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ABSTRACT 

An analysis is carried out to study the flow, heat and mass transfer free convection 
characteristics in an electrically conducting fluid near an isothermal linearly stretching 
permeable vertical sheet when buoyancy force opposes the flow. The equations governing the 
flow, temperature and concentration field are reduced to a system of coupled non-linear 
ordinary differential equations. These non-linear differential equations are integrated 
numerically by using Nachtsheim-Swigert [1] shooting iteration technique along with sixth 
order Runge-Kutta integration scheme. Finally the numerical results are presented through 
graphs and tables. 

 

1. Introduction 

The heat, mass and momentum transport in laminar boundary layer flow over a moving 
continuous and linearly stretching surface has considerable practical applications in 
engineering, electrochemistry, D. T. Chin [2], R. S. R. Gorla [3] and polymer processing, 
R.M. Griffith [4], L.E. Erickson et al. [5]. For example, hot rolling, wire drawing, 
spinning of filaments, metal and polymer extrusion, crystal growing, continuous casting, 
glass fiber and paper production, drawing of plastic films etc., Altan et al. [6], Fisher [7] 
and Tadmor et al. [8]. It is usually assumed that the surface is inextensible, but the 
situations arise in the polymer industry in which it is necessary to deal with a stretching 
plastic sheet, as noted by Crane [9]. However, of late, hydromagnetic flow, heat and mass 
transfer problems have become more important industrially. To be more specific, it may 
be pointed out that many metallurgical processes involve the cooling of continuous strips 
or filaments by drawing them through a quiescent fluid and that in the process of 
drawing, these strips are sometimes stretched. By drawing such strips in an electrically 
conducting fluid subjected to a magnetic field, the rate of cooling can be controlled and a 
final product of desired characteristics can be achieved. Another interesting application of 
hydromagnetics to metallurgy lies in the purification of molten metals from nonmetallic 
inclusions by the application of a magnetic field. Following the pioneering work of 
Sakiadis [10], a rapidly increasing number of papers investigating different aspects of this 
problem have been published. There are fluids, which react chemically with some other 



MHD Heat and Mass Transfer Free Convection Flow                              77 

 

ingredients present in them. Effects of mass transfer on flow past an impulsively started 
infinite vertical plate with constant heat flux and chemical reaction was studied by Das et 
al. [11]. Anderson et al. [12] have studied the diffusion of a chemically reactive species 
from a linearly stretching sheet. Anjalidevi and Kandasamy [13] investigated the effects 
of a chemical reaction heat and mass transfer on laminar flow along a semi-infinite 
horizontal plate. Anjalidevi and Kandasamy [14] have analyzed the effects of a chemical 
reaction heat and mass transfer on MHD flow past a semi-infinite plate. McLeod and 
Rajagopal [15] have investigated the uniqueness of the flow of a Navier Stokes fluid due 
to a linear stretching boundary. Raptis et al. [16] have studied the viscous flow over a 
non-linearly stretching sheet in the presence of a chemical reaction and magnetic field. 
Suction or injection of a stretched surface was studied by Erickson et al. [5] and Fox et al. 
[17] for uniform surface velocity and temperature and investigated its effects on the heat 
and mass transfer in the boundary layer. Chen and Char [18] have studied the suction and 
injection on a linearly moving plate subject to uniform wall temperature and heat flux and 
the more general case using a power law velocity and temperature distribution at the 
surface was studied by Ali [19]. Magyari et al. [20] have reported analytical and 
computational solutions when the surface moves with rapidly decreasing velocities using 
the self-similar method. 

 

In all papers mentioned above the effects of buoyancy force was relaxed. The study of 
heat generation or absorption in moving fluids is important in problems dealing with 
chemical reactions and these concerned with dissociating fluids. Possible heat generation 
effects may alter the temperature distribution; consequently, the particle deposition rate in 
nuclear reactors, electronic chips and semi conductor wafers. Vajravelu and A. 
Hadjinicolaou [21] studied the heat transfer characteristics in the laminar boundary layer 
of a viscous fluid over a stretching sheet with viscous dissipation or frictional heating and 
internal heat generation. The aim of this paper is to make a numerical calculation, on 
convective heat and mass transfer when buoyancy force opposes the flow which has been 
of interest to the engineering community and to the investigators dealing with the 
problems in geophysics, astrophysics, electrochemistry and polymer processing. From the 
technical point of view free convection flow past an infinite or semi-infinite vertical plate 
is always important for many practical applications. Usually in such types of flows, the 
thermal diffusion effect is neglected. In the present paper, we have investigated the effect 
of various dimensionless parameters on flow, heat and mass transfer characteristics of an 
electrically conducting viscous incompressible fluid flowing over a linearly stretching 
vertical sheet in the presence of a uniform magnetic field when the buoyancy force 
opposes the flow. 

2. Mathematical Analysis 

A steady-state two-dimensional heat and mass transfer flow of an electrically conducting 
viscous incompressible fluid along an isothermal linearly stretching vertical sheet with 
heat generation/absorption is considered. The stretching sheet coincides with the plane 

,0=y where the flow is confined to .0>y  A uniform magnetic field of strength 0B  is 
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imposed along the y-axis.  Two equal and opposite forces are introduced along the x -
axis so that the sheet is stretched keeping the origin fixed as shown in Fig. 1. 

The boundary-layer equations relevant to the problem considering the buoyancy force 
[22] are: 

 0=
∂
∂

+
∂
∂

y
v

x
u                                                                                          (1) 

ρ
σβυ uBTTgs

y
u

y
uv

x
uu

2
0

2

2

)( −−+
∂
∂

=
∂
∂

+
∂
∂

∞                                                          (2) 

)(0
2

2

∞−+
∂
∂

=
∂
∂

+
∂
∂ TT

c
Q

y
T

cy
Tv

x
Tu

pp ρρ
κ

                                                     (3) 

2

2

y
CD

y
Cv

x
Cu m ∂

∂
=

∂
∂

+
∂
∂                                                                                           (4) 

The boundary conditions for the model are  
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where u  and v  are the velocity components in the x  and y  directions respectively, υ  is 
the kinematic viscosity, g  is the acceleration due to gravity, β  is the volumetric 
coefficient of thermal expansion, T  and ∞T  are the fluid temperature within the boundary 
layer and in the free-stream respectively, while C  is the concentration of the fluid within 
the boundary layer, σ  is the electric conductivity, 0B  is the uniform magnetic field 
strength (magnetic induction), ρ  is the density of the fluid, κ  is the thermal conductivity 
of the fluid, pC  is the specific heat at constant pressure, 0Q  is the volumetric rate of heat 
generation/absorption and mD  is the chemical molecular diffusivity, s  is a dummy 
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parameter stands for -1, 0, or +1. )0(>D  is stretching constant, wv  is a velocity 
component at the wall having positive value to indicate suction, wT  is the uniform wall 
temperature and ∞CCw ,  is the concentration of the fluid at the sheet and far from the 
sheet respectively. The effect of the second term on the right hand side of equation (2) is 
due to 

buoyancy force. When 0=s , the buoyancy forces are neglected and the governing 
equations (1)-(4) reduce to those of forced convection limit.  If 1s −= , the buoyancy force 
is dominant and the governing equations (1)-(4) reduce to those of natural convection 
limit. In this case the axisx − points vertically downward in the direction of stretching 
surface but the stretching induced flow and the thermal buoyant flow oppose each other. 
On the other hand, when 1+=s , the x -axis points upwards in the direction of stretching 
surface such that the stretching induced flow and the thermal buoyant flow assist each 
other. In the present investigation, we considered case when 1s −= . 

 

In order to obtain a solution of equations (1)-(4), we introduce the following similarity 
variables 
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where 'f , θ  and φ  are the dimensionless velocity, temperature and concentration 
respectively, and η  is the similarity variable. By taking into account the above similarity 
variables, equations (1)-(4) become 

02 =θλ−′−′−′′+′′′ fM)f(fff                                                          (8) 

0=θ+θ′+θ ′′ QPrfPr                                                                                     (9) 

0=φ′+φ ′′ fSc                                                                                       (10) 

The last term in equation (8) is due to the buoyancy force and 
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serves as the buoyancy parameter. The transformed boundary conditions are: 

⎭
⎬
⎫

∞→===′
=====′

ηφθ
ηφθ

as0,0,0
0at1,1,,1

f
fff w                                                           (11) 

where  
υD

v
f w

w −=  is the suction parameter,
D
B

M
ρ

σ 2
0=  is the magnetic field 

parameter,
κ

μ pc
=Pr  is the Prandtl number,

Dc
Q

Q
pρ
0=  is the heat source/sink 



80                  Mohebujjaman and Samad    

 

parameter,
m

c D
S υ

=  is the Schmidt number. 

3. Numerical Computation 

The numerical solutions of the non-linear system (8)-(10) under the boundary conditions 
(11) have been performed by applying a shooting method namely Nachtsheim-Swigert 
[1] iteration technique (guessing the missing boundary conditions) along with sixth order 
Runge-Kutta iteration scheme. The boundary conditions, equation (11), associated with 
the non-linear ordinary differential equations (8)-(10) are the two-point asymptotic class, 
that is, values of the dependent variable are specified at two different values of the 
independent variable. Specification of an asymptotic boundary condition implies that the 
first derivative (and higher derivatives of the boundary layer equation, if exists) of the 
dependent variable approaches zero as the outer specified value of the independent 
variable is approached. For the method of numerically integrating a two-point asymptotic 
boundary-value problem of the boundary-layer type, the initial-value method is similar to 
an initial value problem. Thus, it is necessary to estimate as many boundary conditions at 
the surface as were (previously) given at infinity. The governing differential equations 
are then integrated with these assumed surface boundary conditions. If the required outer 
boundary condition is satisfied, a solution has been achieved. However, this is not 
generally the case. Hence, a method must be devised to estimate logically the new surface 
boundary conditions for the next trial integration. Asymptotic boundary value problems 
such as those governing the boundary-layer equations are further complicated by the fact 
that the outer boundary condition is specified at infinity. In the trial integration, infinity is 
numerically approximated by some large value of the independent variable. There is no a 
priori general method of estimating these values. Selecting too small a maximum value 
for the independent variable may not allow the solution to asymptotically converge to the 
required accuracy. Selecting a large value may result in divergence of the trial integration 
or in slow convergence of surface boundary conditions. Selecting too large a value of the 
independent variable is expensive in terms of computer time. Nachtsheim-Swigert [1] 
developed an iteration method to overcome these difficulties. In equation (11) there are 
two asymptotic boundary conditions and, hence, three unknown surface conditions such 
as )(''f 0 , )(' 0θ and )( 0φ′  . Within the context of the initial-value method and the 
Nachtsheim-Swigert [1] iteration technique, the outer boundary conditions may be 
functionally represented as 

            61000 L=δ=θφ′=η j,))('),(),(''f(Y)(Y jjmaxj                                        (12) 

Where 'Y,''fY,Y,Y,'fY θ==φ=θ== 54321  and 'Y φ=6  . The last three of these 
represent asymptotic convergence criteria. Choosing 10 g)(f '' = , 20 g)(' =θ , 

30 g)(' =φ and expanding in a first-order Taylor’s series after using equation (12), we 
obtain  
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where the subscript 'C'  indicates the value of the function at maxη  determined from the 
trial integration. Solution of these equations in a least-squares sense required determining 
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Substituting equation (13) into (15) after some algebra, we obtain 
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Now solving the system (16) using Cramer’s rule, we obtain the missing (unspecified) 
values of ig as  

                                                          iii ggg Δ+≅ .                                           (18) 

Thus, adopting the numerical technique aforementioned along with the sixth order 
Runge-Kutta-Butcher initial value solver, the solutions of the equations (8)-(10) with 
boundary conditions (11) are obtained as a function of the coordinateη  for various 
values of the parameters. We have chosen a step size 001.0=Δη  to satisfy the 
convergence criterion of 10-6

 in all cases. The value of ∞η was found to each iteration loop 
by ηηη Δ+= ∞∞ . The maximum value of ∞η to each group of parameters 

,,Pr,,, ScMf w λ and Q  determined when the value of the unknown boundary conditions 
at 0=η  not change to successful loop with error less than 10-6. 
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(c) 
Fig. 2: (a) Velocity, (b) temperature and (c) concentration profiles for different step size ηΔ  

In order to verify the effects of the step size ηΔ , we ran the code for our model with three 
different step sizes as 00100050010 .,.,. === ηΔηΔηΔ and in each case we found 
excellent agreement among them. The above figures show the velocity, temperature and 
concentration profiles for different step sizes. 

4. Result and Discussion 

For the purpose of discussing the result, the numerical calculations are presented in the 
form of non-dimensional velocity, temperature and concentration profiles. Numerical 
computations have been carried out for different values of the Prandtl number ( Pr ), 
Magnetic field parameter ( M ), Schmidt number ( Sc ), buoyancy parameter λ , heat 
source/sink parameter ( Q ) and Suction parameter ( wf ). These are chosen arbitrarily 
where 71.0Pr =  corresponds physically to air at o20 C, 0.1Pr =  corresponds to electrolyte 
solution such as salt water and 0.7Pr =  corresponds to water and ,22.0=Sc 0.6 and 1.0 
corresponds to hydrogen ( 22.0=Sc ), water vapor ( 6.0=Sc ) and methanol ( 0.1=Sc ) 
respectively at approximate o25 C and 1 atmosphere. 
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Fig. 3: (a) velocity, (b) temperature and (c) concentration profiles for different values of M  

Fig. 3 displays the effects of the magnetic field parameter M  on dimensionless velocity, 
temperature and concentration profiles. We see that velocity and temperature decrease 
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uniformly while concentration increases slightly with the increase of the magnetic field 
parameter M . The velocity gradients at the surface are negative, which signify that the 
stretching sheet velocity is higher than the adjacent fluid velocity. As M increases the 
velocity gradient at the surface decreases and this tends to reduce the shear stress at the 
surface, as we will see in Table1. The temperature gradient at the surface is decreasing 
from negative value as we increase .M Negative values of the temperature gradient 
signify that heat is transferred from the sheet to the ambient medium. Therefore, as we 
increase magnetic field parameter M , the heat transfer rate from the sheet to the 
environment increases, and hence it is termed as cooling processes of the sheet. Mass 
transfer coefficient decreases as we increase .M  
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Fig.4: (a) velocity, (b) temperature and (c) concentration profiles for different values of wf   

Fig. 4 shows the variations of φθ and,f ′  for different values of suction parameter wf . 
We observe that velocity, temperature and concentration decrease uniformly with the 
increase of suction. The figures indicate that increasing wf  reduce the hydrodynamic, 
thermal and concentration boundary layers thickness that in turn reduce the shear stress 
and increase the heat and mass transfer coefficient at the surface respectively. It is also 
clear from the Table1 that skin friction coefficient decreases but the heat and mass 
transfer coefficient increase as wf  increases. In other words, we can state that as long as 
suction increases the velocity of the stretching sheet increases compare to the ambient 
fluid velocity and the heat and mass transfer rate from the sheet to the environment 
increases. 
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Fig.5: (a) velocity, (b) temperature and (c) concentration profiles for different values of Pr   

The effects of Prandtl number on the velocity, temperature and concentration profiles are 
shown in Fig. 5. We observe that f ′  increases slightly but θ  decreases rapidly with the 
increase of the Prandtl number, on the other hand φ  remains same for all values of .Pr It 
is clear from Table2 that, the velocity gradient at the surface increases from negative 
value, this tend to increase the shear stress at the surface. Since the velocity gradient is 
negative, so the stretching velocity is higher than the adjacent fluid velocity. Fig.5 (b) 
indicates that increasing Pr  reduces the thermal boundary layer that in turn increases the 
heat transfer coefficient at the surface. At 710.Pr = the temperature gradient is negative 
and according to equation (13) the quantity xNu is positive. Physically this is because the 
heat flows to the environment from the stretching sheet. Furthermore xNu increases 
as Pr increases. Fig.5 (c) shows the concentration profiles for the same parameters used in 
Fig.5 (a) and Fig.5 (b). It is clear that the concentration gradient at the surface is 
unchanged by changing Pr , resulting in a constant mass transfer rate. Since the 
concentration gradient at the surface is negative, which corresponds to the positive value 
of the mass transfer rate Sh , indicates that mass is transferred to the ambient medium 
from the sheet. 
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Fig.6: (a) velocity, (b) temperature and (c) concentration profiles for different values of Sc  

Samples of the resulting velocity, temperature and concentration profiles for various 
values of Sc  are presented in Fig. 6. These figures indicate that increasing Sc  the velocity 
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and concentration gradients at the surface decrease, that in turn reduce the shear stress 
and increase the mass transfer coefficient at the surface respectively, also reduce the 
hydrodynamic and concentration boundary layers. It can be seen in Fig.6 (b) that as 
Sc increases, temperature gradient increases from negative value, which indicates that, 
the heat transfer coefficient at the decreases. From Fig.6 (a) we see that velocity gradient 
at the surface decreases rapidly with the small increase of Sc  up to a value about 0.6, 
which is physically for water vapor, but when Sc  gets large exceeding 0.6, the velocity 
gradient at the surface is unchanged by increasing Sc , resulting in a constant shear stress. 

 

Fig. 7 displays the dimensionless velocity, temperature and concentration profiles for 
several values of heat source/sink parameterQ . It shows that velocity increases but the 
temperature and concentration decrease with the increase of heat source/sink 
parameter Q . 
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Fig.7: (a) velocity, (b) temperature and (c) concentration profiles for different values ofQ  
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Fig.8: (a) velocity, (b) temperature and (c) concentration profiles for different values of λ  

The effects of buoyancy parameter λ  on φθ and,f ′  are shown in Fig .8. We observe 
that θ  increases rapidly but f ′ increases slowly with the increase of the buoyancy 
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parameter λ . On the other hand concentration decreases slowly with the increase of λ . It 
is clear from Fig. 8 (a) that the velocity gradient at the surface increases from negative to 
a positive value as λ increases. The critical value of 32084.0.)( ≈= crtλλ is for zero velocity 
gradient )0000026.0( ≈fC . 

 

The parameters of engineering interest for the present problem are the skin friction 
coefficient ( fC ), local Nusselt number( xNu ) and the local Sherwood number ( Sh ), 
which indicate physically wall shear stress, local wall heat transfer rate and wall mass 
transfer rate respectively. The skin-friction coefficient is given by 

                                                         )0(
Re
2 fc f ′′=                                        (19) 

The local heat transfer coefficient is defined as          )0(Re θ ′−=xNu              (20) 

The local Sherwood number ( Sh ) is obtained as          )0(Re φ′−=Sh           (21) 

 

Thus from equations (19) - (21) the values proportional to the skin-friction coefficient, 
Nusselt number and Sherwood number are )0(f ′′ , – ( )0θ ′  and )0(φ ′−  respectively. The 
numerical values proportional to fC , xNu and Sh , calculated from equations (12) - (14) 
are shown in Table1- Table 3. 

 

Table 1: fC , xNu and Sh for different values of M , wf . 
M  fC  xNu  Sh  

wf  fC  xNu  Sh  

0.0 -1.7334133 3.2711356 0.5948853 1.0 -2.4171829 6.7820175 1.2728272 
0.5 -1.9015146 3.5660539 0.5851370 2.0 -3.0650759 13.9130332 2.1910365 
1.0 -2.0454931 3.8854003 0.5782359 3.0 -3.8365619 20.9471928 3.1440147 
1.5 -2.1746728 4.2180024 0.5728744 4.0 -4.6803058 27.9613010 4.1145135 
2.0 -2.2936922 4.5569352 0.5684674 5.0 -5.5692076 34.9690164 5.0945688 

 

Table 2: fC , xNu and Sh for different values of Pr , Sc . 

Pr   fC
  xNu   Sh   Sc  fC   xNu   Sh  

.71 -4.7581015 2.8079985 2.4822969 0.10 -1.0215458 21.7654573 0.2214358 
1.0 -4.6728301 3.9911330 2.4843733 0.22 -1.5853362 13.9051040 0.3705426 
2.0 -4.5652171 8.0352359 2.4863932 0.40 -1.9544137 8.9472333 0.5765900 
3.0 -4.5280561 12.057006 2.4868545 0.60 -2.0969148 7.0693779 0.8123174 
7.0 -4.4841264 28.090279 2.4872035 1.00 -2.1176988 6.7970521 1.2943868 
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Table 3: fC , xNu and Sh  for different values of Q , λ . 
 

Q  
fC   xNu   Sh   λ  

fC   xNu   Sh  

0.50 -2.0410162 7.9434734 0.3269039 0.25 -0.0357216 144.1784706 0.2425526 
0.75 -1.8572139 9.9898337 0.3484086 0.75 0.1095936 57.3181339 0.2515904 
1.00 -1.5853362 13.9051040 0.3705426 1.25 0.1546736 38.5044005 0.2559462 
1.25 -1.2385732 19.9671688 0.3916959 1.75 0.1665122 30.0975110 0.2587630 
1.50 -0.8245295 28.4402787 0.4116685 2.25 0.1601469 25.2796245 0.2607496 

 

Conclusion 

Heat and mass transfer characteristics of a linearly stretching vertically moving permeable 
stretching sheet are studied when 1−=s which means that the -x axis points vertically 
downwards in the direction of stretching the hot surface such that the stretching induced 
flow and the thermal buoyant flow oppose each other (opposing flow). It can be seen 
from Table1 that skin friction coefficient fC and Sherwood number Sh  decrease but 
Nusselt number xNu  increases with the increases of the magnetic field parameter M  on the 
other hand Nusselt number xNu and Sherwood number increase but skin friction 
coefficient fC decreases with the increases of the suction parameter wf . From Table2 we 
observe that if we increase Prandtl number Pr , skin friction coefficient, Nusselt number 
and Sherwood number increase but increasing of the Schmidt number Sc , skin friction 
coefficient fC and Nusselt number xNu  decrease but Sherwood number Sh  increases. 
Table3 displays the effects of the heat source/sink parameter Q  and the buoyancy 
parameter λ  on the skin friction coefficient fC , Nusselt number xNu and Sherwood 
number Sh . We observe that fC , xNu and Sh increase with the increase of Q  on the other 
hand skin friction coefficient and   Sherwood number increase but Nusselt number 
decreases with the increase of the buoyancy parameter λ . 
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