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ABSTRACT 

In this paper, the second order approximate solution of a general second order nonlinear 
ordinary differential system, modeling damped oscillatory process is considered. The new 
analytical technique based on the work of He’s homotopy perturbation method is developed 
to find the periodic solution of a second order ordinary nonlinear differential system with 
damping effects. Usually the second or higher order approximate solutions are able to give 
better results than the first order approximate solutions. The results show that the analytical 
approximate solutions obtained by homotopy perturbation method are uniformly valid on the 
whole solutions domain and they are suitable not only for strongly nonlinear systems, but also 
for weakly nonlinear systems. Another advantage of this new analytical technique is that it 
also works for strongly damped, weakly damped and undamped systems. Figures are 
provided to show the comparison between the analytical and the numerical solutions. 

Keywords: Homotopy perturbation method; damped oscillation; nonlinear equation; strong 
nonlinearity. 

1. Introduction 

The study of nonlinear differential system is of great interest in engineering and physical 
sciences and many other branches of applied mathematics. The solutions of nonlinear 
problems are very complicated and in general, it is more difficult to get an analytical 
approximation than a numerical one to a given nonlinear problem. There exists a wide 
body of literature dealing with the problem of approximate solutions to nonlinear 
differential equations with various different methodologies. Many different approaches 
have been proposed, such as Struble’s techniques [5,16], Kryloff-Bogoliuboff-
Mitropolskii (KBM) [6,10] method, multiple time-scales [14] procedure, the modified 
Lindstedt-Poincare method [8], He’s homotopy perturbation method [9], etc. Most of 
these methods have been originally formulated to get the periodic solution of second 
order nonlinear differential systems for weak or strong nonlinearity without considering 
any damping effects in the following form: 

 .0,1),,(2
0 ><<−=+ εεεω xxfxx &&&              (1) 

Several authors have extended these methods to investigate similar nonlinear problems 
with strong linear damping effects )1(,2 Okxk =− &  and 0>k  modeled by the 
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following equation: 

 .0,1),,(2 2 ><<−=++ εεεω xxfxxkx &&&&             (2) 

Popov [15] was well known among them. He extended the KBM method and investigated 
the under-damped case of Eq. (2).Then Mendelson [11] reproduced Popov’s results. 
Bojadziev [7] investigated a third order nonlinear problem with internal friction and 
relaxation based on the KBM technique. Following Popov [15], Murty et al. [12] 
investigated the over damped case of Eq. (2).They used Popov’s formula by replacing the 
trigonometric functions with the corresponding hyperbolic functions. In their 
investigation, they also examined a fourth order over-damped system. Murty [13] 
presented a unified method for solving Eq. (2). Such a unified solution is a general one 
and covers the three cases viz. under-damped, undamped and over-damped situations. It 
is seen that the unified solution represents the original KBM solution [6,10] as the limit 

0→k . Alam [2] has generalized Murty’s [13] technique for solving an ....3,2, =nnth  
order nonlinear differential equation. Recently, Alam et al. [5] have presented a 
generalized Struble’s technique for solving an nth  order weakly nonlinear differential 
system with damping effect. Thus, we observe that a considerable amount of research 
activities have been carried out by several authors [1-7,10-16] for the solution of the 
damped nonlinear systems with small nonlinearity. Therefore, the small parameter plays 
a very important role in the perturbation method. It determines not only the accuracy of 
the perturbation approximations, but also the validity of the perturbation technique itself. 
In Ref. [8,9], He has presented Modified Lindstedt-Poincare method for some strongly 
non-linear oscillations and the homotopy perturbation method for some strongly 
nonlinear oscillations without damping effects.  But in science and engineering, there 
exist many nonlinear problems in presence of damping effects which do not contain any 
small parameter, especially those with strong nonlinearity. Thus, it is necessary to 
develop and improve some nonlinear analytical techniques which are independent of 
small parameters. The main goal of this article is to find the second order approximate 
solution for a general nonlinear system with strong nonlinearity in presence of damping 
effects. The method has been illustrated by applying it to a typical nonlinear problem of 
practical importance. To get our desired result, we have re-written Eq. (2) in the 
following form: 

 ,0,)),(()(2 1
1

2 >−=+++ ε
ε
ε

εεω xxfxxxkx &&&&            (3) 

where ε  is a positive parameter which measures the strength of nonlinearity of the 
system, 1ε  is an artificial constant, 10 1 ≤≤ ε , the significant damping term is expressed 
by the linear term xk &2 . The damping coefficient k2  which is of the order of unity and 
also the nonlinear frequency ω  of the system are constants. The assumption 22 k>ω  or 

22 k<ω  guarantees the oscillating or non-oscillating character of the systems. In the 
most of the nonlinear dynamical systems, the quantity ε  is small compared with 2ω  and 
its solutions may be shown to converge with the numerical results. 
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2. The Method  

In this paper, we are going to consider a general second order nonlinear ordinary 
differential equation in the following form: 

 )),,(()( 1
121 xxfxxcxcx &&&& +=+++

ε
ε

εε             (4) 

where over dots denote derivatives with respect to time t , ε  is a positive parameter 
which plays an important role to the nonlinear systems, 1ε  is an artificial constant, 

10 1 ≤≤ ε , the coefficients 2,1, =jc j  are constants and f  is a given nonlinear 
function.  

When ,0→ε  then the corresponding linear equation of Eq. (4) has two eigen values, 
say 2,1, =jjλ . Hence the general solution of the unperturbed equation of Eq. (4) leads 
to 

 ,)0,(
2

1
∑

=

=
j

t
j

jeatx λ                (5) 

where 2,1, =ja j  are arbitrary constants. For ,0≠ε  we are seeking an approximate 
solution of Eq. (4) in the following form: 

 L+++= ∑
=

),(),(),( 2
2

1

2

1
εεεεε λ tutueatx

j

t
j

j             (6) 

According to both Struble’s [5,16] technique and KBM [6,10] method, the solution Eq. 
(6) is differentiated twice with respect to time t , to obtain the derivatives of xeix &,..,  
and x&& . Then inserting the values of xx &&& ,  together with x  into Eq. (4) and after 
simplifying one obtains a needful formula. Clearly, this is a very difficult and tedious 
task. On the basis of mathematical induction, Alam [2] has presented such a general 
formula in terms of the variables ,,2,1,)( njta j L=  for determining the KBM type 
solution. Further, Alam [4] has investigated a simple technique to derive the noted 
general formula. In this paper, we are going to present the generalized formula for the 
second order nonlinear differential systems with strong nonlinearity in presence of 
significant damping effects. This formula is used arbitrarily for the different damping 
effects. Now the Eq. (4) can be re-written as 

 .,)()( 1
2

1 dt
dDfxxD

j
j ≡+=−∏

= ε
ε

ελ             (7) 

By substituting Eq. (6) into Eq. (7), we obtain  
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2

2
1

2

1

2

1
fxuueaD

j

t
j

j
j

j +=+++− ∑∏
== ε

ε
εεελ λ

L  

or 

)()()()))(()(( 1
2

2
1

2

1

2

1

2

,1

fxuuDeaDD
j

j
t

jj
j jkk

k
j +=++−+−− ∏∑ ∏

== ≠= ε
εεεελλλ λ

L  

or 

),()()()()(( 1
2

2
1

2

1

2

1

2

,1
fxuuDeaD

j
j

t
j

j jkk
k

j +=++−+− ∏∑ ∏
== ≠= ε

ε
εεελλ λ

L&       (8) 

since 
t

j
t

jj
jj eaeaD λλλ &=− ))(( . 

 

3. Example 

As an example of the above procedure, let us consider the following autonomous 
nonlinear differential equation: 

 .2 32 xxxkx εω −=++ &&&               (9) 

The Eq. (9) occurs in the theory of nonlinear vibrating systems and in a certain type of 
nonlinear electrical circuit theory. We have re-written Eq. (9) in the following form: 

 .)()(2 31
1

2 xxxxkx −=+++
ε
ε

εεω&&&                       (10) 

In particular, when 0→ε  from Eq. (10) one obtains the unperturbed equation 
0)(2 1

2 =+++ xxkx εω&&&  with two eigen-values, say ,02,1 ωλ ik ±−=  where 

)( 2
1

2
0 k−+= εωω  or ,02,1 ωλ ±−= k  where )( 1

22
0 εωω +−= k . Here 0ω  is 

known as the reduced frequency of the system and the physical character of the motion 
depend on the nature of it. Thus depending on the values of k  and )( 1

2 εω + , the 
solution becomes under-damped, over-damped or critically damped. However, we are 
able to find a general solution in terms of the variables 1a  and 2a  as well as of the eigen-
values 1λ  and 2λ . Then by putting the values of 1λ  and 2λ , the desired solution can be 
found for all real or complex values of 1λ  and .2λ  Then the solution of the linearized 
equation of Eq. (10) is obtained by 

 ,)0,( 21 21
tt eaeatx λλ +=             (11) 
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where 1a  and 2a  are arbitrary constants. When 0≠ε , we seek a general solution of Eq. 
(10) in the following form: 

,),,(),,(),( 3
212

2
21121

21 Lεεεε λλ ++++= taautaaueaeatx tt         (12) 

Here 

).)(33

3()(

)()()(

2
211

33
2

)2(2
21

)2(
2

2
1

33
11211

3
1211211

3
1

21221

21121

2121

L+++++

+−++=

++−++=−=

+

+

tttt

tttt

tttt

eaeaueaeaa

eaaeaueaea

ueaeaueaeaxxxf

λλλλλ

λλλλλ

λλλλ

ε

εεε

εεεεεε

       (13) 

Eq. (10) can be re-written as 

).)(33

3()(

)()(

))()(())(())((

2
211

33
2

)2(2
21

)2(
2

2
1

33
11211

3
1211211

2
2

1212112

21221

21121

2121

21

L

L&&

+++++

+−++=

++−++=

++−−+−+−

+

+

tttt

tttt

tttt

tt

eaeaueaeaa

eaaeaueaea

ueaeaueaea

uuDDeaDeaD

λλλλλ

λλλλλ

λλλλ

λλ

ε

εεε

εεεε

εελλλλ

       (14) 

Now we are going to consider the terms up to )(εO . According to the separation rules 
(details can be found in [5]), we can equate the various terms of Eq. (14) and we get the 
following equations: 

 ,3))(( )2(
2

2
11112

2111 ttt eaaeaeaD λλλλ εελ +−=− &           (15) 

 .3))(( )2(2
212121

2122 ttt eaaeaeaD λλλλ εελ +−=− &           (16) 

This leaves the following perturbational equation 

 ).())(( 21 33
2

33
1121

tt eaeauDD λλλλ +−=−−           (17) 

To determine the first order approximate solution, it can be considered that 1a  and 2a  
are constants. Hence the particular solutions of Eqs. (15)- (17) yield, 

 
,

,
)(2

2112012

)(
2

2
111011

21

21

t

t

eaalala

eaalala
λλ

λλ

εε

εε
+∗∗

+

+=

+=

&

&
                        (18) 

where 

 ,
2
3,

)(
1,

2
3,

)(
1

2
1

12
0

1
1

21
0 λλλλλλ

−=
−

=−=
−

= ∗∗ llll  

and 

 ,21 33
21

33
111

tt eaCeaCu λλ ∗+=             (19) 

where 
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)3(2

1,
)3(2

1
122

1
211

1 λλλλλλ −
−=

−
−= ∗CC  

Now if we substitute the values of 1u  from Eq. (19) into Eq. (14) and then simplifying, 
we obtain 

)()(3)

33()(
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))()(())(())((

21212

2121121
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∗
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+−−+
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L

&&

    (20) 

Eq. (20) can be written as  
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)5(3)5(3

2727)3(2

)3(2))(())((

22121

21211

221211

2121

21

21212

121

55
21

)4(4
211

)32(3
2

2
11

)23(2
2

3
11

)4(
2

4
11

55
11

2

33
2

)2(2
21

)2(
2

2
1

33
1

33
21

33
111211

2
2

21

33
210121

33
110211

)4(2
211

2)4(
2

4
11

233
21122

33
112112112

ttt

ttt

tttt

tttt

tt

ttt

ttt

eaCeaaCeaaC

eaaCeaaCeaC

eaeaaeaaea

eaCeaCeaea

uDD

eaCleaCl

eaaCeaaCeaC
eaCeaDeaD

λλλλλ

λλλλλ

λλλλλλ

λλλλ

λλ

λλλλλ

λλλ

ε

ε

εεε

ελλ

λλεελλεε

εελλλε

λλλελλ

∗+∗+∗

++

++

∗

∗∗

+∗+∗

+++

++−
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+++=

+−−+

−+−+

−−−+

−+−+− &&

       (21) 

All the terms with ε  of the left side and the terms tt eaea 21 33
2

33
1 , λλ  of the right side of 

Eq. (21) are cancelled since 1C  and ∗
1C  satisfy Eq. (19). According to the separation 

rules (in Ref [5]), 2u  excludes the terms teaa )23(2
2

3
1

21 λλ +  and teaa )32(3
2

2
1

21 λλ +  and they 
will be added to the equations of 1a&  and 2a&  respectively. Therefore, we obtain the 
equations for 1a&  and 2a&  up to )( 2εO  and 2u  in the following forms: 

,33))(( )23(2
2

3
11

2)2(
2

2
11112

212111 tttt eaaCeaaeaeaD λλλλλλ εεελ ++ −−=− &         (22) 

 ,33))(( )32(3
2

2
11

2)2(2
212121

212122 tttt eaaCeaaeaeaD λλλλλλ εεελ +∗+ −−=− &        (23) 

and 
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                (24) 

Now we are going to assume the particular solutions of Eqs. (22)- (23) in the following 
forms: 
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                (25) 

where ∗
010 ,, lll  and ∗

1l  are given in Eq. (18) while ∗∗
32432 ,,, lllll  and ∗

4l  are to be 
determined. Now substituting the values of 1a&  and 2a& from Eq. (25) into Eqs. (22)- (23), 
and then simplifying, we get 
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                            (26) 

and 
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               (27) 

All the terms with ε  of Eqs. (26) – (27) are cancelled since ∗
010 ,, lll  and ∗l  satisfy Eq. 

(18). By comparing the coefficients of 1
2 , εεε  and 2

1ε  from both sides of Eqs. (26)- 
(27), we get the following algebraic equations: 



66                             Uddin and Sattar 
 

 

 

,0)(

,02)3(

,3)3()2(

421
2

1

31001

1221111

=−+

=++

−=+++
∗

∗

ll

llll

Cllll

λλ

λ

λλ

           (28) 

and 
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By solving Eqs. (28)- (29) and then substituting the values of 111 ,, Cll ∗  and ∗
1C  from 

Eqs. (18)- (19) and then by simplifying, we have 
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On simplification Eq. (24) gives 
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By solving Eq. (31) for 2u , we obtain the particular solution as 
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                     (32) 

Finally, inserting the values of 100 ,, Cll ∗  and ∗
1C  from Eqs. (18)- (19) into Eq. (32) and 

simplifying, we get, 
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Thus, the second order approximate solution of Eq. (10) is obtained as 
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where 1a  and 2a  are the solutions of Eq. (25) and 21 , uu  are respectively given by Eqs. 
(19) and (33).This solution can be carried out to the usual form by using the suitable 
transformations. For the under-damped system, the variables should be transformed by 
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Now inserting Eq. (36) into Eq. (25) and simplifying them, we obtain the following 
variational equations for the amplitude and phase variables: 
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By using Eq. (36) and assuming that θωϕ += t0 , the correction terms 1u  and 2u  can 
be written in the following forms: 

 ),3sin3cos( 33
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Hence the second order approximate solution of Eq. (10) for the damped oscillatory 
process is given by 

 ,,cos 02
2

1 θωϕεεϕ +=++= − tuueax tk           (43) 

where a  and θ  are the solutions of Eq. (37) and 1u  and 2u  are respectively obtained 
from Eqs. (39) and (40). 

4. Results and Discussion 

The obtained approximate solutions are compared with the numerical solutions 
graphically. Also to show the effect of second order approximate solutions, graphs are 
drawn for both first and second order approximations. 
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In Fig.1 (a), comparison is made between the first order approximate solution and the 
numerical solution obtained by using Runge-Kutta fourth order formula for strong 
nonlinearity with large damping effects. Here we notice that with the increase of time t  
the analytical result deviates from the numerical one. Fig.1 (b) represents the same for 
the second order approximate solution within the same time domain and it is observed 
that the deviation from the numerical result is very small in the case of second order 
approximate solution. In Fig.2 (a), comparison is made between the first order 
approximate solution and the numerical solution obtained by using Runge-Kutta fourth 
order formula for strong nonlinearity with small damping effects. Here we notice that 
with the increase of time t  the analytical result deviates from the numerical one. Fig.2 
(b) represents the same for the second order approximate solution within the same time 
domain and it is observed that the deviation from the numerical result is very small in 
case of the second order approximate solution.  

In Fig.3 (a), comparison is made between the first order approximate solution and the 
numerical solution obtained by using Runge-Kutta fourth order formula for strong 
nonlinearity without damping effect. From this figure, we notice that with the increase of 
time t  the analytical results deviate from the numerical one. Fig.3 (b) represents the 
same for the second order approximate solution within the same time domain and it is 
observed that the analytical solution has good agreement with the numerical result in the 
case of second order approximate solution. It may be mentioned that if we consider 

01 =ε , then our result becomes the same as that of Alam et al. [5]. To check this, we 
have plotted the Figs.4 (a, b). In Fig.4 (a), comparison is made between the first order 
approximate solution and the numerical solution obtained by using Runge-Kutta fourth 
order formula for strong nonlinearity with large damping effects. Here we notice that 
with the increase of time t  the analytical result deviates from the numerical one. Fig.4 
(b) represents the same for the second order approximate solution within the same time 
domain and it is observed that the deviation from the numerical result is very small in the 
case of second order approximate solution by setting 01 =ε . From the Figs.1 (a, b) and 
Figs. 4 (a, b), it is notified that, our new homotopy perturbation technique gives better 
result than that of Alam et al. [5]. 
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Fig.1. (a) First order approximate solution (dotted lines) of Eq. (10) is compared with the corresponding 
numerical solution (solid line) obtained by Runge-Kutta fourth-order formula for ,07073.10 =a  

       2.0,0.1,)5(.,31590.0 10 ===−= εωϕ sqrtk  and 0.1=ε . 
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Fig.1. (b) Second order approximate solution (dotted lines) of Eq. (10) is compared with the corresponding 

numerical solution (solid line) obtained by Runge-Kutta fourth-order formula for ,04923.10 =a  

      2.0,0.1,)5(.,27983.0 10 ===−= εωϕ sqrtk and 0.1=ε . 
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Fig.2. (a) First order approximate solution (dotted lines) of Eq. (10) is compared with the corresponding 
numerical solution (solid lines) obtained by Runge-Kutta fourth-order formula for ,98477.00 =a   

     75.0,0.1,1.0,05055.0 10 ===−= εωϕ k  and 0.1=ε . 
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Fig.2. (b) Second order approximate solution (dotted lines) of Eq. (10) is compared with the corresponding 

numerical solution (solid line) obtained by Runge-Kutta fourth-order formula for ,98313.00 =a   

      75.0,0.1,1.0,05200.0 10 ===−= εωϕ k  and 0.1=ε . 
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Fig.3. (a) First order approximate solution (dotted lines) of Eq. (10) is compared with the corresponding 
numerical solution (solid line) obtained by Runge-Kutta fourth-order formula for ,98304.00 =a   

      75.0,0.1,0.0,0.0 10 ==== εωϕ k  and 0.1=ε . 

-1

-0.5

0

0.5

1

0 5 10 15 20

t

x

 
Fig.3. (b) Second order approximate solution (dotted lines) of Eq. (10) is compared with the corresponding 

numerical solution (solid line) obtained by Runge-Kutta fourth-order formula for ,98164.00 =a   

      75.0,0.1,0.0,0.0 10 ==== εωϕ k   and 0.1=ε . 
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Fig.4. (a) First order approximate solution (dotted lines) of Eq. (10) is compared with the corresponding 
numerical solution (solid line) obtained by Runge-Kutta fourth-order formula for ,06008.10 =a   

       0.0,0.1),5(.,26899.0 10 ===−= εωϕ sqrtk  and 0.1=ε . 
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Fig.4. (b) Second order approximate solution (dotted lines) of Eq. (10) is compared with the corresponding 

numerical solution (solid line) obtained by Runge-Kutta fourth-order formula for ,04049.10 =a   

      0.0,0.1),5(.,25712.0 10 ===−= εωϕ sqrtk  and 0.1=ε . 
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Conclusion 

In this paper, a new kind of analytical technique for a general second order nonlinear 
differential system with constant coefficients is presented. From the figures, it is clear to 
us that the first order approximate solutions continuously deviate from the numerical 
solutions with the increase of time t . Thus, we are forced to determine the second or 
higher order approximate solutions. The approximate solutions and the numerical 
solutions of Eq. (10) are obtained for the different damping effects and for several 
artificial constant with 0.1=ε . Comparison is made between the solutions obtained by 
the homotopy perturbation method (dotted lines) and those obtained by the numerical 
procedure (solid line) in figures. This method shows effectively and accurately that large 
classes of second order approximate solutions converge rapidly to the numerical solutions 
in presence of significant damping effects with strong nonlinearity. Also this new 
homotopy perturbation technique is valid for strongly damped, weakly damped and 
undamped cases with strong nonlinearity. Moreover, it is also valid for weak nonlinearity 
of the systems.  The variational equations are very important in a homotopy perturbation 
solution whatever the relations of them with ε . We conclude that, this new homotopy 
perturbation method is effective and accurate for nonlinear problems where the 
approximate solutions converge rapidly to the exact solutions. In a similar way, the 
method can be used to determine the higher order approximate solutions to the nonlinear 
systems. 
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