THE HOMOLOGY AND COHOMOLOGY GROUPS OF H_{3}

Subrata Majumdar ${ }^{1}$ and Quazi Selina Sultana ${ }^{2}$
${ }^{12}$ Department of Mathematics, Rajshahi University, Rajshahi E-mail:-majumdar_subrata@hotmail.com

Received 07.06.08 Accepted 27.06.09

Abstract

A free resolution of \mathbf{Z} for the integral group ring of the three-dimensional Heisenberg group H_{3} has been constructed by extending Lyndon's partial resolution. The integral homology and cohomology have been calculated from there.

AMS Classification: 18G, 20 J.
Key words: Fox derivatives, free resolution.

1. Introduction

Here we shall construct a full free resolution of \mathbf{Z} for the integral group ring of the three dimensional Heisenberg group, using Majumdar-Akhter [10] technique of extending Lyndon's partial free resolution [8] to a full free resolution. We compute the integral homology and cohomology from the resolution obtained.
H_{3}, the three dimensional Heisenberg group has a presentation

$$
H_{3}=\langle x, y, z:[x, z]=[y, z]=1,[x, y]=z\rangle, \text { (Burillo[1], p.2). }
$$

It is a member of widely studied important class of Lie Groups called the Heisenberg groups. It is nilpotent of class 2. Huebschmann [6] used his sophisticated perturbation theory technique to determine the cohomology of the generalized Heisenberg group given by

$$
\begin{aligned}
& G=\left\langle x, y, z:[x, z]=[y, z]=1,[x, y]=z^{k}\right\rangle . \\
& G=H_{3}, \text { if } \mathrm{k}=1 .
\end{aligned}
$$

The $(2 n+1)$ Heisenberg group $H_{2 n+1}$ is the group of upper triangular $(n+2) \times(n+2)$ matrices of the form:

$$
\left(\begin{array}{ccc}
1 & x & z \\
0 & I & y^{T} \\
0 & 0 & 1
\end{array}\right),
$$

where $x=\left(x_{1}, x_{2} \cdots, x_{n}\right), \mathrm{y}=\left(y_{1}, y_{2} \cdots, y_{n}\right), I$ is the $\mathrm{n} \times \mathrm{n}$ unite matrix. Thus H_{3} is the group of all upper triangular matrices:

$$
\left(\begin{array}{ccc}
1 & x & z \\
0 & I & y \\
0 & 0 & 1
\end{array}\right),(x, y, z \in R)
$$

The Heisenberg group H_{3} has a cubic Dehn function ([1], p.1) the latter being a best possible choice for isoperimetric function. Isoperimetric inequalities have been used fruitfully in the study of hyperbolic groups and automatic groups (Gromov [4], Epstien [2]). The cubic nature of Dehn function for H_{3} shows that it is neither hyperbolic nor automatic, since these have respectively a linear Dehn function and a quadratic Dehn function. Thurston proved this fact by combinatorial methods. He also shows that H_{3} is not combable
2. Before constructing our free resolution for H_{3}, we give a few definitions, state a few known results and prove a number of results that will be needed for construction and its proof.

Lemma 2.1

$$
\mathrm{H}_{3} \text { is torsion free. }
$$

Proof

$$
H_{3}=\left\{\left(\begin{array}{lll}
1 & x & z \\
0 & I & y \\
0 & 0 & 1
\end{array}\right):(x, y, z \in R)\right\} .
$$

$$
\left(\begin{array}{ccc}
1 & x & z \\
0 & I & y \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 & n x & n z+n x y \\
0 & I & n y \\
0 & 0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & x & z \\
0 & I & y \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

if and only if $n=0$.
Hence H_{3} is torsion free.
The following definitions are due to Higman [5].

Definition 2.2

A group G is said to be indexed if it can be mapped homomorphically onto a non-zero subgroup of \mathbf{Z}.

Definition 2.3

A group G is said to be indicable throughout if every subgroup $H(\neq 1)$ of G can be indexed.

We state two theorems due to Higmann:
Theorem 2.4 ([5], p.242)
If G is indicable throughout and R is a ring with, and has no zero divisors, then $R G$ has no zero divisors.
Theorem 2.5 ([5], p. 243)
If G is indicable throughout and R is a ring with I and has no zero divisors, then the units of $R G$ are trivial.
We shall use these results to prove:
Theorem 2.6
H_{3} is indicable throughout.

Proof

We write G for H_{3} and let $H(\neq 1)$ be a subgroup of G.

Case I

First suppose that $H \subseteq G^{\prime}$. By the definition of $G, G^{\prime \prime} \subseteq Z(G)$. This implies that G^{\prime} is abelian. G^{\prime} is the normal subgroup generated by the commutator $\left[h_{1}, h_{2}\right], h_{1}, h_{2}$ are the images of x_{1}, x_{2} in G. So a typical element g^{\prime} of G^{\prime} is $\Pi\left(g_{i}^{-1}\left(\left[h_{1}, h_{2}\right]^{e_{i}}\right)\right), e_{i}=1$.

$$
\therefore g^{\prime}=\prod_{i=1}^{n}\left[h_{1}, h_{2}\right]^{e_{i}} \text {, since }\left[h_{1}, h_{2}\right] \text { is a commutator of } h_{1} \text { and } h_{2} \text {. }
$$

Since G^{\prime} is infinite cyclic, and since $H \neq 1, H$ too infinite cyclic. So H can be indexed.

Case II

Suppose $H \subseteq G^{\prime}$. Then $H G^{\prime} \neq G^{\prime}$, and so, $\frac{H G^{\prime}}{G^{\prime}}$ is a subgroup of $\frac{G^{\prime}}{G}$, and is not the identity subgroup. Hence $\frac{H G^{\prime}}{G^{\prime}}$ is free abelian. Then there is a homomorphism $f: \frac{H G^{\prime}}{G^{\prime}} \rightarrow Z$ such that $\operatorname{Imf} \neq\{0\}$. If φ is the canonical homomorphism $\varphi: H \rightarrow \frac{H G^{\prime}}{G^{\prime}}$, then φ is onto and $\operatorname{Im} \bar{f} \neq\{0\}$, where $\bar{f}: H \rightarrow Z$ is the composite $\bar{f}=f \varphi$. Thus H can be indexed.

Hence G is indicable throughout.
As a consequence of Theorem 2.4, Theorem 2.5 and Theorem 2.6 implies the following:

Corollary 2.7

ZG has no zero divisors.

Corollary 2.8

The units of $\mathbf{Z G}$ are trivial.

3. Free resolution of \mathbf{Z}

Let $G=H_{3}=\frac{F}{R}$, where F is the free group generated by x_{1}, x_{2} and R is the normal closure of r_{1}, r_{2}, where $r_{1}=\left[x_{1},\left[x_{1}, x_{2}\right]\right]$ and $r_{2}=\left[x_{2},\left[x_{1}, x_{2}\right]\right]$.
i.e.,

$$
\begin{aligned}
& r_{1}=x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2} x_{1} x_{1} x_{1}^{-1} x_{2}^{-1} x_{1} x_{2} ; \\
& r_{2}=x_{2}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2} x_{1} x_{2} x_{1}^{-1} x_{2}^{-1} x_{1} x_{2} .
\end{aligned}
$$

Then the Fox derivatives of r_{1}, r_{2} are:

$$
\begin{aligned}
& \frac{\partial r_{1}}{\partial x_{1}}=-r_{1}-x_{2} x_{1} r_{1}+x_{2}^{-1} x_{1} x_{2}+x_{2} ; \\
& \frac{\partial r_{1}}{\partial x_{2}}=-x_{1} r_{1}+x_{1} x_{2}^{-1} x_{1} x_{2}-x_{2}^{-1} x_{1} x_{2}+1 ; \\
& \frac{\partial r_{2}}{\partial x_{1}}=-x_{2}^{2} r_{2}+x_{2} x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}-x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}+x_{2} ; \\
& \frac{\partial r_{2}}{\partial x_{2}}=-r_{2}-x_{2} r_{2}+x_{2}^{-1} x_{1} x_{2}^{2} r_{2}+x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}-x_{2}^{-1} x_{1} x_{2}+1 .
\end{aligned}
$$

Writing $\pi\left(x_{i}\right)=h_{i}, i=1,2$, we have

$$
\begin{aligned}
& \frac{\partial r_{1}}{\partial x_{1}}=-1-h_{2} h_{1}+h_{2}^{-1} h_{1} h_{2}+h_{2} ; \\
& \frac{\partial r_{1}}{\partial x_{2}}=-h_{1}+h_{1} h_{2}^{-1} h_{1} h_{2}-h_{2}^{-1} h_{1} h_{2}+1 ; \\
& \frac{\partial r_{2}}{\partial x_{1}}=-h_{2}^{2}+h_{2} h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}-h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}+h_{2} ; \\
& \frac{\partial r_{2}}{\partial x_{2}}=-1-h_{2}+h_{2}^{-1} h_{1} h_{2}^{2}+h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}-h_{2}^{-1} h_{1} h_{2}+1 .
\end{aligned}
$$

To construct the free resolution of \mathbf{Z} we proceed as follows. In Lyndon's partial free resolution of \mathbf{Z}, let $\beta_{1} \gamma_{1}+\beta_{2} \gamma_{2} \in \operatorname{Kerd}_{1}$, where $\gamma_{1}, \gamma_{2} \in Z G$.

Then $\quad d_{1}\left(\beta_{1} \gamma_{1}+\beta_{2} \gamma_{2}\right)=0$.
$\therefore\left[\alpha_{1}\left(h_{2}-1-h_{2} h_{1}-h_{2}^{-1} h_{1} h_{2}\right)+\alpha_{2}\left(1-h_{1}-h_{2}^{-1} h_{1} h_{2}+h_{1} h_{2}^{-1} h_{1} h_{2}\right)\right] y_{1}$
$+\left[\alpha_{1}\left(-h_{2}^{2}-h_{2} h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}-h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}+h_{2}\right)+\alpha_{2}\left(h_{2}^{-1} h_{1} h_{2}^{2}+h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}-h_{2}^{-1} h_{1} h_{2}-h_{2}\right)\right] \gamma_{2}$
$=0$
or,
$\alpha_{1}\left[\left(h_{2}-1-h_{1} h_{2}-h_{2}^{-1} h_{1} h_{2}\right) \gamma_{1}+\left(-h_{2}^{2}-h_{2} h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}-h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}+h_{2}\right) \gamma_{2}\right\rfloor$ $+\alpha_{2}\left[\left(1-h_{1}-h_{2}^{-1} h_{1} h_{2}+h_{1} h_{2}^{-1} h_{1} h_{2}\right) \gamma_{1}+\left(h_{2}^{-1} h_{1} h_{2}^{2}+h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}-h_{2}^{-1} h_{1} h_{2}-h_{2}\right) \gamma_{2}\right]=0$

Since Y_{0} is free on α_{1}, α_{2}, we have

$$
\left.\begin{array}{l}
\left(h_{2}-1-h_{1} h_{2}-h_{2}^{-1} h_{1} h_{2}\right) \gamma_{1} \\
+\left(-h_{2}^{2}-h_{2} h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}-h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}+h_{2}\right) \gamma_{2}=0 \\
\left(1-h_{1}-h_{2}^{-1} h_{1} h_{2}+h_{1} h_{2}^{-1} h_{1} h_{2}\right) \gamma_{1} \tag{3.1}\\
+\left(h_{2}^{-1} h_{1} h_{2}^{2}+h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}-h_{2}^{-1} h_{1} h_{2}-h_{2}\right) \gamma_{2}=0
\end{array}\right\}
$$

We write Equation (3.1) as

$$
\left.\begin{array}{ll}
a \gamma_{1}+b \gamma_{2}=0 & \text { (i) } \\
c \gamma_{1}+d \gamma_{2}=0 & \text { (ii) } \tag{i}
\end{array}\right\}
$$

Solving the equations (I) in \mathbf{Q}, we have $\gamma_{1}=\gamma_{1}^{\prime}$, where γ_{1}^{\prime} is an arbitrary element of $\mathbf{Z} \mathbf{G}$, and $\gamma_{2}=-b^{-1} a \gamma_{1}^{\prime}=-d^{-1} c \gamma_{1}^{\prime}$, so that $\quad-b^{-1} a_{1}=-d^{-1} c . \quad \gamma_{1}^{\prime}$ is an arbitrary element of ZG, $-b^{-1} a_{1}=-d^{-1} c \in Z G$. Since $b^{-1} a$ has a inverse $a^{-1} b, b^{-1} a=g_{0}$, for some $g_{0} \in G$, by Corollary 2.8.

Define Y_{2} as the right $\mathbf{Z G}$-module freely generated by δ and define

$$
\begin{gathered}
d_{2}: Y_{2} \rightarrow Y_{1} \text { by } \\
d_{2}(\delta)=\beta_{1}-\beta_{2} g_{0} .
\end{gathered}
$$

Then

$$
d_{2}\left(\delta \gamma_{1}\right)=\left(\beta_{1}-\beta_{2} g_{0}\right) \gamma_{1}=\beta_{1} \gamma_{1}-\beta_{2} g_{0} \gamma_{1}=\beta_{1} \gamma_{1}-\beta_{2} \gamma_{2}
$$

Hence

$$
\beta_{1} \gamma_{1}+\beta_{2} \gamma_{2} \in \operatorname{Kerd}_{2}
$$

$$
\left(d_{1} d_{2}\right)(\delta)=d_{1}\left(\beta_{1}-\beta_{2} g_{0}\right)
$$

$$
=\left(\alpha_{1} a \gamma_{1}+\alpha_{2} a \gamma_{2}\right)-\left(\alpha_{1} b g_{0} \gamma_{1}+\alpha_{2} d g_{0} \gamma_{2}\right)
$$

$$
=\alpha_{1}(a-a) \gamma_{1}+\alpha_{2}(c-c) \gamma_{2}
$$

$$
=0
$$

$\therefore \operatorname{Kerd}_{2} \supseteq \operatorname{Im} d_{1}$.
Now let $\delta \in \operatorname{Kerd}_{2}$, then

$$
\begin{aligned}
& \alpha_{1} \gamma-\alpha_{2} g_{0} \gamma=0 \\
& \Rightarrow \gamma=0 .
\end{aligned}
$$

Thus we have

Theorem 3.1

The following is a free $\mathbf{Z} G$-resolution of \mathbf{Z} :

$$
0 \rightarrow Y_{2} \xrightarrow{d_{2}} Y_{1} \xrightarrow{d_{1}} Y_{0} \xrightarrow{d_{0}} Z G \xrightarrow{\varepsilon} Z \rightarrow 0
$$

where Y_{0}, Y_{1}, Y_{2} are right ZG-modules freely generated by $\left\{\alpha_{1}, \alpha_{2}\right\},\left\{\beta_{1}, \beta_{2}\right\}, \delta$ and $\varepsilon, d_{0}, d_{1}, d_{2}$ are defined by

$$
\begin{aligned}
& \varepsilon(g)=1, \forall g \in G ; \\
& d_{0}\left(\alpha_{1}\right)= h_{1}-1 ; \\
& d_{0}\left(\alpha_{2}\right)= h_{2}-1 ; \\
& d_{1}\left(\beta_{1}\right)= \alpha_{1}\left(h_{2}-1-h_{2} h_{1}-h_{2}^{-1} h_{1} h_{2}\right)+\alpha_{2}\left(1-h_{1}-h_{2}^{-1} h_{1} h_{2}+h_{1} h_{2}^{-1} h_{1} h_{2}\right) \\
& d_{1}\left(\beta_{2}\right)=\alpha_{1}\left(-h_{2}^{2}-h_{2} h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}-h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}+h_{2}\right) \\
&+\alpha_{2}\left(h_{2}^{-1} h_{1} h_{2}^{2}+h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}-h_{2}^{-1} h_{1} h_{2}-h_{2}\right) . \\
& d_{2}(\delta)= \beta_{1}-\beta_{2} g_{0} .
\end{aligned}
$$

4. Homology

For a left ZG-module A, the homology groups $H_{n}(G, A)$ are given by the homology of the complex of abelian groups

$$
0 \rightarrow A \xrightarrow{\overline{d_{2}}} A^{2} \xrightarrow{\overline{d_{1}}} A^{2} \xrightarrow{\overline{d_{0}}} A \rightarrow 0,
$$

where $\overline{d_{0}}, \overline{d_{1}}, \overline{d_{2}}$ are given by

$$
\begin{aligned}
& \overline{d_{0}}\left(a_{2}, a_{2}\right)=\left(h_{1}-1\right) a_{1}+\left(h_{2}-1\right) a_{2} ; \\
& \overline{d_{1}}\left(a_{1}, a_{2}\right)=\left(\left[h_{2}-1-h_{2} h_{1}-h_{2}^{-1} h_{1} h_{2}\right] a_{1},\right. \\
& \left.\left[-h_{2}^{2}-h_{2} h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}-h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}+h_{2}\right] a_{2}\right) \\
& \overline{d_{2}}(a)=\left(a, g_{0} a\right) .
\end{aligned}
$$

If A is trivial, then

$$
\begin{aligned}
& \overline{d_{0}}\left(a_{2}, a_{2}\right)=0 ; \\
& \overline{d_{1}}\left(a_{1}, a_{2}\right)=(0,0) ; \\
& \overline{d_{2}}(a)=(a, a) .
\end{aligned}
$$

If $A=Z$, then

$$
\begin{aligned}
& H_{0}(G, Z) \cong Z, \\
& H_{1}(G, Z) \cong Z \oplus Z, \\
& H_{2}(G, Z) \cong Z, \\
& H_{3}(G, Z) \cong 0 .
\end{aligned}
$$

5. Cohomology

For a right ZG-module A, the cohomology groups $H^{n}(G, A)$ are given by the homology of the complex

$$
0 \leftarrow A \stackrel{d_{2}^{*}}{\leftrightarrows} A^{2} \stackrel{d_{1}^{*}}{\leftrightarrows} A^{2} \stackrel{d_{0}^{*}}{\leftrightharpoons} A \leftarrow 0,
$$

where $d_{0}^{*}, d_{1}^{*}, d_{2}^{*}$ are given by

$$
\begin{aligned}
& d_{0}^{*}(a)=\left(a\left(h_{1}-1\right), a\left(h_{2}-1\right)\right) ; \\
& d_{1}^{*}\left(a_{1}, a_{2}\right)=\left(a_{1}\left[h_{2}-1-h_{2} h_{1}-h_{2}^{-1} h_{1} h_{2}\right], a_{2}\left[-h_{2}^{2}-h_{2} h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}-h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}+h_{2}\right]\right), \\
& d_{2}^{*}(a)=a_{1}-g_{0} a_{1} .
\end{aligned}
$$

If A is trivial, then

$$
\begin{aligned}
& d_{0}^{*}(a)=(0,0) ; \\
& d_{1}^{*}\left(a_{1}, a_{2}\right)=(0,0) \\
& d_{2}^{*}(a)=0 .
\end{aligned}
$$

If $A=Z$, then

$$
\begin{aligned}
& H^{0}(G, Z) \cong Z, \\
& H^{1}(G, Z) \cong Z \oplus Z, \\
& H^{2}(G, Z) \cong Z \oplus Z, \\
& H^{3}(G, Z) \cong Z .
\end{aligned}
$$

REFERENCES

1. Burillo J., Lower bound isoperimetric function for nilpotent groups, Dimacs series in discrete Mathematics and theoretical computer science 25, 1-8, (1996).
2. Epstien A. B. D., J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Peterson, W. P. Thurston, Word processing in groups, Jones and Bartlett, Boston -London. (1992).
3. Fox R. H., Free Differential Calculus I, Ann. Math. 57, 3,547-560, (1953).
4. Groves J. R. J., Rewriting systems and Homology of groups, Proceedings of the third International conference on the theory of Groups, Canberra 1456 LNM, Springer-Verlag, (1989).
5. Higman G., The zero divisors and units in a group ring, Proc. Lond. Math. Soc. 46(2), 231-248, (1940).
6. Huebschmann J., Perturbation theory and free resolutions for nilpotent groups of class 2, J. Algebra, 126 2, 348-399, (1984).
7. Lyndon R. C. and P. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, (1997).
8. Lyndon R. C., Cohomology theory of groups with a single defining relation, Ann. Math. 52, 3, 656-665, (1953).
9. Majumdar S. and N. Akhter, On a simple method of determining the homology and the cohomology for finitely presented group. Bull. Cal. Math. Soc. 100, (2008).
10. Majumdar S., A free resolution for a class of groups, J. Lond.Math. Soc. 2, 615-619, (1970).
