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ABSTRACT 

Special classes of Initial value problem of differential equations termed as stiff differential 
equations occur naturally in a wide variety of applications including the studies of spring and 
damping systems, chemical kinetics, electrical circuits, and so on. Most realistic stiff systems 
do not have analytical solutions so that a numerical procedure must be used. In this paper we 
have discussed the phenomenon of stiffness and the general purpose procedures for the 
solution of stiff differential equation. Because of their applications in many branches of 
engineering and science, many algorithms have been proposed to solve such problems. In this 
study we have focused on some conventional methods namely Runge-Kutta method, 
Adaptive Stepsize Control for Runge-Kutta and an ODE Solver package, EPISODE. We 
describe the characteristics shared by these methods. We compare the performance and the 
computational effort of such methods. In order to achieve higher accuracy in the solution, the 
traditional numerical methods such as Euler, explicit Runge-Kutta and Adams –Moulton 
methods step size need to be very small. This however introduces enough round-off errors to 
cause instability of the solution. To overcome this problem we have used two other 
algorithms namely Adaptive Stepsize Control for Runge-Kutta and EPISODE. The results are 
compared with exact one to determine the efficiency of the above mentioned method. 

1. Introduction 

Many mathematical modeling give rises to systems of ordinary differential equations 
which although mathematically well conditioned are practically impossible to solve with 
traditional numerical methods because of severe step size constraint imposed by 
numerical stability. Mathematically these are known as stiff equations and can be 
characterized by the presence of transient components which are negligible relative to the 
other components of the solution of the problem. This characteristic of such equations 
constrain the step size of traditional numerical methods to be of the order of the constant 
of smallest component of the problem. As soon as one deals with more than one first-
order differential equation, the possibility of a stiff set of equations arises. Stiffness 
occurs in a problem where there are two or more very different scales of the independent 
variable on which the dependent variables are changing. Fortunately, stiff equations 
generally can be predicted from the physical problem from which the equation is derived 
and, with care, the error can be kept under control. 
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Stiffness is an important concept in the numerical solution of ordinary differential 
equations. It depends on the differential equation, the initial conditions, and the interval 
under consideration. The solution of Stiff differential equations has a term of the 
form )exp( At− , where A is a large positive constant. This is usually a part of the 
solution, called the transient solution. The more important portion of the solution is called 
the steady-state solution. The transient portion of a stiff equation rapidly decay to zero as 
t increases, but since the nth derivative of this term has magnitude )exp( AtAn − , the 
derivative does not decay as quickly. In fact, since the derivative in the error term is 
evaluated not at t, but at a number between zero and t, the derivative terms can increase 
as t increase and very rapidly indeed. In case of such equations stability requirements 
force to take a lot of small time steps, this happens when we have a system of coupled 
differential equations that have two or more very different scales of the independent 
variable over which we are integrating. For example, suppose our solution is the 
combination of two exponential decay curves, one that decays away very rapidly and one 
that decays away very slowly. Except for the few time steps away from the initial 
condition, the slowly decaying curve dominate since the rapid curve will have decayed 
away. But because the variable time step routine to meet stability requirements for both 
components, we need to be confined ourselves into small time steps even though the 
dominant component would allow much lager time steps.  

One of the first attempts to cope with the difficulties of stiffness was suggested by Curtiss 
and Hirschfelder (1952), who encountered stiff equations in their kinetics studies. They 
proposed special multistep formulas which were able to produce acceptable 
approximations. The difficulty of stiffness was virtually ignored by the numerical 
analysts until ten years later when Dahlquist (1963) identify numerical instability as the 
cause of the difficulty and provided some basic definitions and concepts that have been 
very helpful in subsequent work. Dahlquist also proposed the trapezoidal rule with 
extrapolation as a suitable technique to solve Stiff equations. Since Dahlquist’s paper 
appeared, the field has been quiet active and several new approaches have been proposed 
for the numerical solution of stiff equations. Some of the more readily available methods 
for stiff equations include: Variable- order methods based on backward differentiation 
multistep formulas, originally analysed and implemented by Gear (1969, 1971) and later 
modified and studied by Hindmarsh (1974) and Byrne and Hindmarsh (1975) and 
Methods based on second derivative multistep formulas, such as those developed by 
Linger and Willoughby (1967) and Enright (1974). There are also some methods based 
on trapezoidal rule, such as those proposed by Dahlquist (1963) and subsequently studied 
by Lindberg (1971,1972) and implicit Runge-Kutta methods suitable for stiff equations, 
such as those based on the formulas of Butcher (1964) and studied by Ehle (1968). In 
addition there are some methods based on the use of preliminary mathematical 
transformations to remove stiffness and the solution of the transformed problem by 
traditional techniques, such as those studied and implemented by Lawson and Ehle 
(1972). Unfortunately, although a number of methods have been developed, and many 
more basic formulas suggested for stiff equations, until recently there has been little 
advice or guidance to help a practitioner choose a good method for the problem at hand. 
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In this paper our attention is directed towards the behavior of the solution of stiff initial 
value problems by two different methods. The traditional Runge-Kutta method is 
employed firstly and then Adaptive Stepsize Runge-Kutta method is used to get better 
results. Along with Runge-Kutta method an ODE solver package EPISODE is used to 
obtain a new set of solution. The solutions sets are compared to determine the 
effectiveness of these methods. The difficulties occurred in solving stiff initial value 
problems by the aforementioned methods have been detected and a brief discussion on 
handling them is given.  

2. Computational Details 

The specific methods that we discussed in this paper are -The fourth order Runge-Kutta 
method for systems, the adaptive stepsize control for Runge-Kutta and a general ODE 
package EPISODE. Consider the initial value problem 

( )ytf
dt
dyy ,==&   

and a  given initial condition, ( ) aty =0 .  

 

2.1 Runge-Kutta method 

 Runge-Kutta type method named after two German mathematicians, Runge and Kutta 
are called single step method because it uses only the information from the last step 
computed. This algorithm solves a differential equation efficiently and yet is equivalent 
of approximating the exact solution by matching the first n terms of the Taylor series 
expansion. We will consider only fourth order Runge-Kutta method, which is a higher 
order method. Fourth-order Runge-Kutta methods are most widely used and reliable 
methods for finding solutions of higher order ordinary differential equations.  

 

2.2 Adaptive Stepsize Control for Runge-Kutta 

A good ODE integrator should exert some adaptive control over its own progress, making 
frequent changes in its step size. Usually the purpose of this adaptive step size is to 
achieve some predetermined accuracy in the solution with minimum computational 
effort. Implementation of adaptive step size control requires that the algorithm return 
information about its performance, most important, an estimate of its truncation error.  

 

2.3 Solver Package EPISODE 

In a number of areas, particularly in chemical applications one often encounters systems 
of ordinary differential equations which, although mathematically well conditioned, are 
virtually impossible to solve with traditional numerical methods because of the severe 
step size constraint imposed by numerical stability. Over the last three decades, there has 
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been significant progress in the development of numerical stiff ODE solvers. 
Consequently, a wide variety of very efficient and reliable ODE solvers have been 
developed such as DIFSUB, GEAR, LSODE,EPISODE, VODE, LSODPK and VODPK. 
The EPISODE program is a package of FORTRAN subroutines aimed at the automatic 
solution of problems, with a minimum effort required in the face of possible difficulties 
in the problem. The program implements both a generalized Adams method, well suited 
for nonstiff problems, and a generalized backward differentiation formula (BDF), well 
suited for stiff problems. Both methods are of implicit multistep type. In solving stiff 
problems, the package makes the heavy use of the NN ×  Jacobian matrix, 
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the if  and jy  are the vector components of f and y, respectively. 

A complete discussion of the use of EPISODE is given in [9]. However, a few basic 
parameter definitions are needed here, in order to present the examples. Beyond the 
specification of the problem itself, represented by example 1 and perhaps example 2, the 
most important input parameter to EPISODE is the method flag, MF. This has eight 
values-10, 11, 12, 13, 20, 21, 22, and 23. The first digit of MF, called METH, indicates 
the two basic methods to be used namely implicit Adams and BDF. The second digit, 
called MITER, indicates the method of iterative solution of the implicit equations arising 
from the chosen formula. The parameter MITER takes four different values (0, 1, 2, 3) to 
indicate the following respectively 

o Functional (or fixed-point) iteration (no Jacobian matrix used.). 

o A chord method (or generalized Newton method, or semi-stationary Newton 
iteration) with Jacobian given by a subroutine supplied by the user. 

o A chord method with Jacobian generated internally by finite differences. 

o A chord method with a diagonal approximation to the Jacobian, generated 
internally (at less cost in storage and computation, but with reduced 
effectiveness). 

The EPISODE package is used by making calls to a driver subroutine, EPSODE, which 
in turn calls other routines in the package to solve the problem. The function f is 
communicated by way of a subroutine, DIFFUN, which the user must write. A subroutine 
for the Jacobian, PEDERV, must also be written. Calls to EPSODE are made repeatedly, 
once for each of the user’s output points. A value of t at which output is desired is put in 
the argument TOUT to EPSODE, and when TOUT is reached, control returns to the 
calling program with the value of y at t =TOUT. Another argument to EPSODE, called 
INDEX, is used to convey whether or not the call is the first one for the problem (and 
thus whether to initialize various variables). It is also used as an output argument, to 
convey the success or failure of the package in performing the requested task. Two other 
input parameters. EPS and IERROR, determine the nature of the error control performed 
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within EPISODE.  

The EPISODE package consists of eight FORTRAN subroutines, to be combined with 
the user’s calling program and Subroutines DIFFUN and PEDERV. As discussed earlier, 
only Subroutine EPSODE is called by the user; the others are called within the package. 
The functions of the eight package routines can be briefly summarized as follows: 

• EPSODE sets up storage, makes calls to the core integrator, TSTEP, checks for 
and deals with error returns, and prints error message as needed. 

• INTERP computes interpolated values of y (t) at the user specified output points, 
using an array of multistep history data. 

• TSTEP performs a single step of the integration, and does the control of local 
error (which entails selection of the step size and order) for that step. 

• COSET sets coefficients that are used by TSTEP, both for the basic integration 
step and for error control. 

• ADJUST adjusts the history array when the order is reduced. 

• PSET sets up the matrix JhIp 0β−= , where I is the identity matrix, h is the 
step size, 0β  is a scalar related to the method, and J is the Jacobian matrix. It 
then processes P for subsequent solution of linear algebraic system with P for 
subsequent solution of linear algebraic systems with P as coefficient matrix. 

• DEC performs an LU (lower-upper triangular) decomposition of an NN ×  
matrix. 

• SOL solves linear algebraic systems for which the matrix was factored by DEC. 

The subroutine EPSODE based on variable coefficient backward differentiation formula 
can be used. The nonstiff option uses an Adams-Bashforth predictor and an Adams-
Moulton corrector. 

Predictor: ∑
=

−++ ′+=
k

i
ininn yhyy

1
11 β   &   Corrector: ∑

=
−++ ′+=

k

i
ininn yhyy

0
11 β  

The order may vary from one to seven. 

 

3. Numerical Implementation and discussion 

In order to compare the above mentioned methods we consider the following system of 
initial-value problem. This problem has been selected intentionally from Burden [2] since 
the exact solution is available to compare with. 
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The transient term te 39− in the solution causes this system to be stiff. We have solved the 
problem using Runge-Kutta method, Adaptive Stepsize Control for Runge-Kutta and an 
ODE Solver package, EPISODE and the results are shown in tabular form. We have also 
compared our results with the exact one.   

We have considered the values of the step size h=0.1, 0.5, .01, .001 for the fixed step size 
Runge-Kutta method. Using the step size h=0.1 we have got disastrous result that is 
shown in Table 1 which misleads us from the solution curve by a large magnitude. 

Table 1: Runge-Kutta method for H=0.1 

t Approximated 

value of )(1 tu  

Exact value  

of )(1 tu  

Approximated 

value of )(2 tu  

Exact value 

of )(2 tu  

0.000 0.13333334E+01 0.13333334E+01 0.66666669E+00 0.66666669E+00 
0.100 -0.26451817E+01 0.17930626E+01 0.78445430E+01 -0.10320024E+01 
0.200 -0.18451691E+02 0.14239024E+01 0.38876591E+02 -0.87468100E+00 
0.300 -0.87473274E+02 0.11315765E+01 0.17648480E+03 -0.72499853E+00 
0.400 -0.39407758E+03 0.90940857E+00 0.78936584E+03 -0.60821420E+00 
0.500 -0.17600500E+04 0.73878783E+00 0.35210620E+04 -0.51565766E+00 
0.600 -0.78487061E+04 0.60570961E+00 0.15698184E+05 -0.44041076E+00 
0.700 -0.34990461E+05 0.49986026E+00 0.69981547E+05 -0.37740383E+00 
0.800 -0.15598363E+06 0.41367146E+00 0.31196775E+06 -0.32295352E+00 
0.900 -0.69535119E+06 0.34161434E+00 0.13907029E+07 -0.27440882E+00 
1.000 -0.30997643E+07 0.27967489E+00 0.61995290E+07 -0.22988783E+00 

In order to obtain better approximation from the previous one we have reduced the step 
size by half i.e. we have considered h=.05 and then we have observed that the results 
(shown in the following table) improve radically which is correct up to three significant 
digits. 
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Table 2:  Runge-Kutta method for H=0.05 

t Approximated 

value of )(1 tu  

Exact value  

of )(1 tu  

Approximated 

value of )(2 tu  

Exact value 

of )(2 tu  

0.000 0.13333334E+01 0.13333334E+01 0.66666669E+00 0.66666669E+00 
0.100 0.17122205E+01 0.17930626E+01 -0.87031507E+00 -0.10320024E+01 
0.200 0.14140718E+01 0.14239024E+01 -0.85501510E+00 -0.87468100E+00 
0.300 0.11305257E+01 0.11315765E+01 -0.72289181E+00 -0.72499853E+00 
0.400 0.90927821E+00 0.90940857E+00 -0.60794848E+00 -0.60821420E+00 
0.500 0.73875201E+00 0.73878783E+00 -0.51558137E+00 -0.51565766E+00 
0.600 0.60568446E+00 0.60570961E+00 -0.44035622E+00 -0.44041076E+00 
0.700 0.49983734E+00 0.49986026E+00 -0.37735450E+00 -0.37740383E+00 
0.800 0.41365030E+00 0.41367146E+00 -0.32290822E+00 -0.32295352E+00 
0.900 0.34159508E+00 0.34161434E+00 -0.27436787E+00 -0.27440882E+00 
1.000 0.27965778E+00 0.27967489E+00 -0.22985160E+00 -0.22988783E+00 

 

To improve our result we again attempt  with a new step size (h=.01) which is very small 
compared to the earlier values and with this change the result agrees with the exact value 
up to 5 significant figures. 

 

Table 3: Runge-Kutta method for H=0.01 

t Approximated 

value of )(1 tu  

Exact value  

of )(1 tu  

Approximated 

value of )(2 tu  

Exact value 

of )(2 tu  

0.000 0.13333330E+01 0.13333334E+01 0.66666669E+00 0.66666669E+00 
0.100 0.17930413E+01 0.17930626E+01 -0.10319601E+01 -0.10320024E+01 
0.200 0.14239013E+01 0.14239024E+01 -0.87467921E+00 -0.87468106E+00 
0.300 0.11315763E+01 0.11315765E+01 -0.72499835E+00 -0.72499859E+00 
0.400 0.90940845E+00 0.90940863E+00 -0.60821414E+00 -0.60821420E+00 
0.500 0.73878777E+00 0.73878783E+00 -0.51565760E+00 -0.51565766E+00 
0.600 0.60570961E+00 0.60570967E+00 -0.44041070E+00 -0.44041076E+00 
0.700 0.49986029E+00 0.49986026E+00 -0.37740383E+00 -0.37740383E+00 
0.800 0.41367149E+00 0.41367149E+00 -0.32295352E+00 -0.32295352E+00 
0.900 0.34161437E+00 0.34161437E+00 -0.27440882E+00 -0.27440885E+00 
1.000 0.27967489E+00 0.27967492E+00 -0.22988783E+00 -0.22988784E+00 

            

Again, reducing the value of h (h=.001) we have observed that our result shows a very 
good conforms to the exact solution (up to 7 digits) of the problem. 
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Table 4:  Runge-Kutta method for H=0.001 

t Approximated 

value of )(1 tu  

Exact value  

of )(1 tu  

Approximated 

value of )(2 tu  

Exact value 

of )(2 tu  

0.000 0.13333330E+01 0.13333334E+01 0.66666669E+00 0.66666669E+00 
0.100 0.17930620E+01 0.17930626E+01 -0.10320022E+01 -0.10320024E+01 
0.200 0.14239023E+01 0.14239024E+01 -0.87468088E+00 -0.87468100E+00 
0.300 0.11315769E+01 0.11315765E+01 -0.72499871E+00 -0.72499853E+00 
0.400 0.90940911E+00 0.90940857E+00 -0.60821444E+00 -0.60821420E+00 
0.500 0.73878819E+00 0.73878783E+00 -0.51565784E+00 -0.51565766E+00 
0.600 0.60570997E+00 0.60570961E+00 -0.44041094E+00 -0.44041073E+00 
0.700 0.49986023E+00 0.49986023E+00 -0.37740383E+00 -0.37740380E+00 
0.800 0.41367146E+00 0.41367143E+00 -0.32295352E+00 -0.32295349E+00 
0.900 0.34161443E+00 0.34161431E+00 -0.27440885E+00 -0.27440882E+00 
1.000 0.27967495E+00 0.27967489E+00 -0.22988784E+00 -0.22988781E+00 

 

In case of fixed step size Runge-Kutta method we have to solve the problem with a 
predetermined step size and so there is a possibility of getting the incorrect result. As a 
result we are also not able to achieve our desired accuracy. In this case we have tried with 
more than one step size and proceeds up to last step which is time consuming. To 
overcome this problem we have solved this problem with Adaptive Step size control for 
Runge-kutta. In this method variable step sizes are used in each step to achieve a 
predefined accuracy.  The following table shows the result of the problem using Adaptive 
Stepsize control for Runge-Kutta.    

Table 5: Adaptive Stepsize control for Runge-Kutta  

t Approximated 

value of )(1 tu  

Exact value  

of )(1 tu  

Approximated 

value of )(2 tu  

Exact value 

of )(2 tu  

0.000 0.13333330E+01 0.13333334E+01 0.66666669E+00 0.66666669E+00 
0.100 1.79304858406938 0.17930626E+01 -1.03197450514632 -0.10320024E+01 
0.200 1.42390207492145 0.14239024E+01 -0.874680422284331 -0.87468100E+00 
0.300 1.13157649536409 0.11315765E+01 -0.724998544910728 -0.72499853E+00 
0.400 0.909408571598146 0.90940857E+00 -0.608214198568701 -0.60821420E+00 
0.500 0.738787825268748 0.73878783E+00 -0.515657666707487 -0.51565766E+00 
0.600 0.605709637966968 0.60570961E+00 -0.440410753275052 -0.44041073E+00 
0.700 0.499860243643682 0.49986023E+00 -0.377403817988363 -0.37740380E+00 
0.800 0.413671468596188 0.41367143E+00 -0.322953517215125 -0.32295349E+00 
0.900 0.341614340930095 0.34161431E+00 -0.274408829650564 -0.27440882E+00 
1.000 0.279674898219440 0.27967489E+00 -0.229887831037646 -0.22988781E+00 
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Since most real life Stiff initial value problems cannot be solved with the traditional 
numerical methods because of the severe step size constraint imposed by numerical 
stability and so a number of very efficient ODE solvers have been developed. To justify 
our result we have solved our problem with a general ODE solver package EPISODE and 
the following table summarizes the result.  

Table 6: Episode: 

t H 
Approximated 
Value of )(1 tu  

Exact value 
of  )(1 tu  

Approximated  

Value of )(2 tu  

Exact value 

of )(2 tu  

0.0 .40E-02 1.33333333 1.33333333 0.666666666 0.666666666 
0 .1 .40E-02 1.79306146 1.79306300 -1.03200020 -1.03200200 
0.2 .91E-02 1.42390205 1.42390200 -0.87468033 -0.87468100 
0.3 .12E-01 1.13157624 1.13157700 -0.72499799 -0.72499860 
0.4 .33E-01 0.90940824 0.90940860 -0.60821345 -0.60821420 
0.5 .33E-01 0.73878794 0.73878780 -0.51565752 -0.51565770 
0.6 .45E-01 0.60571002 0.60570970 -0.44041090 -0.44041080 
0.7 .66E-01 0.49986115 0.49986030 -0.37740429 -0.37740380 
0.8 .66E-01 0.41367419 0.41367150 -0.32295478 -0.32295350 
0.9 .66E-01 0.34161891 0.34161430 -0.27441118 -0.27440880 
1.0 .66E-01 0.27968063 0.27967490 -0.22989065 -0.22988780 
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Figure 1: The graph of the solutions for u 1 
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Figure 2: The graph of the solutions for u 2 

 

From the figures (1) and (2) we observed that except Runge-Kutta method with H = 0.1 
and Runge-Kutta method with H = 0.05 all other solutions agree with the exact one. 

Conclusion 

There are many basic formulas and effective codes available to solve such problems, but 
until now there has a little advice or guidance to help a user to choose a good method for 
solving such stiff initial value problem. In this paper we focus on Runge-Kutta method, 
Adaptive Stepsize Control for Runge-Kutta and an ODE Solver package, EPISODE.  
Important finding throughout the discussion is that the fixed step size Runge-Kutta 
method is inappropriate for stiff differential equations. For the fixed step size Runge-
Kutta method, we observe that with decreasing the step size the accuracy of the 
approximation improves. Still the user faces the problem that how small the step size 
should be to obtain the desired accuracy. On the other hand the Adaptive step size Runge-
Kutta method allows us to set the accuracy level where step size changes for different 
values of the independent variable. In contrast EPISODE is a solver package which is 
much more user friendly and provides a very good approximation though the accuracy 
level is not as good as Adaptive step size Runge-Kutta method. But EPISODE is more 
effective for real life problem where the system is too large and complicated.       
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