JORDAN k-HOMOMORPHISMS ONTO COMPLETELY PRIME Γ_{N}-RINGS

Sujoy Chakraborty ${ }^{1}$ and Akhil Chandra Paul ${ }^{2}$
${ }^{1}$ Department of Mathematics, Shahjalal University of Science and Technology Sylhet-3114, Bangladesh;
E-mail: sujoy_chbty@yahoo.com
${ }^{2}$ Department of Mathematics, Rajshahi University
Rajshahi-6205, Bangladesh.
E-mail: acpaulru_math@yahoo.com

Received 25.05.08 Accepted 05.03.11

Abstract

By introducing the notions of k-homomorphism, anti- k-homomorphism and Jordan k homomorphism of Nobusawa Γ-rings, we establish some significant results related to these concepts. If M_{1} is a Nobusawa Γ_{1}-ring and M_{2} is a 2 -torsion free completely prime Nobusawa Γ_{2}-ring, then we prove that every Jordan k-homomorphism θ of M_{1} onto M_{2} such that $k\left(\Gamma_{1}\right)=\Gamma_{2}$ is either a k-homomorphism or an anti- k-homomorphism.

1. Introduction

The notion of a Γ-ring was first introduced by N. Nobusawa [12] and then it was generalized by W. E. Barnes [1]. A number of significant properties of Γ-rings were obtained by them as well as by S. Kyuno [8, 9, 10], J. Luh [11], G. L. Booth [3] and others. We begin with the following definition.
Let M and Γ be additive abelian groups. If there exists a mapping $(a, \alpha, b) \rightarrow a \alpha b$ of $M \times \Gamma \times M \rightarrow M$ which satisfies the following conditions for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma:$
(a) $(a+b) \alpha c=a \alpha c+b \alpha c, a(\alpha+\beta) b=a \alpha b+a \beta b, a \alpha(b+c)=a \alpha b+a \alpha c$ and
(b) $(a \alpha b) \beta c=a \alpha(b \beta c)$,
then M is called a Γ-ring in the sense of Barnes [1], or simply, a Γ-ring.
It is obvious that every ring is a Γ-ring, but the converse is not true in general.
Example 1.1 Let R be a ring with identity 1 and $M_{m, n}(R)$ the set of all $m \times n$ matrices

[^0]with entries in R. If we set $M=M_{m, n}(R)$ and $\Gamma=M_{n, m}(R)$, then M is clearly a Γ-ring with respect to the matrix addition and multiplication.
In addition to the definition of a Γ-ring given above, if there exists another mapping $(\alpha, a, \beta) \rightarrow \alpha a \beta$ of $\Gamma \times M \times \Gamma \rightarrow \Gamma$ satisfying the following conditions
$\left(a^{*}\right)(\alpha+\beta) a \gamma=\alpha a \gamma+\beta a \gamma, \alpha(a+b) \beta=\alpha a \beta+\alpha b \beta, \alpha a(\beta+\gamma)=\alpha a \beta+\alpha a \gamma$,
$\left(b^{*}\right)(a \alpha b) \beta c=a(\alpha b \beta) c=a \alpha(b \beta c)$ and
(c*) $a \alpha b=0$ implies $\alpha=0$
for all $a, b, c \in M$ and $\alpha, \beta, \gamma \in \Gamma$, then M is called a Γ-ring in the sense of Nobusawa [12], or simply, a Nobusawa Γ-ring and then we say that M is a Γ_{N}-ring. This notation was first used by G. L. Booth in [3].
Example 1.2 Let $D_{m, n}$ be the set of all rectangular $m \times n$ matrices over some division ring D. If we take $M=D_{m, n}$ and $\Gamma=D_{n, m}$, then it is obvious that M is a Γ_{N}-ring under the usual addition and multiplication of matrices.

Clearly, M is a Γ-ring does not imply that Γ is an M -ring in general, but M is a Γ_{N}-ring always implies that Γ is an M -ring.
Note that the notions of a prime Γ-ring and a completely prime Γ-ring were introduced by J. Luh [11] and some analogous results corresponding to prime Γ-rings were obtained by him and S. Kyuno [10].
Let M be a Γ-ring. Then M is called a prime Γ-ring if $a \Gamma М Г b=0$ implies $a=0$ or $b=0$ for all $a, b \in M$. And, M is called a completely prime Γ-ring if $a \Gamma b=0$ implies $a=0$ or $b=0$ for all $a, b \in M$. Obviously, the primeness and completely primeness are equivalent in case of Γ_{N}-rings.

Example 1.3 Let R be an integral domain with identity 1. Take $M=M_{1,2}(R)$ and $\Gamma=\left\{\binom{n .1}{0}: n\right.$ is an integer $\}$. Then M is a Γ-ring. If we assume $N=\{(a, a): a \in R\} \subset M$, then it is easy to verify that N is a Γ-ring (in fact, N is then a Γ-subring of M) and also that N is a completely prime Γ-ring.
In a Γ-ring M, an additive subgroup U of M is called a left (or, right) ideal of M if $M \Gamma U \subset U$ (or, $U \Gamma M \subset U$). Here, U is said to be a (two-sided) ideal of M if U is both a left and a right ideal of M. If $a, b \in M$ and $\alpha \in \Gamma$, then we write $(a \circ b)_{\alpha}=a \alpha b+b \alpha a$ and it is known as the Jordan product of a and b with respect to α. Besides, M is said to be a 2 -torsion free Γ-ring if $2 a=0$ implies $a=0$ for all $a \in M$.
The notion of Jordan homomorphism of rings was introduced by N. Jacobson and C. E. Rickart in [7], where they have proved that every Jordan homomorphism of a ring into an integral domain is either a homomorphism or an anti-homomorphism. Afterwards, I. N.

Herstein [5] has modified this result stating that every Jordan homomorphism of a ring onto a prime ring of characteristic different from two and three is either a homomorphism or an anti-homomorphism. But, M. F. Smiley [13] has given a brief proof of this result and at the same time has removed the requirement that the characteristic should be different from three. Thus, the said Herstein's result has reduced by him to the form: every Jordan homomorphism of a ring onto a 2-torsion free prime ring is either a homomorphism or an anti-homomorphism.
Note that the notion of homomorphism for Γ-rings was first introduced by W. E. Barnes [1] and then generalized by W. E. Coppage and J. Luh in [4]. Later, S. Kyuno [9] has specified this concept for Γ_{N}-rings; but, he has given a more general definition of a homomorphism for Γ_{N}-rings in [8] in the following way:

Let $\left(\Gamma_{1}, M_{1}\right)$ and (Γ_{2}, M_{2}) be Γ_{N}-rings. Then an ordered pair (θ, φ) of mappings is called a homomorphism from $\left(\Gamma_{1}, M_{1}\right)$ to (Γ_{2}, M_{2}) if it satisfies the following properties:
(1) θ is a group homomorphism from M_{1} to M_{2},
(2) φ is a group homomorphism from Γ_{1} to Γ_{2}, and
(3) for every $x, y \in M_{1}$ and $\alpha \in \Gamma_{1}, \theta(x \alpha y)=(\theta x)(\varphi \alpha)(\theta y)$.

Here, we redefine this concept in a new shape keeping its originality unaltered and then we introduce a new name of this as a k-homomorphism in the following way.
Definition 1.1 Let M_{1} be a Nobusawa Γ_{1}-ring and M_{2} a Nobusawa Γ_{2}-ring. If $\varphi: M_{1} \rightarrow M_{2}$ and $k: \Gamma_{1} \rightarrow \Gamma_{2}$ are additive mappings such that $\varphi(a \alpha b)=\varphi(a) k(\alpha) \varphi(b)$ for all $a, b \in M_{1}$ and $\alpha \in \Gamma_{1}$, then φ is called a k-homomorphism.

Remark 1.1 If $\varphi: M_{1} \rightarrow M_{2}$ is a k-homomorphism of a Nobusawa Γ_{1}-ring M_{1} into another Nobusawa Γ_{2}-ring M_{2}, then we have $\varphi(a \alpha b)=\varphi(a) k(\alpha) \varphi(b)$ for all $a, b \in M_{1}$ and $\alpha \in \Gamma_{1}$. Let $c \in M_{1}$ and $\beta, \gamma \in \Gamma_{1}$. Put $\beta c \gamma$ for α to get $\varphi(a \beta c \gamma b)=\varphi(a) k(\beta c \gamma) \varphi(b)$. Then simplifying it by definition, we obtain $\varphi(a)[k(\beta) \varphi(c) k(\gamma)-k(\beta c \gamma)] \varphi(b)=0$. Since M_{2} is a Nobusawa Γ_{2}-ring and $\varphi(a), \varphi(b) \in M_{2}$ for all $a, b \in M_{1}$, by applying the Nobusawa condition (c*) in the last equality, we get $k(\beta c \gamma)=k(\beta) \varphi(c) k(\gamma)$ for all $c \in M_{1}$ and $\beta, \gamma \in \Gamma_{1}$.

Some authors have used this property as the second defining condition in addition with the first one that we have mentioned in Definition 1.1. Since the first condition implies the second one by Remark 1.1, the second condition may be removed from the definition, and thus, the Definition 1.1 is justified.

Example 1.4 Let M be a Nobusawa Γ-ring. Consider $M^{\prime}=\left\{m^{\prime}: m \in M\right\}$ and $\Gamma^{\prime}=\left\{\gamma^{\prime}: \gamma \in \Gamma\right\}$ such that the operations of addition and multiplication on M^{\prime} are
defined by $m^{\prime}+n^{\prime}=(m+n)^{\prime}$ and $m^{\prime} \gamma^{\prime} n^{\prime}=(m \gamma n)^{\prime}$ along with those on Γ^{\prime} by $\gamma^{\prime}+\delta^{\prime}=(\gamma+\delta)^{\prime}$ and $\gamma^{\prime} m^{\prime} \delta^{\prime}=(\gamma m \delta)^{\prime}$, respectively, for all $m^{\prime}, n^{\prime} \in M^{\prime}$ such that $m, n \in M$ and for all $\gamma^{\prime}, \delta^{\prime} \in \Gamma^{\prime}$ such that $\gamma, \delta \in \Gamma$. Then M^{\prime} is a Nobusawa Γ^{\prime}-ring under these operations. Now, if the map $\varphi: M \rightarrow M^{\prime}$ is defined by $\varphi(x)=x^{\prime}$ for all $x \in M$ and the map $k: \Gamma \rightarrow \Gamma^{\prime}$ is defined by $k(\alpha)=\alpha^{\prime}$ for all $\alpha \in \Gamma$, then it can be shown that each of them is an additive map, and consequently, φ is a k-homomorphism.

Following the definition of k-homomorphism for Γ_{N}-rings, we then introduce the concept of anti-k-homomorphism for Γ_{N}-rings in the following way.

Definition 1.2 Let M_{1} be a Nobusawa Γ_{1}-ring and M_{2} a Nobusawa Γ_{2}-ring. Suppose $\psi: M_{1} \rightarrow M_{2}$ and $k: \Gamma_{1} \rightarrow \Gamma_{2}$ are additive mappings such that $\psi(a \alpha b)=\psi(b) k(\alpha) \psi(a)$ for all $a, b \in M_{1}$ and $\alpha \in \Gamma_{1}$. Then ψ is called an anti-k-homomorphism.

Remark 1.2 Suppose $\psi: M_{1} \rightarrow M_{2}$ is an anti- k-homomorphism of a Nobusawa Γ_{1}-ring M_{1} into another Nobusawa Γ_{2}-ring M_{2}. Then we get $\psi(a \alpha b)=\psi(b) k(\alpha) \psi(a)$ for all $a, b \in M_{1}$ and $\alpha \in \Gamma_{1}$. Placing $\beta c \gamma$ for α (where $c \in M_{1}$ and $\beta, \gamma \in \Gamma_{1}$), we have $\psi(a \beta c \gamma b)=\psi(b) k(\beta c \gamma) \psi(a)$. It gives, $\psi(b)[k(\gamma) \psi(c) k(\beta)-k(\beta c \gamma)] \psi(a)=0$. But, since M_{2} is a Nobusawa Γ_{2}-ring and $\psi(a), \psi(b) \in M_{2}$ for all $a, b \in M_{1}$, using the Nobusawa condition (c*), we obtain $k(\beta c \gamma)=k(\gamma) \psi(c) k(\beta)$ for all $c \in M_{1}$ and $\beta, \gamma \in \Gamma_{1}$.

One may use this condition as the second defining property along with the first one we have given in Definition 1.2. But, since the second one follows from the first property by Remark 1.2, the second property must not be added as a defining condition, and therefore, it justifies the Definition 1.2.
Example 1.5 Let D be a division ring and $M_{n, m}(D)$ the set of all $n \times m$ matrices with entries in D. Choose $M=M_{n, m}(D)$ and $\Gamma=M_{m, n}(D)$. Then M is a Nobusawa Γ-ring with respect to addition and multiplication of matrices. Define $N=\left\{A^{T}: A \in M_{n, m}(D)\right\}$ and $\Gamma^{\prime}=\left\{\alpha^{T}: \alpha \in M_{m, n}(D)\right\}$, where X^{T} denotes the transpose of the matrix X. Then N is a Nobusawa Γ^{\prime}-ring with respect to addition and multiplication of matrices. Now, let the map $\psi: M \rightarrow N$ be defined by $\psi(A)=A^{T}$ for all $A \in M$, and let the map $k: \Gamma \rightarrow \Gamma^{\prime}$ be defined by $k(\alpha)=\alpha^{T}$ for all $\alpha \in \Gamma$. Then it can be shown that both the maps are additive, and accordingly, ψ is an anti- k-homomorphism.

Now, we introduce the notion of Jordan k-homomorphism for Γ_{N}-rings as below:
Definition 1.3 Let M_{1} be a Nobusawa Γ_{1}-ring and M_{2} a Nobusawa Γ_{2}-ring, and let $k: \Gamma_{1} \rightarrow \Gamma_{2}$ be an additive map. Then an additive map $\theta: M_{1} \rightarrow M_{2}$ is called a Jordan k-homomorphism if $\theta\left((a \circ b)_{\alpha}\right)=(\theta(a) \circ \theta(b))_{k(\alpha)}$, that is, if $\quad \theta(a \alpha b+b \alpha a)$
$=\theta(a) k(\alpha) \theta(b)+\theta(b) k(\alpha) \theta(a)$ for all $a, b \in M_{1}$ and $\alpha \in \Gamma_{1}$.
In particular, if M_{2} is 2-torsion free and $a=b$, then the above defining condition reduces to $\theta(a \alpha a)=\theta(a) k(\alpha) \theta(a)$ for all $a \in M_{1}$ and $\alpha \in \Gamma_{1}$. Thus, alternatively, we can say that an additive map $\theta: M_{1} \rightarrow M_{2}$ is a Jordan k-homomorphism of a Nobusawa Γ_{1} ring M_{1} into a 2-torsion free Nobusawa Γ_{2}-ring M_{2} if $\theta(a \alpha a)=\theta(a) k(\alpha) \theta(a)$ for all $a \in M_{1}$ and $\alpha \in \Gamma_{1}$.

Example 1.6 Let M_{i} be a Nobusawa Γ_{i}-ring for $i=1,2,3,4$. Consider $M=M_{1} \times M_{2}$ and $\Gamma=\Gamma_{1} \times \Gamma_{2}$. Let the operations of addition and multiplication on M be defined by

$$
\begin{gathered}
\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \text { and } \\
\left(x_{1}, x_{2}\right)\left(\alpha_{1}, \alpha_{2}\right)\left(y_{1}, y_{2}\right)=\left(x_{1} \alpha_{1} y_{1}, x_{2} \alpha_{2} y_{2}\right)
\end{gathered}
$$

along with those on Γ by

$$
\begin{aligned}
& \left(\alpha_{1}, \alpha_{2}\right)+\left(\beta_{1}, \beta_{2}\right)=\left(\alpha_{1}+\beta_{1}, \alpha_{2}+\beta_{2}\right) \text { and } \\
& \left(\alpha_{1}, \alpha_{2}\right)\left(x_{1}, x_{2}\right)\left(\beta_{1}, \beta_{2}\right)=\left(\alpha_{1} x_{1} \beta_{1}, \alpha_{2} x_{2} \beta_{2}\right)
\end{aligned}
$$

for all $x_{1}, y_{1} \in M_{1}, x_{2}, y_{2} \in M_{2}, \alpha_{1}, \beta_{1} \in \Gamma_{1}$ and $\alpha_{2}, \beta_{2} \in \Gamma_{2}$, respectively. Then it can be verified that M is a Nobusawa Γ-ring under these operations.
Similarly, if we consider $M^{\prime}=M_{3} \times M_{4}$ and $\Gamma^{\prime}=\Gamma_{3} \times \Gamma_{4}$, and define the operations of addition and multiplication on M^{\prime} by

$$
\begin{gathered}
\left(x_{3}, x_{4}\right)+\left(y_{3}, y_{4}\right)=\left(x_{3}+y_{3}, x_{4}+y_{4}\right) \text { and } \\
\left(x_{3}, x_{4}\right)\left(\alpha_{3}, \alpha_{4}\right)\left(y_{3}, y_{4}\right)=\left(x_{3} \alpha_{3} y_{3}, x_{4} \alpha_{4} y_{4}\right)
\end{gathered}
$$

including those on Γ^{\prime} by

$$
\begin{aligned}
& \left(\alpha_{3}, \alpha_{4}\right)+\left(\beta_{3}, \beta_{4}\right)=\left(\alpha_{3}+\beta_{3}, \alpha_{4}+\beta_{4}\right) \text { and } \\
& \left(\alpha_{3}, \alpha_{4}\right)\left(x_{3}, x_{4}\right)\left(\beta_{3}, \beta_{4}\right)=\left(\alpha_{3} x_{3} \beta_{3}, \alpha_{4} x_{4} \beta_{4}\right)
\end{aligned}
$$

for all $x_{3}, y_{3} \in M_{3}, x_{4}, y_{4} \in M_{4}, \alpha_{3}, \beta_{3} \in \Gamma_{3}$ and $\alpha_{4}, \beta_{4} \in \Gamma_{4}$, respectively, then M^{\prime} is a Nobusawa Γ^{\prime}-ring under these operations.
Let $k_{1}: \Gamma_{1} \rightarrow \Gamma_{3}$ be an additive map for which $\varphi: M_{1} \rightarrow M_{3}$ is a k_{1}-homomorphism, and let $k_{2}: \Gamma_{2} \rightarrow \Gamma_{4}$ be another additive map for which $\psi: M_{2} \rightarrow M_{4}$ is an anti- k_{2} homomorphism. Define an additive map $\theta: M \rightarrow M^{\prime}$ by $\theta((x, y))=(\varphi(x), \psi(y))$ for all $x \in M_{1}$ and $y \in M_{2}$, and another additive map $k: \Gamma \rightarrow \Gamma^{\prime}$ by $k((\alpha, \beta))=\left(k_{1}(\alpha), k_{2}(\beta)\right)$ for all $\alpha \in \Gamma_{1}$ and $\beta \in \Gamma_{2}$. Then for all $x, z \in M_{1}, y, w \in M_{2}, \alpha \in \Gamma_{1}$ and $\beta \in \Gamma_{2}$, we have

$$
\begin{aligned}
& \theta((x, y)(\alpha, \beta)(z, w)+(z, w)(\alpha, \beta)(x, y)) \\
& =\theta(x \alpha z+z \alpha x, y \beta w+w \beta y) \\
& =(\varphi(x \alpha z+z \alpha x), \psi(y \beta w+w \beta y)) \\
& =\left(\varphi(x) k_{1}(\alpha) \varphi(z), \psi(y) k_{2}(\beta) \psi(w)\right)+\left(\varphi(z) k_{1}(\alpha) \varphi(x), \psi(w) k_{2}(\beta) \psi(y)\right) \\
& =(\varphi(x), \psi(y))\left(k_{1}(\alpha), k_{2}(\beta)\right)(\varphi(z), \psi(w))+(\varphi(z), \psi(w))\left(k_{1}(\alpha), k_{2}(\beta)\right)(\varphi(x), \psi(y)) \\
& =\theta((x, y)) k((\alpha, \beta)) \theta((z, w))+\theta((z, w)) k((\alpha, \beta)) \theta((x, y)),
\end{aligned}
$$

which indicates that θ is a Jordan k-homomorphism.
Our objective is to show that every Jordan k-homomorphism $\theta: M_{1} \rightarrow M_{2}$ such that $k\left(\Gamma_{1}\right)=\Gamma_{2}$ is either a k-homomorphism or an anti-k-homomorphism if we choose M_{1} as a Nobusawa Γ_{1}-ring and M_{2} as a 2-torsion free completely prime Nobusawa Γ_{2}-ring. To establish this result we build up the following important lemmas.

2. Main Results

Lemma 2.1 Let M be a Γ_{1}-ring and N a 2-torsion free Γ_{2}-ring. If $\theta: M \rightarrow N$ is a Jordan k-homomorphism, then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma_{1}$, the following statements hold:
(i) $\theta(a \alpha b \beta a+a \beta b \alpha a)=\theta(a) k(\alpha) \theta(b) k(\beta) \theta(a)+\theta(a) k(\beta) \theta(b) k(\alpha) \theta(a)$;
(ii) $\theta(a \alpha b \alpha a)=\theta(a) k(\alpha) \theta(b) k(\alpha) \theta(a)$;
(iii) $\theta(a \alpha b \alpha c+c \alpha b \alpha a)=\theta(a) k(\alpha) \theta(b) k(\alpha) \theta(c)+\theta(c) k(\alpha) \theta(b) k(\alpha) \theta(a)$.

Proof. Since θ is a Jordan k-homomorphism of a Γ_{1}-ring M into a 2-torsion free Γ_{2}-ring N, by definition, we have $\theta(a \alpha b+b \alpha a)=\theta(a) k(\alpha) \theta(b)+\theta(b) k(\alpha) \theta(a)$ for all $a, b \in M$ and $\alpha \in \Gamma_{1}$. Replacing b by $a \beta b+b \beta a$ in this equality, we get (i). Then (ii) is easily obtained by replacing α for β in (i), and (iii) is obtained by replacing $a+c$ for a in (ii).

Lemma 2.2 If θ is a Jordan k-homomorphism of a Γ_{1}-ring M into a 2-torsion free Γ_{2} ring N, then $k(\beta b \beta)=k(\beta) \theta(b) k(\beta)$ for all $b \in M$ and $\beta \in \Gamma_{1}$.

Proof. For all $a \in M$ and $\alpha \in \Gamma_{1}$, we have $\theta(a \alpha a)=\theta(a) k(\alpha) \theta(a)$. Let $b \in M$ and $\beta \in \Gamma_{1}$. Putting $\beta b \beta$ for α, we get $\theta(a \beta b \beta a)=\theta(a) k(\beta b \beta) \theta(a)$. Expanding the LHS by Lemma 2.1(ii), we obtain $\theta(a)(k(\beta) \theta(b) k(\beta)-k(\beta b \beta)) \theta(a)=0$. Since N is a Γ_{2}-ring and $\theta(a) \in N$ for all $a \in M$, applying the Nobusawa condition (c*) in the last equality, we get the proof.

Lemma 2.3 If θ is both a Jordan k_{1} - and a Jordan k_{2}-homomorphism of a Γ_{1}-ring M into a 2-torsion free Γ_{2}-ring N, then $k_{1}=k_{2}$.

Proof. Obvious.
Hence, it follows that if θ is a Jordan k-homomorphism of a Γ_{1}-ring M into a 2-torsion free Γ_{2}-ring N, then k is uniquely determined.

Definition 2.1 Let θ be a Jordan k-homomorphism of a Γ_{1}-ring M into a 2-torsion free Γ_{2}-ring N. Then for $a, b \in M$ and $\alpha \in \Gamma_{1}$, we define $F_{\alpha}(a, b)=\theta(a \alpha b)-\theta(a) k(\alpha) \theta(b)$.

Lemma 2.4 If θ is a Jordan k-homomorphism of a Γ_{1}-ring M into a 2-torsion free Γ_{2} ring N, then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma_{1}$:
(i) $F_{\alpha}(a, b)+F_{\alpha}(b, a)=0$; (ii) $F_{\alpha}(a+b, c)=F_{\alpha}(a, c)+F_{\alpha}(b, c)$;
(iii) $F_{\alpha}(a, b+c)=F_{\alpha}(a, b)+F_{\alpha}(a, c)$; (iv) $F_{\alpha+\beta}(a, b)=F_{\alpha}(a, b)+F_{\beta}(a, b)$.

Proof. Clear.
Note that θ is a k-homomorphism of a Γ_{1}-ring M into a 2-torsion free Γ_{2}-ring N if and only if $F_{\alpha}(a, b)=0$ for all $a, b \in M$ and $\alpha \in \Gamma_{1}$.

Definition 2.2 Let θ be a Jordan k-homomorphism of a Γ_{1}-ring M into a 2-torsion free Γ_{2}-ring N. Then for $a, b \in M$ and $\alpha \in \Gamma_{1}$, we define $G_{\alpha}(a, b)=\theta(a \alpha b)-\theta(b) k(\alpha) \theta(a)$.

Lemma 2.5 If θ is a Jordan k-homomorphism of a Γ_{1}-ring M into a 2-torsion free Γ_{2} ring N, then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma_{1}$:
(i) $G_{\alpha}(a, b)+G_{\alpha}(b, a)=0$; (ii) $G_{\alpha}(a+b, c)=G_{\alpha}(a, c)+G_{\alpha}(b, c)$;
(iii) $G_{\alpha}(a, b+c)=G_{\alpha}(a, b)+G_{\alpha}(a, c)$; (iv) $G_{\alpha+\beta}(a, b)=G_{\alpha}(a, b)+G_{\beta}(a, b)$.

Proof. Obvious.
Note that θ is an anti- k-homomorphism of a Γ_{1}-ring M into a 2-torsion free Γ_{2}-ring N if and only if $G_{\alpha}(a, b)=0$ for all $a, b \in M$ and $\alpha \in \Gamma_{1}$.

Lemma 2.6 Let θ be a Jordan k-homomorphism of a Γ_{1}-ring M into a 2-torsion free Γ_{2} ring N and $a, b \in M, \alpha, \gamma \in \Gamma_{1}$. Then $F_{\alpha}(a, b) k(\gamma) G_{\alpha}(a, b)+G_{\alpha}(a, b) k(\gamma) F_{\alpha}(a, b)=0$.

Proof. We put $X=a \alpha b \gamma b \alpha a+b \alpha a \gamma a \alpha b$ and look what happens here. We determine $\theta(X)=\theta(a \alpha(b \gamma b) \alpha a)+\theta(b \alpha(a \gamma a) \alpha b)$ and $\theta(X)=\theta((a \alpha b) \gamma(b \alpha a)+(b \alpha a) \gamma(a \alpha b))$ by using Lemma 2.1, separately. Upon equating them, cancel the like terms from both sides of the equality and then rearrange the remaining terms using Lemma 2.4(i) and Lemma $2.5(\mathrm{i})$ to obtain the proof.

Lemma 2.7 Let N be a 2-torsion free completely prime Γ_{2}-ring and $x, y \in N$ such that $x \delta y+y \delta x=0$ for all $\delta \in \Gamma_{2}$. Then $x \delta y=y \delta x=0$.

Proof. By repeated application of the hypothesis, we have

$$
\begin{gathered}
(x \delta y) \delta(x \delta y)=-(y \delta x) \delta(x \delta y)=-(y(\delta x \delta) x) \delta y)=(x(\delta x \delta) y) \delta y) \\
=x \delta(x \delta y) \delta y=-x \delta(y \delta x) \delta y=-(x \delta y) \delta(x \delta y)
\end{gathered}
$$

This implies, $2(x \delta y) \delta(x \delta y)=0$. Since N is 2-torsion free, we get $(x \delta y) \delta(x \delta y)=0$. By the completely primeness of N, we obtain $x \delta y=0$. Hence we get, $x \delta y=y \delta x=0$ for all $x, y \in N$ and $\delta \in \Gamma_{2}$.

Corollary 2.1 Let θ be a Jordan k-homomorphism of a Γ_{1}-ring M into a 2-torsion free completely prime Γ_{2}-ring N, and let $a, b \in M$ and $\alpha, \gamma \in \Gamma_{1}$. Then

$$
F_{\alpha}(a, b) k(\gamma) G_{\alpha}(a, b)=0=G_{\alpha}(a, b) k(\gamma) F_{\alpha}(a, b)
$$

Proof. Using Lemma 2.7 in the result of Lemma 2.6, we obtain the proof.
Lemma 2.8 Let $A_{1}, A_{2}, \ldots, A_{n}$ be additive groups and let N be a completely prime Γ_{2} ring. Suppose the maps $f: A_{1} \times A_{2} \times \ldots \times A_{n} \rightarrow N$ and $g: A_{1} \times A_{2} \times \ldots \times A_{n} \rightarrow N$ are additive in each argument. If $f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \beta g\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$ for all $a_{i} \in A_{i}$ with $i=1,2, \ldots, n$ and $\beta \in \Gamma_{2}$, then $f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \beta g\left(b_{1}, b_{2}, \ldots, b_{n}\right)=0$ for all $a_{i}, b_{i} \in A_{i}$ with $i=1,2, \ldots, n$ and $\beta \in \Gamma_{2}$.

Proof. It suffices to prove the case for $n=1$. In this case, the mappings are $f: A_{1} \rightarrow N$ and $g: A_{1} \rightarrow N \quad$ such that $f\left(a_{1}\right) \beta g\left(a_{1}\right)=0 \quad$ for all $a_{1} \in A_{1}$ and $\beta \in \Gamma_{2}$. Then $f\left(a_{1}+b_{1}\right) \beta g\left(a_{1}+b_{1}\right)=0$ for all $a_{1}, b_{1} \in A_{1}$ and $\beta \in \Gamma_{2}$. This implies,

$$
f\left(a_{1}\right) \beta g\left(a_{1}\right)+f\left(a_{1}\right) \beta g\left(b_{1}\right)+f\left(b_{1}\right) \beta g\left(a_{1}\right)+f\left(b_{1}\right) \beta g\left(b_{1}\right)=0
$$

and therefore, $f\left(a_{1}\right) \beta g\left(b_{1}\right)+f\left(b_{1}\right) \beta g\left(a_{1}\right)=0$. Then we have

$$
\left(f\left(a_{1}\right) \beta g\left(b_{1}\right)\right) \beta\left(f\left(a_{1}\right) \beta g\left(b_{1}\right)\right)=-f\left(a_{1}\right) \beta g\left(b_{1}\right) \beta f\left(b_{1}\right) \beta g\left(a_{1}\right)=0 .
$$

Hence, $f\left(a_{1}\right) \beta g\left(b_{1}\right)=0$ (by the completely primeness of N), and it finishes the proof.
Corollary 2.2 If θ is a Jordan k-homomorphism of a Γ_{1}-ring M into a 2-torsion free completely prime Γ_{2}-ring N, then $F_{\alpha}(a, b) k(\gamma) G_{\alpha}(c, d)=0$ for all $a, b, c, d \in M$ and $\alpha, \gamma \in \Gamma_{1}$.

Proof. Following Definition 2.1, Lemma 2.4, Definition 2.2 and Lemma 2.5, we see that the mappings $(a, b) \rightarrow F_{\alpha}(a, b)$ and $(a, b) \rightarrow G_{\alpha}(a, b)$ are additive in each argument. Hence, from Corollary 2.1, Lemma 2.8 gives this result.
We are now ready to prove our main claim as follows:
Theorem 2.1 Every Jordan k-homomorphism θ of a Γ_{1}-ring M onto a 2-torsion free completely prime Γ_{2}-ring N such that $k\left(\Gamma_{1}\right)=\Gamma_{2}$ is either a k-homomorphism or an anti-k-homomorphism.

Proof. Let θ be a Jordan k-homomorphism of a Γ_{1}-ring M onto a 2-torsion free completely prime Γ_{2}-ring N such that $k\left(\Gamma_{1}\right)=\Gamma_{2}$. Then, from Corollary 2.2, we have

$$
F_{\alpha}(a, b) k(\gamma) G_{\alpha}(c, d)=0 \text { for all } a, b, c, d \in M \text { and } \alpha, \gamma \in \Gamma_{1} .
$$

Here, (i) $F_{\alpha}(a, b) \in N$ for all $a, b \in M$ and $\alpha, \gamma \in \Gamma_{1}$, (ii) $k(\gamma) \in \Gamma_{2}$ for all $\gamma \in \Gamma_{1}$, and (iii) $G_{\alpha}(c, d) \in N$ for all $c, d \in M$ and $\alpha \in \Gamma_{1}$. Since N is a completely prime Γ_{2}-ring and $k\left(\Gamma_{1}\right)=\Gamma_{2}$, therefore, we conclude that either $F_{\alpha}(a, b)=0$ for all $a, b \in M$ and $\alpha, \gamma \in \Gamma_{1}$ or $G_{\alpha}(c, d)=0$ for all $c, d \in M$ and $\alpha \in \Gamma_{1}$, which implies (respectively) that either θ is a k-homomorphism or θ is an anti- k-homomorphism (by definition). This completes the proof of the theorem.

REFERENCES

1. Barnes, W. E., On the Γ-rings of Nobusawa, Pacific J. Math., 18 (1966) 411-422.
2. Baxter, W. E. and Martindale III, W. S., Jordan homomorphisms of semiprime rings, J. Algebra, 56 (1979) 457-471.
3. Booth, G. L., On the radicals of Γ N-rings, Math. Japonica, 32 (3) (1987) 357-372.
4. Coppage, W. E. and Luh, J., Radicals of gamma rings, J. Math. Soc. Japan, 23 (1) (1971) 40-52.
5. Herstein, I. N., Jordan homomorphisms, Trans. Amer. Math. Soc., 81 (1956) 331-341.
6. Herstein, I. N., Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
7. Jacobson, N. and Rickart, C. E., Jordan homomorphisms of rings, Trans. Amer. Math. Soc., 69 (1950) 479-502.
8. Kyuno, S., Gamma rings and radicals, Proc. Krems Conf., August 16-23, 1985, Verlag B. G. Teubner, Stuttgart, 63-77.
9. Kyuno, S., Nobusawa's gamma rings with the right and left unities, Math. Japonica, 25 (2) (1980) 179190.
10. Kyuno, S., On prime gamma rings, Pacific J. Math., 75 (1) (1978) 185-190.
11. Luh, J., On the theory of simple Γ-rings, Michigan Math., J. 16 (1969) 65-75.
12. Nobusawa, N., On the generalization of the ring theory, Osaka J. Math., 1 (1964) 81-89.
13. Smiley, M. F., Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc., 84 (1957) 426-429.

[^0]: ${ }^{1}$ Corresponding author

