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ABSTRACT 
 

In this paper, stability analysis of incompressible laminar boundary layer flow is presented. 
For this approach, the partial differential equation is converted to ordinary differential 
equation by suitable approximation. The implicit finite difference scheme is used to find the 
point of separations of the boundary layer equations. The finite difference equations for the 
given flow at each longitudinal position form a linear set with a tridiagonal coefficient matrix. 
To ensure the correct results, the methods are checked with standard flows like flow past 
circular cylinder, Howarth’s linear decelerating flows. These methods are demonstrated to 
compute accurately the separation points of several flows for which comparisons are made 
with previously published results. Then various series are tested with computer codes. At last, 
the stability diagram for plane poiseuille flow is shown.      
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1. Introduction 
The stability investigation is based on the assumption that laminar flows are affected by 
certain small disturbance. Then the decisive question in this connection arises as to 
whether the disturbances increase or die out with time. If the disturbances decay with 
time, the main flow is considered stable, on the other hand, if the disturbances increase 
with time the flow is considered unstable, and there exists the possibility of transition to a 
turbulent pattern. In this way a theory of stability is created. The general concept of 
stability has been discussed elaborately by Cunningham (1963). The discussion always 
boils down to one question: Can a given physical state with stand a disturbance and still 
return to its original state? If so, it is stable. If not, that particular state is unstable. It is the 
job of the stability analyst to test the effect of a particular disturbance. Boundary later 
theory is one of those inventions that allow a giant step in understanding to be taken.  
To determine the separation point, the usual procedure is to apply numerical methods to 
the governing partial differential equations, compute the full-field solution, and thereby 
obtain the stream wise station at which the wall shear stress becomes zero. There has been 
a rapid development of numerical techniques in recent years especially in finite difference 
schemes. 
For laminar boundary layer flow, the velocity profiles are geometrically similar and 
reduce to a single curve if u/U  is plotted against a dimensionless y co-ordinate 0
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xuy 0νη = . This is well known Blasius profile. The geometrical similarity is 
maintained, regardless of the Reynolds number of the flow or of the local skin friction. 
Primitive variable approach has been used to model the Navier-Stokes equations. By this 
method one can see what is going on in boundary layer? For reason of efficient 
computation, the most popular codes use transformed variables- stream function 
coordinates, Falkner- Skan stretching. 

The problem of laminar boundary layer with pressure gradient has been studied by Doss 
[3]. A similar implicit technique was developed independently for the boundary equations 
in physical coordinates by Flugge-Lotz and Blottner [6]. The boundary layer equations 
transformed with the Howarth Dorodnitsyn relation was also investigated by Flugge-Lotz 
and Blottner. The partial differential equations reduce to ordinary differential equations at 
the tip of the body or at stagnation point. The solution of these ordinary differential 
equations provides initial conditions for a finite difference solution, which can start at the 
beginning of the body. In the implicit finite difference procedure developed by Blottner 
[7], it was assumed that both the normal and tangential velocity components are known 
from similarity solutions across the boundary layer.  

In this paper primitive variable approach is considered to solve the boundary layer 
equations. As of Blottner, at the starting point of solution, the boundary layer equations 
are transformed to similarity variables. The partial differential equation is converted into 
ordinary differential equation by suitable approximation. The boundary layer equations 
are then solved by an implicit finite difference scheme. The scheme is demonstrated to 
compute accurately the separation points of several flows for which comparison with 
previously published results are possible. The stability of laminar boundary layer flow is 
also shown in this work. 
 
2. Governing Equations 
Two-dimensional incompressible flow by assuming the wall to be flat and coinciding 
with the x-direction, the y-axis being perpendicular to it is considered. Now a day, the 
most widely used CFD models of viscous flow use the direct or primitive variables (u, v).  
Let’s consider for simplicity, the two dimensional (2-D), incompressible equations of 
motion with constant transport properties as: 
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The boundary conditions are: 

u = v = 0  for y = 0, and u = U∞  for y ∞→                                                  (4) 
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The later two equations are parabolic in time. Thus the variables (u, v) are computed in 
the same manner in CFD model.  

The 2-D, steady, incompressible boundary layer equations, according to Prandtl, are 
given by:         
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with the boundary conditions:  

y = 0                       u = 0,  v = 0 

y = ∞                    u = U(x)                                                                           (7) 

Here dp/dx is used rather than xp ∂∂  to denote the pressure gradient. This is because 
0=∂∂ yp  across the boundary layer. The pressure ceased to be an unknown function 

and can now be evaluated from the potential flow solution for the body with the aid of the 
Bernoulli equation. Then equation (6) becomes 
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3. Method of Solution 
3.1. Implicit Finite Difference Method 

By using finite difference method the equations (8) and (5) respectively becomes  
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where m and n are number of locations in x and y direction respectively. 
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The equations (9) and (10) have to be simultaneously solved for  and . nmu ,1+ nmv ,1+

Equations (9) and (10) constitute satisfactory implicit laminar boundary layer. 

The boundary conditions for the above method are: 

Upstream condition :         eu
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No slip                                      01,1, == mm vu  

Known initial profiles               nn vu ,1,1 ,

3.2. Inversion of Tri-diagonal Matrix 

Assuming that n=1 is for the wall and n = n is for the free stream position, equation (9) 
represents (N-2) numbers of equations, each with three unknown namely ; ; 
and . The set of algebraic equations can be written in tri diagonal matrix form. 
Such matrix can be inverted by Gauss elimination or matrix inversion process. Here in 
this work, Gauss elimination is used to invert the matrix.    

1,1 −+ nmu nmu ,1+

1,1 ++ nmu

The equation (9) can be rewritten in the form  

nnmnnmnnmn DuCuu =+Β+Α +++−+ 1,1,11,1            (11) 

where,          A =n ( )nm ,1+α−  

                      B =1+  n ( )nm ,12 +α

                      C =  n ( )nm ,1+α−

                      D = right hand side of the equation (9). n

After solving the tri diagonal matrix, the values  are to be substituted in the 
equation (9) to get the normal velocity at all positions across the boundary layer. 

nmu ,1+

 
3.3. Initial profiles 

To find the initial values of u and v let us assume the variables as )(ηδ=ψ fue ,        (12) 

whereψ  is the non dimensional stream function defined in the usual way as 
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The primes on  and eu δ stand for differentiation with respect to x. 

The momentum equation (8) for a steady boundary layer flow is  
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Using (13) in (14) and after some simplification we have the following transformed 
equation 
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The equation is known as Falkner-Skan equation. 

Here 
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The Falkner-Skan profiles supply most of the initial conditions like 

                              β = 1                      plane stagnation point 

                              1< β <0                 wedge half angle  

                         β = 0                     flat plate with sharp leading edge. 
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Figure 1:  Velocity distribution in the boundary layer along a flat plate, after Blasius. 
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Figure 2: The transverse velocity component in the boundary layer along a flat plate. 
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If the body is blunt, such as the rounded nose of an airfoil, the stagnation point solution is 
appreciated for starting the calculation. If the body has a pointed front then the solution 
corresponding to the proper wedge angle has to be used. If the body has a sharp leading 
edge, the solution for β = 0 is used. This will be true irrespective of the pressure gradient 
at the leading edge. Figure 1 and figure 2 show the velocity profiles that we obtain from 
the Blasius equation which is a special case of Falkner-Skan equation having β = 0. And 
the velocity profile along the flat plate figure 1 is the initial velocity profile. 
 
4. Test cases and Results 
4.1. Boundary Layer Separation for Howarth Linearly Retarded Flows 

L. Blasius (1908) presented a computation method for general boundary layers with 
arbitrary velocity distributions of the outer flow. This was based on a series expansion of 
the solution in powers of x. It is thus called the Blasius series. The Blasius series has also 
been extended by L. Howarth(1935). 

The family of potential flows u(x) = U0-ax (n =1, 2, 3........) cause separation of the 
boundary layer (laminar) in a relatively short distance. In the simple case with n = 1, 
which was treated by L. Howarth, is another example of a boundary layer for which the 
velocity profiles are not similar. L. Howarth introduced in this case a new independent 
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A simple decelerating non similar velocity distribution for n = 1 as given by Howarth 

u(x)= (1-x/L)   (16) 0U

As mentioned earlier, the implicit finite difference model is used to predict the separation 
point for the above non-similar flow. Arbitrary values can be taken for velocity  and 
length L, since the results are non dimensional. 
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Figure 3: Velocity Profiles for Howarth flow. 
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Figure 4: Shear stress distribution for Howarth flow. 

The initial profiles are calculated for β = 0. The step sizes for the method calculating the 
initial profile are 01.0=Δx  & 1.0=Δy . For different step sizes of xΔ  and  there is 
no sensitivity difference of initial velocity profiles. Calculation of the initial profile has to 
be specified accurately to have the agreeable results further downstream. Figure 3 shows 
the velocity profiles for Howarth flow and figure 4 shows the computed values of shear 
stress. The profiles become increasingly S - shaped in the downstream and finally the 
separation occurs at x/L ~0.120. 

yΔ

4.2. Classical Analytical Solutions: 

Other classical solutions of the boundary layer equations for special u(x) are: 

Tani   u = ( )nxU *
0 1−        (17)          

Where,  n = 2, 4, 8 and = x/L *x
       n = 2;     Quadratically retarded flow  
       n = 4;     Quartically retarded flow 
       n = 8;     Octally retarded flow   

Gortler: u =                                          (18) ( )nxU −10

       n = 2
1 , 2 

       u =                                                                                                  (19) ( nxU +10 )
       n = -1, -2 

Table 1 gives a comparison of the presently predicted and previously published locations 
of the separation points for the flows considered above. For the Howarth – Tani type of 
retarded flows, a graph is drawn between the separation point and the values of ‘n’ as 
shown in Figure 5. In the same manner graphs are drawn for Gortler flows for different 
values of ‘n’ as shown in Figure 6.    
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Figure 5: Comparison of separation of Howarth-Tani flows between present method and exact method for 

different values of exponent n. 
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Figure 6: (a)Separation of Gortler flow [1-x) ; n= 1/2, 2];(b): Separation of Gortler flow [ (1+x)n ; n= -1 , -2]. n

 
4.3. Flow Past a Circular Cylinder 

Both the accuracy and dilemma of a bluff body boundary layer calculation are illustrated 
by the circular cylinder. In terms of the dimensionless are length, = x/R, where R is the 
cylinder radius. The ideal velocity distribution in non-viscous, irrotational flow past a 
circular cylinder of radius R and free stream velocity  parallel to the x-axis is given by  

*x

∞U

 u(x) = 2 sin(x/R)=2 sin∞U ∞U φ      (20) 
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where φ  is the angle measured from the stagnation point. Expanding sin(x/R) into a 
series and the potential flow velocity distribution is  
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From the above expression, the boundary layer solutions are obtained. Separation for the 
above flow is predicted at an angle = *x φ  = 105.82 deg. from the present method. To 
start the calculation for marching, the initial profiles are calculated by taking the value as, 
β =1, i. e. at the stagnation point. Boundary layer profiles for circular cylinder are plotted 
in Figure 7 in the favorable gradient for φ  up to , the profiles are strongly curved and 
the wall shear stresses have increased. From 60  on as free stream levels off and beings 
to accelerate. And then the profiles become thicker and then S- shaped with an early 
separation. Table 1 gives the values of separation point for different types of flows. Test 
cases results are nearly matched with standard results.  
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Figure 7: Velocity profiles for flow circular cylinder. 

 
4.4. Stability Analysis of the Laminar Boundary Layer Flow 

From Orr-Somerfeld equation we know that if C i < 0, the disturbances are damped and 
the laminar mean flow is stable. And if C i > 0, the mean flow is unstable. In Figure 8, we 
see the stability diagram for laminar boundary layer flow. Where C i > 0, so the flow is 
instability sets. If we compare this stability diagram with the exact diagram, we see that 
the exact Reynolds number and α L are 5767 and 1.02 respectively when C i = 0. In this 
work the Reynolds number and α L are 5800 and 1.02 respectively when C i = 0 which 
are labeled in the figure 8.            
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Table 1: Comparison of presently predicted and previously published Separation points. 

Physical separation point                   

Description of flows 
Presently predicted Previously published 

Linearly retarded flow, n = 1 0.120 0.120 
Quadratically retarded flow, n = 2 0.280 0.271 
Quartically retarded flow, n = 4 0.470 0.462 

Octally retarded flow, n = 8 0.660 0.640 
n = ½ 0.220 0.218 ( )nx−1  
n = 2 0.070 0.0637 
n = -1 0.160 0.151 

 
Gortler Flow 

( )nx+1  
n = -2 0.080 0.0713 

Potential flow past a circular cylinder 105.82 deg 104.45 deg 

 
Conclusion 
The paper deals with the solution of the laminar boundary layers. We have presented the 
primitive variable approach as calculating tool of the boundary layer problem. The 
coupled equation results for circular cylinder, Howarth’s linear decelerating flows etc. 
matching with the previously published results. It has been are shown that implicit finite 
difference method along with the transformations for removing singularity at the starting 
point is very useful in analyzing the different types of flows. In this approach 
visualization of the things can be done which is not possible in transformation plane like 
Falkner – Skan stretching, stream function coordinates. 

This method is highly depending on the initial profile as well as derivation of the ordinary 
differential equation. The overall analysis is extremely sensitive, if the separation region 
is relatively small, as the method does not involve iteration process. 
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Nomenclature: 

u, v   Components of the velocity  

xΔ              Step size in ‘x’ direction 

yΔ               Step size in ‘y’ direction 

x, y               Coordinates along and normal to the surface of the body 

f(η )            Function related to stream function 

L                  Reference length 

μ                   Viscosity coefficient 

τ                  Shearing stress 

ψ                Stream function 

ν                Coefficient of kinematic viscosity 

η                 Transformed ‘y’ co-ordinate in the boundary layer equation 

U(x)               Non – similar velocity distribution in x direction    

m                   Exponent in free stream velocity variation of similar flow, U = c    mx

βα ,              Finite difference mesh size parameters 

ue                   Free stream velocity 

Subscripts 

∞                   Free stream conditions 

e                   External conditions 

m                  No of locations in x direction 

n                    No of locations in y direction 

Superscripts 

Primes ( / ) differentiation with respect to η  
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