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ABSTRACT 

 In this paper hyperbolic interpolation has been used instead of Lagrange interpolation in 
solving an eigenvalue problem by using finite element method. The result shows that there is 
a good agreement between the eigenvalues obtained by using hyperbolic interpolation and the 
exact eigenvalues. 
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1. Introduction 

The method of separation of variables gives rise to eigenvalue problem from boundary 
value problem. The different types of eigenvalue problems [1-3] can also be solved by 
finite element method. In general Lagrange interpolation is used as an approximation of 
the solution of these types of problems. Galerkin Weighted Residual procedure is used to 
deduce the finite element model of eigenvalue problem. In this study hyperbolic shape 
functions have been used to compare the results with exact values and the results 
obtained by Lagrange’s interpolation. For this first we derive the hyperbolic shape 
functions of order n and particularly discuss linear, quadratic and cubic hyperbolic 
functions in the subsequent sections.  

The steady state form of the Schrödinger equation [1] for the electron in the hydrogen 
atom moving in the Coulomb potential of the proton 
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)(rnψ  is the wave function of the electron in the stationary state with energy nE . 
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The equation (1) is made dimensionless by rescaling the radial co ordinates r by 0a (the 
Bohr radius) and dividing the equation by the energy unit of a Rydberg     

              0R (=13.6eV)         where       =0R
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For convenience the same symbol r is retained for the radial coordinates after rescaling 
and the symbol λ  is used for the reduced energy. For spherically symmetric state the 
radial part of the equation (1) becomes: 
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The boundary condition is     )(rψ 0→  as ∞→r                                                         (4) 

Analytical solution of this equation [5],   
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This eigenvalue equation (3) was solved by Ram Mohan et al. [4] using finite element 
method with Lagrange interpolation. In this study, finite element method has been 
modified with hyperbolic interpolation and implemented to solve the eigenvalue problem. 
Linear, quadratic and cubic elements have been used to calculate the eigenvalues using 
finite element method with the hyperbolic interpolation. The results obtained by us for 
linear, quadratic and cubic elements using hyperbolic interpolations are compared with 
the analytical results. Ram Mohan et al. [4] compared the lowest four eigenvalues with 
exact solutions. Eigenvalues obtained by finite element method using hyperbolic 
interpolation shape functions for different ranges are in good agreement with the exact 
results. 

 

 

 

 

 

Figure 1: Local and global nodal point numbering for linear element 

 

For quadratic element with three points ( ) ( ) ( )1 1 2 2 3 3, , , ,x y x y and x y the hyperbolic 

interpolation is    2211 yHyHy +=                                                                                (6) 

(1) (2)  (1) (2)

2 1           [1] 3 [2]
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where  
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 Figure 2: Local and global nodal point numbering for quadratic element 

      

          [ ]i   are the element number 

         ( )i   are the node number of the element 

          i    are the global node number of the element 

        Element [1] is related with global node no.1 and 2. 

        Element [2] is related with the global node no. 2 and 3. 

(1) (3)  (1)(2) 

2 3

(2) (3) 

1 4 5 
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For cubic element with four points ( ) ( )332211 ,,,,),( yxyxyx and ( )44 , yx        
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Figure 3 figure 4 and figure 5, shows the comparison between the Lagrange interpolation 
shape functions and hyperbolic interpolation shape functions for the range 0 to 1. Shape 
functions for linear element are shown in figure 1; where 1h , 2h  denote the hyperbolic 
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shape functions and 21 , ll  denote the shape functions for Lagrange interpolations 
respectively. 

 

 
Figure 3: Linear Lagrange and corresponding hyperbolic interpolation shape functions 

 

 
       

       Figure 4: Quadratic Lagrange and corresponding hyperbolic interpolation shape functions;  

 

 
     Figure 5: cubic Lagrange and corresponding hyperbolic interpolation shape functions 
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3. Formulation of Eigenvalue Problem 

Consider a general class of one dimensional eigenproblems governed by the following 
second order ordinary differential equation    
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in the previous section and n is the degrees of freedom. Then the Galerkin residual 
equation for the element e is 
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Now integrating by parts and with minor simplifications we have 
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ni ,.....,3,2,1=  which can be written in conventional matrix form   
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where K  and M represent the stiffness matrix and the mass matrix, respectively. 

 

3.1  Numerical example: Ram-Mohan et al. [4] solved the eigenvalue problem 
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with domain having limit 0 to 20 taking 20 linear elements.  

Multiplying the equation by the weight function v  and integrating from 0 to 20 we obtain   
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Considering the linear element from  1xx =  to  2xx = writing  2211 UHUHU +=    (29) 

and using the Galerkin approach with v = 1H   and  v = 2H  , the elements of the stiffness 
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Using the substitution the same substitution as before 
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For the first element    

The elements of the mass matrix are  
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The global stiffness equation UMUK λ= for two linear elements.  

For 20 linear elements global stiffness matrix K and the global mass matrix M will be a   
21×21 matrix. 

The matrix eigenvalue equation is UMUK λ= .  The equation is solved by Jacobi’s 
method, to find the eigenvalues  λ1, λ2,……, λ20. 

Eigenvalue problem in equation (3) is solved using standard Jacobi method. Jacobi 
method is preferable when all the eigenvalues and eigenvectors are required. This method 
calculates negative, zero, or positive eigenvalues. All integrations are performed using 5-
point Gauss quadrature. Numerical computations are performed using FORTRAN 
programming languages. 
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4. Result and Discussion 

Relative errors have been shown between Lagrange’s and exact eigenvalues as well 
hyperbolic and exact eigenvalues in Table I, Table II and Table III. In Table I the 
eigenvalues calculated using 20 elements show discrepancy with the analytical results. 
Again in Table I the eigenvalues calculated using 20 elements for the range 20 using 
hyperbolic interpolation gives smaller percentage error than those of Lagrange’s 
interpolation for the same. Also it has been observed that as the number of elements and 
the ranges increased, the percentage error also increased in case of hyperbolic 
interpolation. To improve the accuracy of the results the degree of interpolation function 
has been increased. Eigenvalues obtained from Table II shows less discrepancy.  

From table III it is seen that, smaller number of elements are not in good agreement. It 
has also been observed that from percentage relative error in Table III is smaller for both 
Lagrannge and hyperbolic interpolation than those of Table I and Table II. Thus Table III 
agrees well with exact eigenvalues than those of Table I and Table II.   

We conclude that the eigenvalues illustrated in Table III are more compatible to those 
computed in Table II and Table I. 

  

Table I.  Eigenvalues obtained by using linear Lagrange and  

Hyperbolic interpolation for different ranges 

 
Quantum 
Number 

n 

Energy 
(Rydberg) 
Lagrange 
interpolation 

Energy 
(Rydberg) 
Hyperbolic 
Interpolation 

Range 

 

Number 
of 
elements 

 
 
 

    Exact 
eigenvalues

 
 

Relative 
Error 
Between 
Exact & 
Lagrange  
      % 

Relative 
Error 
Between 
Exact & 
Hyperbolic   
     % 

1 
2 
3 
4 

-0.941709 
-0.238261 
-0.092925 
0.047545 

-1.003040 
-0.250049 
-0.099322 
0.034866 

20 
 
 
 

20 
 
 
 

-1.000000 
-0.250000 
-0.111111 
-0.062500 

5.8290    
4.6956 
16.367 
176.07 

0.3040 
0.0196 
10.610 
155.78 

1 
2 
3 
4 

-0.999992 
-0.249999 
-0.111111 
-0.062409 

-0.999109 
-0.249078 
-0.110304 
-0.061600 

50 
 
 

50 
 
 
 

-1.000000 
-0.250000 
-0.111111 
-0.062500 

0.0010 
0.0004 
0.0000 
0.1456 

0.0891 
0.3688 
0.7000 
1.4400 

1 
2 
3 
4 

-0.999999 
-0.250000 
-0.111111 
-0.062408 

-1.000053 
-0.249999 
-0.111110 
-0.062399 

50 
 
 

100 
 
 
 

-1.000000 
-0.250000 
-0.111111 
-0.062500 

0.0001 
0.0000 
0.0000 
0.1472 

0.0053 
0.0000 
0.0000 
0.1616 

1 
2 
3 
4 

-0.999993 
-0.249999 
-0.111111 
-0.062500 

-0.997429 
-0.249833 
-0.111065 
-0.062480 

100 
 
 
 

100 
 
 
 

-1.000000 
-0.250000 
-0.111111 
-0.062500 

0.0010 
0.0001 
0.00000 
0.0000 

0.2571 
0.0668 
0.0414 
0.0320 
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Table II. Eigenvalues obtained by using Lagrange and Hyperbolic interpolation  

using quadratic element for different domain. 
 
Quantum 
Number 

n 

Energy 
(Rydberg) 
Lagrange 
Interpolation 

Energy 
(Rydberg) 
Hyperbolic 
Interpolation

Range

 

Number 
of 
elements

 
 
 

Exact 
eigenvalues

 

Relative 
Error 
Between 
Exact & 
Lagrange  
     % 

Relative 
Error 
Between 
Exact & 
Hyperbo
lic   
     % 

1 
2 
3 
4 
5 

-0.9989508 
-0.2498442 
-0.0997724 
0.033427 
0.225756 

-1.0196911 
-0.2506893 
-0.0988970 
0.0366957 
0.2330899 

20 

 
 
 

20 
 
 
 
 

-1.000000 
-0.250000 
-0.111111 
-0.062500   
-0.040000 

0.1049 
0.0623 
10.204 
153.48 
664.39 

1.9690 
 0.2757 
10.990 
158.71 
682.72 

 
1 
2 
3 
4 
5 

-0.998950 
-0.249870 
-0.111069 
-0.062389 
-0.035713 

-1.019691 
-0.250716 
-0.110605 
-0.061881 
-0.034987 

50 
 
 
 

50 
 
 
 
 

-1.000000 
-0.250000 
-0.111111 
-0.062500 
-0.040000 

0.1050 
0.0520 
0.0378 
0.1776 
10.717 

1.9690 
0.2864 
0.4554 
0.9904 
12.532 

1 
2 
3 
4 
5 

-0.999920 
-0.249991 
-0.111108 
-0.062407 
-0.035728 

-1.001783 
-0.250069 
-0.111078 
-0.062371 
-0.035677 

50 
 
 
 

100 
 
 
 
 

-1.000000 
-0.250000 
-0.111111 
-0.062500 
-0.040000 

0.008 
0.0036 
0.0027 
0.1488 
10.68 

0.1783 
0.0276 
0.0297 
0.2064 
10.807 

1 
2 
3 
4 
5 

-0.099895 
-0.249870 
-0.111069 
-0.062481 
-0.039990 

-1.019691 
-0.250716 
-0.110605 
-0.061985 
-0.039584 

100 
 
 
 
 

100 
 
 
 
 

-1.000000 
-0.250000 
-0.111111 
-0.062500 
-0.040000 

0.1050 
0.0520 
0.0378 
0.0032 
0.0250 

1.9690 
0.2864 
0.4554 
0.8240 
1.0400 

1 
2 
3 
4 
5 

-0.999919 
-0.249990 
-0.111108 
-0.062498 
-0.039999 

 

-1.001783 
-0.250069 
-0.111078 
-0.062464 
-0.039972 

100 200 1.000000 
-0.250000 
-0.111111 
-0.062500 
-0.040000 

0.00811 
0.0040 
0.0018 
0.0032 
0.0025 

0.1783 
0.0276 
0.0297 
0.0576 
0.0700 
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Table III. Eigenvalues obtained by using Lagrange and Hyperbolic interpolation 

using cubic element for different domain. 
 

Quantum 
Number 

n 

Energy 
(Rydberg) 
Lagrange 
Interpolation 

Energy 
(Rydberg) 
Hyperbolic 
Interpolation

Range

 

 Number
of 
elements
 
 
 

Exact 
eigenvalues
 

Relative 
Error 
Between 
Exact & 
Lagrange 
     % 

Relative 
Error 
Between 
Exact & 
Hyperbolic 
     % 

1      
2  
3 
4 
5               

-0.999992 
-0.249973 
-0.099836 
 0.033427 
 0.225756 

-1.003040 
-0.250049 
-0.099322  
0.034866 
0.228553  

20 

 
 
 

20 
 
 
 
 

-1.000000 
-0.250000  
-0.111111 
-0.062500    
-0.040000 

0.0008 
0.0108 
10.14 
153.48 
425.20 

0.3040 
0.0196 
10.610 
155.78 
671.38 

1 
2 
3 
4 
5 

-0.999992 
-0.249999 
-0.111111 
-0.062409 
-0.035730 

-0.999109 
-0.249078 
-0.110304 
-0.061600 
-0.034951 

50 
 
 
 

50 
 
 
 
 

-1.000000 
-0.250000  
-0.111111 
-0.062500    
-0.040000 

0.0008 
0.0001 
0.0000 
0.1456 
10.675 

0.0891 
0.0922 
0.7260 
0.3688 
12.622 

1 
2 
3 
4 
5 

-0.999999 
-0.250000 
-0.111111 
-0.062408 
-0.035730 

-1.000053 
-0.249999 
-0.111110 
-0.062399  
-0.035727 

50 
 
 
 

100 
 
 
 
 

-1.000000 
-0.250000  
-0.111111 
-0.062500    
-0.040000 

0.0001 
0.00000
.00000.
1472 
10.751 

0.0053 
0.0004 
0.0009 
0.1616 
10.680 

1 
2 
3 
4 
5 

-0.999993 
-0.249999 
-0.111111 
-0.062500 
-0.039999 

-0.997429 
-0.249833 
-0.111065 
-0.062480 
-0.039990 

100 
 
 
 
 

100 
 
 
 
 

-1.000000 
-0.250000  
-0.111111 
-0.062500    
-0.040000 

0.0007 
0.0004 
0.0000 
0.0000 
0.0250 

0.2571 
0.0668 
0.0414 
0.0320 
0.0250 

 

Conclusion 

This paper has presented the finite element method with hyperbolic interpolation shape 
functions and eigenvalues have been calculated by using this modified finite element 
method with hyperbolic interpolation for linear, quadratic and cubic elements. Results 
obtained using these methods are compared with the analytically obtained results. It is 
clear from the tables that eigenvalues obtained by using Lagrange’s interpolation gives 
better accuracy and it is widely used although the new approach of using hyperbolic 
interpolation can be compatible to the use of Lagrenge’s shape functions. 

We conclude from this paper that results and the percentage error from hyperbolic 
interpolation is thus closer to those obtained by Lagrange’s interpolations shape 
functions. The fact that hyperbolic interpolation shape functions can provide better results 
in the solution of an eigenvalue problem has not been appreciated earlier and we expect 
to see a greater use of the finite element method in the solution of physical problems with 
modified interpolation functions in the future.  
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