
GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 29 (2009) 117-125 

APPLICATION OF MATLAB SYMBOLIC MATHS WITH 
VARIABLE PRECISION ARITHMETIC (VPA) 
TO COMPUTE SOME HIGH ORDER GAUSS 

LEGENDRE QUADRATURE RULES 
 

H.T. Rathod1, R.D. Sathish2, Md. Shafiqul Islam3 and Arun Kumar Gali 4 

 
1Department of Mathematics, Central college campus, Bangalore University, Bangalore-560 001, India 

Email: htrathod@yahoo.com 
2Department of Mathematics, Vijaya Degree college, R.V. Road, Bangalore-560 004, India 

3Department of Mathematics, University of Dhaka, Dhaka-1000, Bangladesh 
4Department of Mathematics, Acharya Institute of Technology, Bangalore-560 019, India 

 
Received 26.02.08                Accepted 30.08.08 

 
 

ABSTRACT 
 
Gauss Legendre Quadrature rules are extremely accurate and they should be considered 
seriously when many integrals of similar nature are to be evaluated.  This paper is concerned 
with the derivation and computation of numerical integration rules for the three integrals: 
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which are dependent on the zeros and the squares of the zeros of Legendre Polynomial and is 
quite well known in the Gaussian Quadrature theory.  We have developed the necessary 
MATLAB programs based on symbolic maths which can compute the sampling points and the 
weight coefficients and are reported here upto 32 – digits accuracy and we believe that they 
are reported to this accuracy for the first time.  The MATLAB programs appended here are 
based on symbolic maths. They are very sophisticated and they can compute Quadrature rules 
of high order, whereas one of the recent MATLAB program appearing in reference [21] can 
compute Gauss Legendre Quadrature rules upto order twenty, because the zeros of Legendre 
polynomials cannot be computed to desired accuracy by MATLAB routine roots (……..).  
Whereas we have used the MATLAB routine solve (……..) to find zeros of polynomials 
which is very efficient.  This is worth noting in the present context.        

 
1. Introduction 
It is well known that the n-point Gauss-Legendre Quadrature rule [1] 
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has the highest possible precision degree and is analytically exact for polynomials of 
degree at most 12 −n

1

.  One can obtain the nodes  and the weights  by the method of 
undermined coefficients, so that by putting the basis functions in equation (1): 
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it leads to a nonlinear system of equations with 2n unknowns.  The following theorem 
shows the complete formula of Gauss Legendre Quadrature rule [2]. 

Theorem : 
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 where  denotes the i-th zero of the Legendre polynomial  and the weight co-
efficients  and the remainder term  are given by : 
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In this paper we are concerned with a general n-point Gauss-Legendre Quadrature rule, 
since a system of nonlinear equations like (2) can be very difficult to solve as the 
dimension increases.  But by virtue of the above theorem, the n-nodes can be obtained as 
zeros of the nth degree Legendre polynomial, which can be generated by any of the 
following three equations: 
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where  if n is even, and 2/nM = 2/)1( −= nM  if n is odd 
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Given the n-nodes xi (i = 1,2,……….,n), we can get the corresponding weight coefficients 
wi either by equation (4) or by solving the system of linear equations as in [3].  
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which follows from equation (2) for j = 0,1,2,………., n –1. 
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However, there is yet another method based on the evaluation of integrals, which again 
follows from the theory on numerical integration, the following theorem may be recalled 
for this purpose [8 – 13]. 

Theorem : 

Let  and distinct nodes ],[1 baCf n+∈ nixi ,,2,1, LL= , the Lagrange interpolation holds 
and we have, 
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Then it follows that  
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From the above theorem, with ),,,2,1(,1)(,1,1 nixxwba i LL===−=  as distinct zeros of  
n-th order Legendre polynomial. The integration formula (9) and (10) can be shown to be 
equivalent to the formula in eqns (3 - 5).  It is clear that in this case for . 1)( =xw
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This paper is concerned with the determination of zeros and the squares of zeros of the 
Legendre Polynomials which will be necessary to find numerical integration formulas for 
the following integrals in addition to the one stated in equation (1): 
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∫
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We shall now further elaborate on the procedure for the above two integrals of eqns (12) 
& (13). 
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where  are the squares of the zeros of , here the integrand is singular at one of 
the points. In this case, the orthogonal polynomial of degree m is 

2
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We have 
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where  and  are the zeros of  and  
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But the authors have not come across any reference which tabulates the squares of the 
zeros of Legendre Polynomials. 

We may also note that the computation of Gaussian Quadrature rules in general involves 
two distinct phases; 

(i) The generation of the orthogonal polynomials (ex : Legendre, Jacobi, etc.,) 
say nP . PP ,,, 10 LL

(ii) The determination of zeros of ),(xPn  and the computation of the associated weights. 

Phase (i) may appear trivial, but it is not so for large values of n. 

Phase (ii) is really difficult for values of n larger than, say 10. 

We may note the following facts regarding zeros of Legendre polynomials.  

(i) It is well known that all zeros of Legendre polynomials are real and distinct and lie in 
the interval )1,1(− .  Hence the existence of a high order quadrature formula is assured 
for all values of n. 

(ii) It should be noted that the zeros of Legendre polynomials are distributed 
symmetrically about 0=x  and if the abscissas (nodes) are arranged in a monotonic 
sequence, then    n),,2,1(, 1 iwwx iniii L1xn ==−= + −+−  

In this paper, we have generated the Legendre polynomial by using symbolic Maths of 
MATLAB software [12-21].  We also note here with great surprise that MATLAB built-
in function roots (…..) fails to find roots to a reasonable accuracy even for , 
and it fails to satisfy the properties listed above for zeros of Legendre polynomials, we are 
also surprised to find that roots (…..) function gives some of the zeros as complex 
conjugates.  However, we succeeded in determining zeros up to 32 digits accuracy by 
using the powerful built-in function solve (…..) available in the MATLAB programming.  

1510 << n
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On comparing with tabulated zeros [4], the accuracy of the results by solve (…..) function 
are confirmed.  But we may note that the tabulated zeros are shown in [4-7] to at most 20 
digits accuracy. 

However, the authors have not come across any reference which tabulates the sampling 

points and weight coefficients of other two integrals   ∫
1
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For even values of n, we have n/2 pairs of abscissas with opposite signs, while for odd 
values of n, there are  pairs and hence only half the values need to be tabulated 
in tables of weights and abscissas of Gauss Legendre quadrature formulas, such tables are 
available in [4-7]. They are printed with 15–digits of accuracy for orders 2, 3, 4, 5, 6, 7, 8, 
9, 10, 12. Then there after for orders 16, 20, 24, 32, 40, 48, 64, 80 and 96 with 20–digit 
accuracy.  We note that there may be a necessity of other remaining orders and also there 
might be a need for accuracy with more number of digits.  This paper aims at providing 
the high order Gauss Legendre Quadrature rules for three types of integrals with variable 
precision arithmetic up to 32–digits accuracy.  Because of memory constraints, we could 
obtain good results up to order 48, beyond this order the results appear to have less 
accuracy.  But the zeros and squares of zeros are computable with great accuracy even 
beyond order 96 using the built-in function solve (…..) by the computer programs, which 
are available upon the request to the corresponding author. 
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2. Method of undetermined coefficients 
We shall now determine the weight coefficients for the above stated integrals.  First of all 
the weights coefficients could be easily obtained by equation (4).  But we notice that for 
large n, we fail to determine the coefficients due to numerical instability.  Next we shall 
consider the method of equation (5).  We find that solution of linear equations also fails 
due to singular matrices.  We can surmount this problem by considering the solution as 
two sets of linear systems as explained below. 

(i) Weight coefficients for odd order Gauss Legendre Quadrature rules: 

We may note that the abscissas (nodes) and weight coefficients satisfy the relation. 
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The linear system (19a) needs squares of zeros of the Legendre polynomials of order n as 
input. The weight coefficients corresponding to the zero  is  and 
this can be obtained from equation (19b). We see that this requires nearly half the number 
of equations listed in equation (6). This is implemented in function gausswtsodd.m. The 
outcome of this function is very encouraging.  

012/)1( =+−nx 12/)1( +−nw

(ii) Weight coefficients for even order Gauss Legendre Quadrature rules: 

In this case we note that the abscissas (nodes),  and the corresponding weight 
coefficients,  satisfy the relations : 
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On using the above relations, we obtain the following linear system of equations. 
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Again, it may be noted that the input to the above linear system again requires the squares 
of the zeros of corresponding Legendre polynomial of order n. This is implemented in 
function gausswtseven.m. Again, we wish to state that the outcome of this function is 
also very encouraging. 
 
3. Integration Method to determine weight coefficients 
The weight coefficients can also be directly found by the formula of equation (11)  
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Using the convention stated in the previous section regarding abscissas (zero) and weight 
coefficients, we obtain the following. 

(i) Odd order – Gauss Legendre Quadrature rules : 

From equations (18), (19a - b) and (22), we may write  
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(ii) Even order – Gauss Legendre Quadrature rules: 

From equations (20), (21) and (22), we find that: 
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with ( k = 1,2,…..,N ; N = n/2 ) and    (24b) 2
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4. Numerical results 
Some sample outputs from the appended MATLAB program in M-file named 
legendrepoly.m, for n = 20,21,40,41,48,49, which are available upon request to the 
corresponding authour, since it has been omitted to reduce the length of the paper. 
 
Conclusion 
In this paper, we have presented the numerical integration rules for the following integrals; 1 , ∫−1
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have their nodes ’s as the zeros of ix )(2 xP n  and xxP n /)(12 +  respectively i.e., they 
are the squares of the zeros of  and  respectively. )(2 xP n )(12 xP n+

Extensive tables of numerical integration rules for   are available in the 

literature, but they are tabulated to either upto 15 or 20 digit accuracy and they are only 
tabulated for selected orders; 

∫−
1
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n = 2(1)10,12,15,16,20,24,30,32,40,48,64,80,96. 

But Gauss Legendre Quadrature rules of odd order are very scarcely tabulated.  However, 
it is very surprising to know that for integrals ∫0 /)( dxxxf

1  and ∫0 )( dxxfx
1

 and the 

table of formulas are not available, at least to the knowledge of the present authors. 

In this paper, we have applied MATLAB symbolic maths with variable precision 
arithmetic (vpa) to perform all the programming tasks either analytical or numerical, 
which helped us to compute the integration formulas considered here and the necessary 
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MATLAB computer program which can compute abscissas and weight coefficients of 
Gauss Legendre Quadrature rule for any order n is appended here for ready reference.  
We have also found that the appended program can compute the numerical integration 
formulas of orders ; 1 ≤ n ≤ 48 which agree with standard tables presented in [4-7].  We 
hope that the MATLAB program presented here will be a useful addition to the existing 
software on numerical integration. We have appended herewith some sample output of 
Gauss Quadrature Rules for n = 40, 41, 48 and 49 for the integrals 

1
 and the 

corresponding integrals 

∫−1
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1

 and ∫0 /)( dxxxf
1
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