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ABSTRACT 
 

An exact solution of unsteady free convective and mass transfer flow through porous medium 
bounded by a vertical porous plate with an oscillating free stream velocity is obtained. The 
entire system rotates about an axis normal to the plate. Existence of multiple Ekman boundary 
layer modified by the presence of free convection and mass transfer is observed near the 
neighbourhood of plate wall. 
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1. Introduction 
The flow through porous medium, under the influence of temperature differences and 
concentration differences, is one of the most considerable and contemporary subject, 
because it finds great applications in geothermy, geophysics and technology [1, 2]. 
Yamamoto and Iwamara [2] expressed the equations of flow through a highly porous 
medium. Raptis et.al [3,4] using the above equations studied the influences of free 
convection and mass transfer on the steady flow of a viscous fluid through the porous 
medium, which is bounded by a vertical plane surface, when the temperature and 
concentration on the surface is constant. Raptis et.al [5] also studied the influence of free 
convective flow on the steady flow of the viscous fluid through the porous medium, when 
there is a constant heat flux on the above-mentioned surface. 

On the other hand, the geophysical importance of the flows in the rotating frame of 
reference has attracted the attention of a number of scholars. Raptis [6] analyzed the 
steady free convective and mass transfer flow through porous medium in presence of a 
rotating fluid. Later Mahato and Maiti [7] investigated unsteady free convective flow and 
mass transfer in a rotating porous medium. Mahato and Maiti [8] analyzed the effect of 
unsteady free convective flow and mass transfer during the motions of a viscous 
incompressible fluid in a rotating frame of references. Alam et al. [9] studied unsteady 
free convection and mass transfer flow in a rotating system with hall currents, viscous 
dissipation and joule heating. Later Singh et al. [10] studied free convection in MHD flow 
of a rotating viscous liquid in porous medium. Recently Singh et al. [11] have studied 
free convective MHD flow of rotating viscous fluid in a porous medium past infinite 
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vertical porous plate. Varma et al. [12] studied free and force convection flow in a 
parallel channel bounded below by a permeable bed and rotating about an axis 
perpendicular to the plates under the influence of a uniform transverse magnetic field. 
Sarkar and Mukherjee [13] analyzed the effect of unsteady free convective flow and mass 
transfer during the motion of a viscous incompressible fluid through porous medium 
bounded by an infinite vertical porous plate in presence of heat source with variable 
suction under the influence of uniform magnetic field applied perpendicular to the flow of 
region in a rotating system. 

The object of the present paper is to study the free convective and mass transfer flow of 
viscous fluid through a rotating porous medium bounded by a vertical porous plate 
subjected to a constant suction velocity in presence of constant heat flux at the plate. The 
temperature and concentration at the free streams are constant but the free stream velocity 
of the fluid vibrates about a mean constant value. The analytical expressions for velocity, 
temperature and concentration distribution are obtained and the results are presented 
graphically.  
 
2. Mathematical analysis 
We consider unsteady free convective and mass transfer flow of viscous fluid through a 
porous medium occupying a semi-infinite region bounded by a vertical porous plate 
subjected to constant suction in presence of constant heat flux at plate wall in a rotating 
frame of reference. The velocity of the fluid far away from the surface vibrates about a 
mean value with direction parallel to the plane z = 0. The temperature and species 
concentration at the free stream are constant. A uniform magnetic field of strength B0 is 
applied in vertical upward direction. The porous medium is in fact a non-homogeneous 
medium, which may be replaced by a homogeneous fluid having dynamical properties 
equal to those of a non-homogeneous continuum. We consider that the vertical infinite 
porous plate rotates in unison with a viscous fluid occupying the porous region with 
constant angular velocity Ω about an axis which is perpendicular to the vertical plane 
surface Cartesian co-ordinate system is chosen such that x, y-axes, respectively, are in the 
vertical upward and perpendicular directions on the plane of the vertical porous surface z 
= 0 while z-axis is normal to it. u+, v+, ω+ are the velocity components in x, y and z  
direction respectively. With the above frame of reference and assumptions, the physical 
variables, except the pressure Pare function of z and time t only. Consequently the 
equation expressing the conservation of mass, momentum, energy and concentration, 
neglecting the heat due to viscous dissipation, which is valid for small velocities, are 
given by  
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where v is the kinematic viscosity, t t is the time, ρ is the density, K+ is the permeability of 
the porous medium. T+ is the temperature and C+ is the concentration.  

The boundary conditions relevant to the problem are  
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where φ is the frequency of oscillation and ε is a small positive quantity. 

From equation (1), we get 

ω+ = – ω0 (8) 

Let equation (2) and (3) can be combined in complex form, as  
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and equations (4) and (5), using equation  (8) can be written in the form as 
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We introduce the following non-dimensional quantities: 
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Using the above stated non-dimensional quantities, the equations (9), (10) and (11) reduce 
to 
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3. Solution 
Let, the solutions of equations (12), (13) and (14) are assumed, respectively, as 
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Using equations (16), (17) and (18) in equations (12), (13) and (14), we obtain following 
equations 
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Using (13), (14) and (15) in (12), the boundary conditions are reduced to 
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The solutions of equations (19) to (25), under the boundary conditions (26) and in view of  
(16), (17) and (18) are given by 
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The expressions for constant are given in appendix-I 
 
4. Results and discussion 
Equation (27) corresponds to the velocity distribution of free convective and mass 
transfer flow of viscous fluid through a rotating porous medium. The expression clearly 
shows the existence of thin multiple Ekman boundary layer of order  super 
imposed with a boundary layer of thickness of order

( 1
3
−Ro )

( )1−Pro   and ( )1−Sco . It is interesting 
to note that Ekman boundary layer is modified by the presence of free convection and 
mass transfer. We also note that this layer decrease with increase of rotation parameter 
and magnetic parameter and increase with increase of permeability parameter. 

The solution (27a) corresponds to the steady part which gives u0 as the primary and v0 as 
the secondary velocity components. The amplitude and phase difference due to these 
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primary and secondary velocities for the steady flow are given by  
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The amplitude of resultant velocity ⎪A0⎪ and the phase angle θ0 for the steady part are 
shown graphically in Fig.1(a, b) and Fig.2 (a, b) for various values of the rotation 
parameter (E) and permeability parameter (K) for fixed values of Prandtl number (Pr), 
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Schnidt number (Sc), magnetic parameter (M), Granshof number (Gr) and modified  
Granshof number (Gm). It is seen from Fig.1(a) that in case of Gr > 0 the Amplitude ⎪A0⎪  
increase as K increases and nearly at η = 2.5 these two values coincide but opposite 
behaviour is seen for Gr > 0 and decreases with increase in rotation Fig. 1(b) θ0  
decreases with increase in K and increases with increasing R (both small and large) for Gr 
> 0  and increases as rotation parameter increases for Gr > 0  near the plate wall.   

Variation of ⎪A0⎪and θ0 for different values of Prandtl number Pr and modified Grashof 
number for Gr > 0  are shown in Fig. 3(a, b) and 4(a, b). It is clear from these figure that 
amplitude decreases as Pr increases and increases as Gm increases but phase difference θ0  
decreases as Gm increases and increases as Pr increases. Numerical calculation are also 
made for Gr > 0 and shown in Graph 5(a, b) and 6(a, b). 

It is essential to mention that equation (27b) and (27c) together give the unsteady part of 
the flow. This expression also exhibits boundary layer of thickness of order   and 
order  respectively. 
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The amplitude and the phase differences of shear stresses at the plate η = 0 for the steady 
flow can be obtained as: 
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where τor and τoy are, respectively, the shear stress at the plate due to primary and 
secondary velocity components. 

The numerical values for the resultant shear stress and the phase angle due to the shear 
stress are listed in Table-1. 
 

Table-1 

Sl. No. Pr Sc K E M Gm Gr τor θoy 

1 0.71 0.3 1 1 0.5 5 10 15.7646 -0.5104 

2 7 0.3 1 1 0.5 5 10 5.7257 -0.1937 

3 0.71 0.66 1 1 0.5 5 10 15.1004 -0.4928 

4 0.71 0.3 5 1 0.5 5 10 19.5276 -0.7104 

5 0.71 0.3 1 5 0.5 5 10 9.3067 -0.2333 

6 0.71 0.3 1 1 1 5 10 14.2511 -0.4069 

7 0.71 0.3 1 1 0.5 10 10 20.2386 -0.5540 

8 0.71 0.3 1 1 0.5 5 20 26.3319 -0.5768 

These values clearly show that the shear stress τor increases as permeability parameter K 
increases and decreases as rotation parameter R increases. Also the increase in 
permeability parameter K lead to decrease in phase difference θor and the p hase 
difference θor  increases as rotation parameter R increases. 
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