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ABSTRACT 
 

Many models for the spread of infectious diseases in populations have been analyzed 
mathematically and applied to specific diseases. Non-linear dynamical method of projecting 
the transmission of an epidemic is accurate if the input parameters are reliable. In this paper, a 
mathematical model is constructed for predicting an epidemic of HIV/AIDS with respect to 
the presence of infected individuals in the population. For the model, a formula for the basic 
reproduction number, 

0
 (the expected number of secondary infectious caused by a single 

new infective introduced into a susceptible population) is determined. The six dimensional 
model is analyzed qualitatively to determine the stability of equilibria. Analysis of this model 
includes identifying the threshold  that determines whether the disease dies out or an 
epidemic occurs. 
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1. Introduction 
Models developed for infectious diseases, such as measles or influenza, with short 
infectious periods have usually contained only one infectious stage [1, 7, 8]. However, 
these models are generally not suitable for the disease AIDS (Acquired 
Immunodeficiency Syndrome) caused by HIV (Human Immunodeficiency Virus) because 
the average infectious period from HIV infection to AIDS is approximately 10 years. For 
the past several decades mathematical principles have had an important role in disease 
control strategies [11, 1] and will continue to do so in future. Application of the models 
becomes easier if there are sufficiently accurate data for the variables used and the 
concerned parameter values. Mathematical models of transmission dynamics of HIV 
plays an important role in better understanding of epidemiological patterns and methods 
for disease control as they provide short and long term prediction of HIV and AIDS 
incidence and its dependence on various factors. The modeling study is also helpful in 
determining the demographic and economic impact of the epidemic, which in turn helps 
us to develop reasonable, scientifically and socially sound intervention plans in order to 
reduce the spread of the infection. Mathematical modeling studies have shown that the 
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AIDS epidemic is very sensitive to the human behaviors that spread HIV, including: the 
amount of risky behavior, the manner in which that risky behavior is distributed in the 
population and the social network structures within which people practice those risky 
behaviors. In fact, these models have shown that if we do not understand all three of these 
factors, then we can not hope to predict and control the spread of HIV and other sexually 
transmitted diseases [9, 10]. Mathematical and statistical models can serve as tools for 
understanding the epidemiology of HIV and AIDS if they are constructed carefully. Here 
an attempt is made to model the spread of HIV in a comprehensive manner with limited 
data. We have proposed a mathematical model for predicting an epidemic of HIV/AIDS 
into the population. We discuss the model using a simple mathematical approach and 
calculate the basic reproduction number ( ) for the model to make a decision for the 
stability of equilibria. In addition we show that 

0
 is the threshold parameter for the local 

stability of the disease free equilibria (DFE). Analysis of the centre manifold is done to 
determine the existence and stability of the endemic equilibria (EE) near the threshold, 

. Numerical simulations have been carried out to delineate the various analytical 
results as well. 
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2. Model formulation 
 In order to derive the model equations, first we divide the population into two classes: 
Male and Female. Denote the populations of those not infected by HIV as , , those 
infected as  and those who subsequently develop AIDS as for males and 
females respectively. Here, it is assumed that HIV-infected individuals will clinically 
progress to AIDS (the advanced stage of HIV infection) with an average incubation 
period  (for males),  (for females). Infection is assumed to transmit from male 
to female and vice versa. No other mode of transmission is considered in the model. 
Females transmit the virus to their male counterparts with a probability of (at contact 
rate ), while males transmit to females with a probability of 
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1c β (at contact rate ). 
Males, females enter the susceptible class (susceptible here means those who can get the 
infection but are not infected yet) at constant rates 

2c

1λ and 2λ respectively.  

 

 

 

 

 

 

 

 
Figure 1: Model structure. The model describes transmission among two classes of people, Male (M) and Female (F). 
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Infected individuals are allowed to withdraw from risk behavior (at rates 1ω and 2ω , say) 
and die naturally (at rates 1μ and 2μ , say). These death rates are applicable for non-
infected individuals. Deaths which are due to AIDS are assumed to be the same (at 
rateμ , say) for male and female. Here, all the parameters are assumed to be positive. The 
structure of HIV transmission is summarized in Fig. 1. 

The differential equations of the model are given by: 

0110111
0 MFMc

dt
dM

μ−β−λ=                                                        (2.1) 

( 11111011
1 MFMc

dt
dM

μ+η+ω−β= )                                                (2.2) 

211
2 MM

dt
dM

μ−η=                                                                          (2.3) 

0210222
0 FMFc

dt
dF

μ−β−λ=                                                           (2.4) 

( 12221022
1 FMFc

dt
dF

μ+η+ω−β= )                                                       (2.5)  

212
2 FF

dt
dF

μ−η=                                                                              (2.6)                                   

 
3. Stability analysis of disease free equilibria  
3.1 Disease free equilibrium of the model 

The disease free equilibrium (DFE) for the system ( )2  is given as 

               ( )DFEFFFMMMx 2102100 ,,,,,=

             
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
λ

μ
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= 0,0,,0,0,
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where 0 indicates that there is no infected people ( i.e. no disease in the population ). 

3.2 Jacobian matrix at DFE and local stability 

In order to find the Jacobian at disease free equilibrium we consider the system as ( )2

                     1123111 xkxxcf −β=     (3.2a) 

                     2214222 xkxxcf −β=                                                                            (3.2b) 

                     31231113 xxxcf μ−β−λ=                                                                 (3.2c) 

                     42142224 xxxcf μ−β−λ=                                                                    (3.2d)   
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where , 401130 ,, xFxMxM === 21 xF = , ( )1111 μ+η+ω=k and ( )2222 μ+η+ω=k . Let us 
consider and [ ]Tfffff 4321 ,,,= [ ]Txx 43 ,,xxx 1 ,= 2  then the Jacobian matrix at DFE is 
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where the notation indicates the partial derivative of  with respect to ( )0xfDx f x  
evaluated at . 0xx=

Since all the eigenvalues of the matrix have negative real parts, the DFE is locally 
asymptotically stable. 
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4. Existence and stability analysis of endemic equilibria  
4.1 Endemic equilibrium of the model 

The model has also an endemic equilibrium (EE). By setting the left hand side of system 
 equal to 0, the EE of the model is found and given as ( )2
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 where, 

                   (4.1b) 
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ωμμ−μημ−μωμ−μμ−βλβλ= ccA

           111 η+ω+μ=B                                                                                     (4.1c) 

           212121221 μη+μω+μμ+βλ= cD                                                          (4.1d) 

           222 η+ω+μ=E                                                                                                 (4.1e)                   

           212121211 ημ+ωμ+μμ+λβ= cF                                                          (4.1f) 
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4.2 Jacobian matrix at EE and global stability 

Using the system of equations the Jacobian matrix at endemic equilibrium states is 
given by 

( 2.3 )
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and the values of and EDBA ,,, F are given above in equation ( )fb 1.41.4 − . 

Since it is not easy to find out the eigenvalues of matrix 1  at EE analytically, we use the 
data from Table 1 and after calculating we have seen that all eigenvalues are negative. So, 
easily we can say that the endemic solution is also stable. 

J

 
5. The basic reproduction number 

The basic reproduction number, denoted is “the expected number of secondary cases 
produced, in a completely susceptible population, by a typical infective individual”[4]. If 

, then on average an infected individual produces less than one new infected 
individual over the course of its infectious period, and the infection cannot grow. 
Conversely, if , then each infected individual produces, on average, more than one 
new infection, and the disease can invade the population (see the survey paper by 
Hethcote[6]). 
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Here, we have found the basic reproduction number using the method discussed in [14]. 
To find  the following notation is used: 0R
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Thus, following reference [14], is the next generation matrix for the model and  1−FV
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where  denotes the spectral radius of the matrix .  ( 1−ρ FV ) 1−FV
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6. Analysis of the centre manifold near 1, 00 == Rxx  

In this section we consider the nature of the equilibrium solutions of the disease 
transmission model near the bifurcation point 1, 00 == Rxx [14]. Since is often 
inconvenient to use directly as bifurcation parameter, we introduce a bifurcation 
parameter

0R

θ . Let θ be a bifurcation parameter such that 10 <R for 0<θ and for 
and such that is a DFE for all values of 

10 >R
0>θ 0x θ . Let us consider the system 

                                                                                                                 (6.1) ( θ=
•

,xfx )

where is as described in equation f ( )2.3 . The choice of θ is given below, when the 
quality is calculated. The position of the DFE depends particularly on the choice of b
θ and the local stability changes at the point ( )0,0x . The results of centre manifold 
theory [15] are used here to show that there are nontrivial (endemic) equilibria near the 
bifurcation point ( )0,0x . 

We use the notation for the partial derivative of  with respect to ( 0,00 xfDJ x= ) f
x evaluated at 0xx=  and . Let  and u  be the corresponding left and right 
eigenvectors chosen such that 

0=θ
00

v
=vJ  and 00 =uJ  with 1=vu  where [ ]4321 ,,, vvvvv=  and 
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[ Tuuuuu 4321 ,,,= ] . Following reference [14], we define 
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For our model, we have  and now we find the values of a  and . The sign of a  as 
well as the value of b  will help in determining the nature of the endemic equilibria near 
the bifurcation point.  
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In order to find the value of , let me consider  as a function of  i.e.  and 
fix all other parameters 
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Now using the condition  and 00 =vJ 00 =uJ , we can find v  and u  as 
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Substituting the values of  and u  in equations v ( )4.6  and ( )5.6 , we get         
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Thus, it is obvious that  and 0<a 0≠b  and hence by theorem 2 [14] there are locally 
asymptotically stable endemic equilibria near  for 0x δ<θ<0  where 0>δ . Therefore, the 
bifurcation as  passes through 1 is a forward bifurcation. 0R

Hence, the DFE is locally asymptotically stable if  is less than one (i.e. ), if  is 
greater than one then the DFE is unstable and there is a locally asymptotically stable EE 
near the DFE. 

0R 0<θ 0R
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7. Numerical computation and discussion 
To illustrate the various theoretical results discussed in this paper, the model is simulated 
using the parameter values/ranges shown in Table 1. Choice of numerical values for the 
model’s parameter values is based upon published data on the transmission dynamics of 
HIV in one of the major cities, Delhi of India [2, 3, 5, 12, 13]. Since AIDS is a sexually 
transmitted disease, we restrict our analysis to the population that is age 15 or older. Here, 
we have used MATLAB 6.1 package for plotting the solutions of our model. It is easily 
observed from Fig. 2 that the final total population size is a lot smaller than the initial 
population size. So, HIV/AIDS has the potential impact to cause a population crush (i.e. 
an epidemic occurs) if all the parameter values remain constant. 

 
Figure 2: Trends of HIV, AIDS and susceptible population. 

The basic reproduction number,  (given by 5.8) is a threshold parameter for the model. 
Here,  and the disease persists limiting to the endemic equilibrium point 
(EEP). Moreover, the analysis of the centre manifold yields a second parameter,  (given 
by 6.2) whose sign indicates the existence and stability near 

0R
1308.1170 >=R

a
0xx =  and . Note that 

 (i.e. negative). Thus for 
10 =R

08783.2−=a 10 <R , the DFE is stable where as for , the 
DFE is unstable and the EEP is stable. 

10 >R

 
Conclusion 
Application of non-linear differential equations model in predicting the course of 
epidemics is well established. The model presented here captures the dynamics of virus 
transmission and full-blown disease in males and females. The model is analyzed to 
investigate the existence and stability of the associated equilibria. Numerical simulations 
were carried out using reasonable sets of parameter values to assess the spread and the 
persistency of HIV/AIDS epidemic in the country. The model shows that there is a 
possibility of an epidemic if all the parameter values remain constant (i.e. no initiatives 
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are taken for changing the behavioural parameters). This model can contribute to the 
planning of preventive procedures in case of HIV transmission into the population. 
Behavioural parameters can help public health planning as well. 
 
Table 1: Description and estimation of parameters. 

Parameter Description Estimation value/range 

1λ  Recruitment rate of susceptible males into the 
community (in thousands) 

92.58 (year) 

2λ  Recruitment rate of susceptible females into the 
community (in thousands) 

 
69.95 (year) 

1

1
μ

 
 

Average life expectancy for males 
 

55.6 years 

2

1
μ

 
 

Average life expectancy for females 
 

58.8 years 

1β  Probability of females transmit the virus to their 
male counterparts 

0.00155 

2β  Probability of males transmit the virus to their 
female counterparts 

0.00105 

1c  Contact rate of females 1.001 

2c  Contact rate of  males 5.440 

1ω  Withdrawal rate from risk behavior for males 0 

2ω  Withdrawal rate from risk behavior for females 0 

1η  Incubation period for males 0.1 year 

2η
μ

 Incubation period for females 0.1 year 

 Natural death rate 0.6 
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