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ABSTRACT 
 

In this paper an attempt has been made to investigate the velocity profile of unsteady laminar flow 
of incompressible viscous fluid. The method of separation of variable is used to determine the 
solutions of the governing differential equations. Time varying pressure gradient is considered for 
poiseuille flow. The velocity profiles for the various types of flow are shown by the figures.  

 
1. Introduction 
The steady and unsteady flow of viscous incompressible fluid between two parallel plates 
with constant pressure gradient have been presented in the standard books of Bachelor 
[1], Chorlton [2], Lamb [4],  Landau & Lifshitz [5], Milne Thomson [6], Pai [7],  and 
others. In describing the unsteady flow of viscous fluid between two parallel plates 
Sengupta, Rahman & Kandar [9] have considered time varying pressure gradients. In [9] 
Laplace transformation is used to determine the solutions of the differential equations. In 
this paper an attempt has been made to study the velocity profile of various types of 
unsteady two dimensional flow of incompressible viscous fluid between two parallel 
plates. In describing time varying pressure gradient for poiseuille flow some suitable 
functions are considered here. A special case is considered in this paper. Crank Nicholson 
method is used to determine the figures of the special case. 
 
2. Mathematical formulation 
Equation for conservation of mass: 
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and in y-direction 
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Let x be the direction of the flow, y the direction perpendicular to the flow. Suppose there 
is no velocity component perpendicular to the direction of the flow. As a result the 

equation of conservation of mass reduces to 0=
∂
∂

x
u , and this leads to   Then 

the Eq. (2) and Eq.(3) reduce to  
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Let  denote the characteristic length, velocity, pressure and pUL ,, 0 puyx ′′′′′ ,,,, υ  be 
the dimensionless number such that 
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Then the Eq.(4.a)and Eq. (4.b) reduces to 
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where  represents the Reynolds number and Re
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Dropping the superscripts, we have 
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Plane Poiseuille Flow:  

Let us consider the unsteady two dimensional flow of incompressible viscous fluid 
flowing between two fixed parallel plates 0=y  and 1=y . Eq. (8) shows that p does not 
depends on y. Hence p is a function of x and t. 
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Suppose 
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Eq.(7) becomes 
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Boundary conditions: 

0=u at and  at 0=y )(tUu = 1=y  and initially when 
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Case I: 

We choose a nonlinear function of time as           
2)( tttF γβα ++= . 

For the above function, we have 
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General solution of Eq.(12 ) is 
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where   and are arbitrary constants. 1k 2k

Boundary conditions: 

            at  and  at 0=u 0=y )(tUu = 1=y . 

Applying the boundary condition in (13), we have 
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Velocity profile in this case for Reynolds number 1, 3 and 5 is given in the Figure 1. 
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Figure-1 

Case II:  

We choose a transient function of time as the following form 
βα tetF −=)( . 

For the above function, we have 
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General solution of Eq.(15)  is 
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where   and are arbitrary constants. 1k 2k

Boundary conditions: 

0=u at  and  at 0=y 1=y . 

Applying the boundary condition in Eq. (16), we have the solution 
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Velocity profile in this case for Reynolds number 1,3,5 is given in the Figure 2. 
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Figure-2 

Case III:  

We choose a function for which the pressure gradient varies as a periodic function of 
time, i. e. 

βα ttF cos)( = . 

For the above function, we have 
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General solution of the Eq.(18 ) is 
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where k1 and k2 are arbitrary constants. 

Applying the boundary condition in Eq.(19), we have 
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Velocity profile in this case for Reynolds number 1, 3, 5 is given by the Fig-3. 
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Figure-3 

Plane Couette flow:  0)( =tF

Let us consider the unsteady two-dimensional flow of incompressible viscous fluid 
between two parallel plates. Suppose one plate y=0 is fixed and the other plate is moving 
with speed U. Again suppose the distance between the plates is one unit. In this case the 
differential equation for the flow will be 

2

2

Re
1       

y
u

t
u

∂
∂

=
∂
∂

  .                                                                          (21) 

To solve the above equation we consider the following three cases: 

Case I: 

tuutU 10)(  +=  

General solution of Eq.(21) is 
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where   and are arbitrary constants. 1k 2k

Boundary conditions: 

                 at  and 0=u 0=y tuuu 10 += at  1=y    and  yuu 0)0( = . 

Applying the above boundary condition in Eq. (22), we have 
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Velocity profile in this case is given by the Fig-4. 
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Figure-4 

Case II: 

.)( 1
0

tueutU =  

Boundary conditions: 

            at0=u 0=y  and at  1
0

tueuu = 1=y    and  yuu 0)0( = . 

Applying the above boundary conditions, the solution of Eq.(21) is 
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Velocity profile in this case is given by the Fig-5. 
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Figure-5 
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Case III: 

.cos)( 10 tuutU =  

Applying the boundary conditions of case II the solution of Eq. (21) is   
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Velocity profile in this case is given by the Fig-6. 
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Figure-6 

Special case:  1Re =  

Boundary conditions: 

xu πsin=   at    for 0=t 10 ≤≤ x  and 0=u  at 0=x   and  for  t >0. 1=x
To solve this problem by finite difference method, we let 
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Finally, using Jacobi’s iteration formula we have the following velocity profile given by 
Fig 7. 
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Figure-7 

  
3. Results and discussion 
It is clear from the Fig-1, Fig-2, Fig-3 and Fig-7 that the velocity profiles are very similar 
to the parabolic nature of the flow, firstly starts with zero velocity and then gradually 
increases and attain a maximum velocity. From Fig-1 to Fig-3 it is clear that the velocity 
profiles depend on the Reynolds number and the velocity increases with the increasing 
value of Reynolds number.  
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