths, Δ = (a) 2Δx; (b) 4Δx and (c) 8Δx. 
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In Figs. 4(b) and 4(c), the profiles of energy spectra for all three filter functions and 
different filter widths show the similar pattern as shown in Fig. 4(a). In both cases the GS 
spectrum for the Sharp-cutoff filter function does not contain the velocity in a full wave 
number range.  Here we note that in the high wave number range the energy spectra for 
Tophat filter show some fluctuation or irregular behavior and this fluctuation repeated 
several times for the largest filter width. It may happen due to the nonlinear interaction or 
the limitation of the Tophat function itself but the exact reason is unclear. Whatever it is, 
the contribution of the energy spectra reduces with the increase of filter width for all 
three filter functions, and like the distribution of one-dimensional velocities given in the 
previous section, we can also say that the filter widthΔ =4Δx gives good results in this 
filtering approach for this Reynolds number case. 

Figures 5(a)–5(c) represent the three dimensional energy spectra in DNS and SGS 
velocity fields. In this case the energy spectra in SGS fields are also calculated using the 
same definition given in Eqn. (8). Here the SGS spectra are also obtained by using the 
Gaussian, Tophat and Sharp-cutoff filter functions, and then compared to the DNS 
spectrum. 

Form these figures clearly we can observe that the whole wave number range contributes 
on the energy spectra in SGS velocity fields in case of Gaussian and Tophat filter 
functions. On the other hand, only the cutoff wave numbers contribute on the energy 
spectra in case of Sharp cutoff filter. Therefore, in Fig. 5(a) we see that the decay of 
energy spectrum in SGS field for Sharp cutoff filter exactly collapsed with DNS 
spectrum in the high wave number range, and the contribution of this spectrum in the 
filtered field is not so high for the filter width Δ =2Δx. Like GS field the profile of 
energy spectrum for Sharp cutoff filter again confirms the accuracy of this filtering 
approach. 

In Fig. 5(b), for Δ =4Δx, the profiles of energy spectrum for all three filter functions 
show the similar pattern as shown in Fig. 5(a). But, in this case, the cutoff wave numbers 
contribute significantly on the energy spectra in case of Sharp cutoff filter. Here, we can 
say that for the filter width Δ =4Δx, the contribution of this spectrum in the filtered field 
is reasonable for all three filter functions. This behavior also matches with the results 
given in Fig. 4(b). That is the filter width Δ =4Δx separate the DNS velocity field into 
GS and SGS fields reasonably for all three filter functions used in this study. 

Finally, in Fig. 5(c) for Δ =8Δx, although we get the similar pattern like in figures 5(a) 
and 5(b), but in this case we observe that almost whole flow field goes into the SGS field. 
That is, for this filter width case the SGS field is very much similar to the DNS field, 
which we also realized from the results given in Fig. 4(c). Whatever it is, the decay of 
turbulence given in Figs. 5(a)-5(c) revealed that the contribution of the energy spectra in 
SGS fields increases with the increase of the filter width for all three filter functions. 
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Figure 5: Comparison of three-dimensional energy spectra in DNS and SGS velocity fields for three filter 

functions with the three filter widths, Δ = (a) 2Δx; (b) 4Δx and (c) 8Δx.. 
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Conclusions 

The conclusion of this study can be drawn as follows: 

We have successfully filtered the DNS fields in homogeneous isotropic turbulence at a 
low Reynolds number (Reλ =30.5) with 643 grids and generate the grid scale (GS) and 
subgrid scale (SGS) fields, using three classical filters and three different filter widths for 
LES. Then we have compared the behavior of the one-dimensional velocity fields as well 
as the three-dimensional energy spectra in the GS and SGS fields with the results in the 
DNS field. After analyzing the results of velocity distributions and the decay of 
turbulence in all DNS, GS and SGS fields through out the whole calculation we have 
found that among the three filter functions: Gaussian, Tophat and Sharp cutoff filters, the 
performance of Sharp cutoff filter is better than that of the other two filter functions for 
this filtering approach. It is revealed that the results with Gaussian filter are also good but 
the performance of the Tophat filter is the least. It is also shown that among three filter 
widths, such as Δ = 2Δx, 4Δx and 8Δx, the GS and SGS results with the filter width Δ = 
4Δx are more reasonable for all three filter functions for this Reynolds number case. 
Hence, our present study suggests that the accuracy of the filtering process depends on 
the filter functions as well as on the filter widths for LES. 

ACKNOWLEDGEMENT 

The main computation of DNS and the filtering were carried out on a large-scale 
massively parallel supercomputer, Hitachi SR8000, located at the University of Tokyo 
using secure remote access through the networking system of Shahjalal University of 
Science & Technology. We gratefully acknowledge their support and cooperation for this 
computation. 

 
REFERENCES 
 
1. Moin, P and Kim, J., Numerical Investigation of Turbulent Channel Flow, J. Fluid Mech., 118 (1982), 

341-377. 
2. Viecelli, J. A., A Computing Method for Incompressible Flows Bounded by Walls, J. Comput. Phys., 8 

(1971), 119-148. 
3. Kato, C and Ikegawa, M., Large Eddy Simulation of Unsteady Turbulent Wake of a Circular Cylinder 

Using the Finite Element Method, ASME-FED, 117 (1991), 49-56. 
4. Kato, C, Kaiho, M. and Manabe, A., An Overset Finite-Element Large-Eddy Simulation Method With 

Application to Turbomachinery and Aeroacoustics, Trans.ASME, 70 (2003), 32- 43. 
5. Uddin, M. A., Kato, C., Yamade, Y., Ohshima, N., Tanahashi, M., and Miyauchi, T., “Large Eddy 

Simulation of Homogeneous Isotropic Turbulent Flow Using the Finite Element Method”- JSME Int. J, 
Ser. B, 49-(1), (2006), 102-114. 

6. Vincent, A. and Meneguzzi, M., The Spatial Structure and Statistical Properties of Homogeneous 
Turbulence, J. Fluid Mech., 225 (1991), 1-20. 

7. Jimenez, J., Wray, A. A., Saffman, P. G. and Rogallo, R. S., The Structure of Intense Vorticity in 
Isotropic Turbulence, J. Fluid Mech., 255 (1993), 65-90. 



Comparative study of the grid-scale and subgrid-scale velocity 31 

8. Tanahashi, M., Miyauchi, T. and Ikeda, J., Scaling Law of Coherent Fine Scale Structure in 
Homogeneous Isotropic Turbulence, Proc. of the 11th Symposium on Turbulent Shear Flows., 1 (1997), 
4-17-4-22. 

9. Tanahashi, M., Uddin, M. A., Iwase, S. and Miyauchi, T., Three Dimensional Feature of Coherent Fine 
Scale Eddies in Homogeneous Isotropic Turbulence, Trans. Jpn. Soc. Mech. Eng., (in Japanese), 65-(638 
B), (1999), 3237-3243. 

10. Uddin, M. A., Tanahashi, M., Iwase, S. and Miyauchi, T., Visualization of Axes of Coherent Fine Scale 
Eddies in Homogeneous Isotropic Turbulence, Proc. of the 3rd Pacific Symposium on Flow 
Visualization and Image Processing (PSFVIP-3), CD-ROM Proc., C3-2, F3204 (2001), 1-7. 

11. Sagaut, P., Large Eddy Simulation for Incompressible Flows, Springer-Verlag Heidelberg, (2001), 7. 
12. Smagorinsky, J., General Circulation Experiments with the Primitive Equations. I: The basic experiment, 

Month. Weath. Rev., 91-(3), (1963), 99-165. 
13. Germano, M., Piomelli, U., Moin., P and Cabot, W.H., A Dynamic Subgrid-scale Eddy Viscosity Model, 

Phys. Fluids., A 3-(7), (1991), 1760-1765. 
14. Yoshizawa, A., Tsubokura, M, Kobayashi, T and Taniguchi, N, Modeling of the dynamic subgrid-sacle 

viscosity in large eddy simulation, Phys. Fluid, 8-(8), (1996),  2254-2256. 
15. Leonard, A., Energy Cascade in Large Eddy Simulations of Turbulent Fluid Flows, Adv. in Geophys., A 

18, (1974), 237-248. 
16. Piomelli, U. High Reynolds Number Calculations Using the Dynamic Subgrid-scale Stress Model. Phys. 

Fluids, A 5-(6), (1993), 1484-1490. 
17. Horiuti, K., A Proper Velocity Scale for Modeling Subgrid-scale Eddy Viscosities in Large Eddy 

Simulation, Phys. Fluids., A 5-(1), (1993), 146-157. 


