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ABSTRACT 

Jacobson radical of gamma rings is one of the most significant concept in the ring theory. In 
this paper we consider the Jacobson radical for gamma rings due to A.C. Paul and T.M. Abul 
Kalam Azad [5]. Some new characterizations are developed in this radical. The Jacobson 
Density Theorem and its converse Theorem are also proved here.  

 
1.  Introduction 

S.Kyuno [3] introduced the Jacobson radical J(M) using the right quasi-regularity. He 
also proved that the right Jacobson radical is equal to that of the left one. 

A.C. Paul and T. M. Abul Kalam Azad [5] gave the notion of Jacobson radical for Γ-rings 
by means of annihilators of the ΓM-modules. They have developed some 
characterizations of this radical. 

T.S. Ravisankar and U.S. Shukla [6] studied Jacobson radicals in the setting of modules. 
They obtained a number of remarkable properties of these radicals. 

Jacobson radicals for Γ-rings are also studied may other authors such as Kyuno, Coppage 
and Luh etc. 

In this paper, we have depeloped some properties of Jacobson radicals which are different 
and significant in the Mathematical interest. We have also proved Jacboson Density 
Theorem and its converse Theorem.  
 
2. Preliminaries 

2.1. Definitions. 

Gamma Ring:  Let M and Γ be two additive abelian groups. Suppose that there is a 
mapping from M × Γ × M → M (sending (x, α, y) into xαy) such that 

          i)       (x + y)α z = xαz + yαz 
                    x (α + β)z = xαz + xβz 
                    xα(y + z) = xαy + xαz 0 

         ii)       (xαy)βz = xα(yβz), 

where x, y, z∈M and  α, β∈Γ.  Then M is called a Γ-ring. 

Ideal of Γ-rings: A subset A of the Γ-ring M is a left (right) ideal of M if A is an additive 
subgroup of M and MΓA = {cαa | c∈M, α∈Γ, a∈A}(AΓM) is contained in A. If A is both 
a left and a right ideal of M, then we say that A is an ideal or two sided ideal of M.       
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Matrix Gamma Ring: Let M be a Γ-ring and let Mm,n and  Γn,m denote, respectively, the 
sets of m × n matrices with entries from M and of n × m matrices with entries from Γ, then 
Mm,n is a Γn,m -ring and multiplication defined by  

(aij)(γij)(bij) = (cij), where ∑∑ γ=
p q

qjpqipij bac .  If m = n, then Mn is a Γn-ring. 

Division gamma ring: Let M be a Γ-ring. Then M is called a division Γ-ring if it has an 
identity element and its only non zero ideal is itself. 

Nilpotent element: Let M be a Γ-ring. An element x of M is called nilpotent if for any 
γ∈Γ, there exists a positive integer n = n(γ) such that (xγ)nx = (xγxγ...γxγ)x = 0.  

Nil ideal: An ideal A of a Γ-ring M is a nil ideal if every element of A is nilpotent i.e. for 
all x∈A and γ∈Γ, (xγ)nx = (xγxγ . . . γxγ)x = 0, where n depends on the particular element x 
of A . 

Nilpotent ideal: An ideal A of a Γ-ring M is called nilpotent if (AΓ)nA = (AΓAΓ . . 
….ΓAΓ)A = 0, where n is the least positive integer.   

Maximal ideal:  An ideal R in a Γ-ring M is called a maximal  

ideal in M if (i) R⊂M and (ii) whenever L is an ideal in M such that R⊆L⊆M, then either      
L = R or L = M . 

Annihilator of a subset of a Γ-ring: Let M be a Γ-ring. Let S be a sub set of M. Then the 
left annihilator l(S) of S is defined by l(S) = {m∈M | mΓS =0}, where as the right 
annihilator r(S) is defined by  r(S) = {m∈M |  SΓm  =0}. 

Idempotent element: Let M be a Γ-ring. An element e of M is called idempotent if   eγe 
= e ≠ 0 for some γ∈Γ. 

Primitive idempotent: Let M be Γ-ring. An idempotent e of M is called primitive if it is 
impossible to express as the sum of two orthogonal idempotent elements. 

Internal direct sum: Let M be a Γ-ring and N1and N2 be two left ideals of M such that  

(i) M = N1+ N2 = {n1+n2⏐n1∈N1,n2∈N2} 

(ii) N1∩N2 = {0} 

Then we say M is the internal direct sum or simply direct sum of N1 and N2 and we write 
M = N1  N2. ⊕

ΓM-module. Let M be a Γ-ring and let (P, +) be an abelian group. Then P is called a left 
ΓM-module if there exists a Γ-mapping (Γ-composition) from M×Γ×P to P sending (m, α, 
p) to mαp such that 

i) (m1 + m2)αp = m1αp + m2αp 

ii) mα(p1 + p2) = mαp1 + mαp2 

iii) (m1αm2)βp = m1α(m2βp), 
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for all p, p1, p2∈P, m, m1, m2∈M, α, β∈Γ. 

If in addition, M has an identity 1 and 1γp = p for all p∈P and some γ∈Γ, then P is called 
a unital ΓM-module.  

Sub ΓM-module: Let M be a Γ-ring. Let P be a left ΓM-module. Let (Q, +) be a 
subgroup of (P, +). We call Q, a sub left ΓM-module of P if mγq∈Q for all m∈M, q∈Q 
and γ∈Γ. 

Irreducible ΓM-module: Let M be a Γ-ring and P be left ΓM-module.  We say that P is 
an irreducible left ΓM-module if   

(i) P ≠ 0 and P ⊇ Q ⊇ 0, Q is a sub ΓM- module of P, implies Q = P or Q = 0, and  

(ii) mγp ≠ 0 for some  m∈M, p∈P and γ∈Γ.  

ΓM-homomorphism: Let M be a Γ-ring. Let P and Q be two left ΓM-modules. Let ϕ be 
a map of P into Q. Then ϕ is called a ΓM-homomorphism if and only if ϕ(x + y) = ϕ(x) + 
ϕ(y) and ϕ(mγx) = mγϕ(x) for all x, y∈P, m∈M and γ∈Γ. If ϕ is one-one and onto, then ϕ 
is a ΓM-isomorphism and is denoted by P ≅ Q. If ϕ is a ΓM-homomorphism of P into Q, 
then kernel of ϕ, i.e., kerϕ = {x∈P⏐ϕ(x) = 0}, which is a left sub ΓM-module of P and 
image of ϕ i.e., Imϕ = {y∈Q⏐y = ϕ(x) for some x∈P} is a left sub ΓM-module of Q. We 
use the notation HomΓM(P, Q) to denote the set all ΓM-homomorphisms of P into Q. If Q 
= P, then ϕ is called a ΓM-endomorphism. Clearly HomΓM(P, P) forms a Γ-ring. We call 
HomΓM(P, P) the Γ-ring of ΓM -endomorphism of P. 

Let M be a Γ-ring and A is an ideal of M. Since every ideal A is a ΓM-module, then the 
homomorphism between two ideals are the same as that of given above. 

 Γ-vector space: Let (V, +) be an abelian group. Let Δ be a division Γ-ring with identity 1 
and let ϕ: Δ×Γ×V→ V, where we denote ϕ(m,γ,v) by mγv. Then V is called a left Γ-vector 
space over Δ, if for all δ1, δ2∈Δ, v1, v2∈V and γ∈Γ, the following hold:.  

i) δ1γ(v1 +v2) = δ1γv1 + δ2γv2 

ii) (δ1 + δ2)γv1  = δ1γv1 + δ2γv1 

iii) (δ1βδ2)γv1 = δ1β(δ2γv1) 

iv)  1γv1 = v1 for some γ∈Γ. 

We call the elements v of V vectors and the elements δ of Δ scalars. We also call δγv the 
scalar multiple of v by δ. Similarly, we can also define right Γ-vector space over Δ. 

Sub Γ-Space: Let V be a left Γ-vector space over Δ. A non empty sub set U of V is called 
a sub Γ-Space of V if  

(i) (U, +) is a sub group of (V, +) 

(ii) δγu∈U for all δ∈Δ,  γ∈Γ, u∈U. 
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It is clear that U is a sub Γ-space of V provided that U is closed with respect to the 
operations of addition in V and scalar multiplication of vectors by scalars. 

Linear Γ-combination: Let V be a left Γ-vector space over a division Γ-ring Δ. Let v1, v2 
, . . ., vn∈V and let γ∈Γ, then the vector v = δ1γv1 + δ1γv2 + . . . + δnγvn,  δ1, δ2 , . . ., δn ∈Δ 
is called a linear γ-combination of the  vi’s over Δ. If v is a linear γ-combination for some 
γ∈Γ, then v is called a linear Γ-combination of the  vi’s over Δ. 

Linearly Γ-independent and linearly Γ-dependent:Let V be a left Γ-vector space over 
a division Γ-ring Δ. Let γ∈Γ, then the set of vectors {vi⏐i∈Λ} is called linearly  γ-
independent over Δ (or simply γ-independent) if for each finite sub set of vectors 

of {vi⏐i∈Λ}, ni2i1i v.,...,,v v 0v........v nin2i21i1 =γδ++γδ+γδ v implies δ1 = δ2 = 
…….. = δn = 0. Otherwise, the set {vi⏐i∈Λ} is called linearly γ-dependent (or simply γ-
dependent). If {vi⏐i∈Λ} is γ-independent for some γ∈Γ, then {vi⏐i∈Λ} is called linearly 
Γ-independent. Otherwise the set {vi⏐i∈Λ} is called linearly Γ-dependent. 

Generators of a Γ-vector space: Let V be a left Γ-vector space over a division Γ-ring Δ. 
Let G be a sub set of V. Let G = {vi}. Then G is said to be a set of generators for V or G 
spans V, if any v∈V is a linear Γ-combination of vectors in G. 

Basis of a Γ-vector space: Let V be a left Γ-vector space over a division Γ-ring Δ. A basis 
B for V is a subset of V such that  

       (i)    B spans V and 

       (ii)    B is Γ-independent   

Dimension of a Γ-vector space: Let V be a left Γ-vector space over a division  Γ-ring Δ. 
If V has a basis with n elements, then we say that V is finite dimensional of dimension n 
over Δ and we denote this by [V : Δ] = n. If V does not have a finite basis, then we say 
that V is infinite dimensional and write [V : Δ] = ∞. We note that if V = {0}, then [V : Δ] = 
0, since empty set is a basis for {0}.  

Linear Γ-transformation: Let V and U be a left Γ-vector spaces over a division Γ-ring 
Δ. Let T:V→ U satisfy 

(i) T(v1+v2) = T(v1) + T(v2) for all v1, v2∈V 

(ii) T(δγv) = δγT(v) for all δ∈Δ, γ∈Γ, v∈V. 

We call T a linear Γ-transformation from V to U and we denote the set of all linear Γ- 
transformations from V to U by HomΔ (V, U). HomΔ (V, U) is an additive group. 

For all T, S∈HomΔ(V,U), T + S and TγS are respectively defined by 

(T + S)(x)= T(x) + S(x) and  

(TγS)(x) = T(γS(x)) for all x∈V and γ∈Γ. 

2.2   Theorem.  Every Unital irreduicible left ΓM-module is cycle.  
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2.3   Theorem (Ist Isomorphism Theorem of ΓM-homomorphism).  Let M be a Γ-ring 
and P and Q be the left ΓM-modules. Let ϕ: P→ Q be a ΓM-homomorphism. Then 

φker
M ≅ Im ϕ  

 
3. Definition of the Jacobson Radical 

3.1 Definition  

The Jacobson radical of M is written as J(M) and is defined as  

J(M) = {m∈M | mγP = 0 for all γ∈Γ}, where P is an irreducible left ΓM-module. If M has 
no irreducible left ΓM-module, then J(M) =  M and M is called radical Γ-ring. 

3.2 Lemma.  Let P be an irreducible left ΓM-module. Then P ≅ R
M , where  R is a 

maximal left ideal of M. Furthermore, there is an a∈M such that Mγ(1 – a) = {x – 
xγa|x∈M}⊂R for some γ∈Γ. 

Proof.  By Theorem 2.2, P is cyclic, say P = Mγp for some p∈P and  γ∈Γ. 

We define ϕ : M → P by ϕ(m) = mγp for all m∈M. Let m1, m2∈M, then ϕ(m1+ m2) = (m1+ 
m2)γp = m1γp + m2γp = ϕ(m1) + ϕ(m2) Let m∈M, then ϕ(mαm1) = (mαm1)γp = mα(m1γp) 
= mαϕ(m1) for all α∈Γ. Hence ϕ is a ΓM-homomorphism. Also we have seen that ϕ is 
one-one and ϕ is onto. So by Theorem 2.3, R

M ≅ P, where R is the kernel of ϕ.  

Now let R′ be a left ideal of M such that R⊆R′⊂M. Then R
R′ is isomorphic to a non zero 

sub ΓM-module of P. But P is an irreducible left ΓM-module, then non zero sub         
ΓM-module of P is itself. 

Hence R
R′ ≅ P. Therefor R′ = M. Hence R is a maximal ideal of M. 

Since Mγp = P, then there is an a∈M such that aγp = p. Then for each x∈M, (x – xγa)γp = 
xγp – xγaγp = xγp – xγp = 0, so x – xγa∈R. Thus Mγ (1 – a) ⊂R. Hence the lemma is 
proved. 

3.3 Definition.  A left ideal R of M is called a regular ideal if there is an a∈M such that 
Mγ(1 – a)⊂R for some γ∈Γ.   

3.4 Lemma.  Every regular proper left ideal of M is contained in a maximal regular left 
ideal of M. 

Proof. Let R be a regular proper left ideal of M and let a∈M such that Mγ(1 – a)⊂R. 
Suppose a∈R and let x∈M. Then x – xγa∈R and xγa∈R. Hence x = (x – xγa) + xγa∈R. 
Then M⊂R, a contradiction. Thus a∉R.  

By Zorn’s Lemma, there is an ideal R′ maximal with respect to the properties:   
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i) R⊂R′   

ii) a∉R′. 

We claim that R′ is actually a maximal left ideal of M. For suppose  

R′⊆R′′⊂M. Then a∈R′ and futher more x – xγa∈R′′, xγa∈R′′. Hence x =(x – xγa) + 
xγa∈R′′. Therefore M⊆ R′′. Hence R′′ = M. 

Finally, since Mγ(1 – a)⊂R⊂ R′, then R′ is regular. Hence the lemma is proved. 

3.5 Definition.  If R is a left ideal of M, then (R:M) = {m∈M| mΓM⊂R}.  

It is easy to verify that (R:M) is also a left ideal of M. 

3.6 Theorem.  J(M) = ∩R, where the intersection is over all maximal regular left ideal of 
the Γ-ring M. 

Proof.  Let x∈J(M) and let R be a maximal regular left ideal of M. Then Mγ(1 – a)⊂R for 
some a∈M and γ∈Γ. Thus x – xγa∈R. Since x∈J(M), we have x∈(M:R), that is, xγM⊂R. 
Hence xγa∈R and so x∈R. Thus J(M)⊂∩R. 

We now suppose that x∈∩R. Mγ(1+x) is a regular left ideal of M. If it is proper, it is 
contained in a maximal regular left ideal R′. But x∈R′ and thus for all y∈M, yγx∈R′, and      
y + yγx – yγx = y∈R′. Hence R′ = M, a contradiction. Therefore Mγ(1+x) = M. Hence                  
– x∈Mγ(1+x), that is, there is a y∈M such that x + y + yγx = 0.  

We let P be an irreducible left ΓM-module and suppose ∩R⊄l(P). Then (∩R)γP ≠ 0 and 
(∩R)γp ≠ 0 for some p∈p. But then (∩R)γp = P. Hence rγp = – p for some r∈∩R. We 
now let s∈M be such that r + s + sγr = 0. Then   

0 = (r + s + sγr)γp = rγp + sγp + sγrγp = – p + sγp + sγ(–p) = – p + sγp – sγp = – p. 

Thus p = 0.  So that (∩R)γp = 0, a contradiction. Thus ∩R⊂l(P) and hence ∩R⊂J(M). 
Therefore J(M) = ∩R. Hence the theorem is proved. 

3.7  Definition. An element a∈M is left quasi-regular if there is an element a′∈M such 
that  

a + a′ + a′γa = 0 for all γ∈Γ. Then is a′ called a left quasi-inverse of a. A left ideal R of 
M is left quasi-regular if each of its elements is left quasi-regular. 

We can define right quasi-regularity similarly; an element a is quasi-regular if there exists 
a′∈M such that a + a′ + aγa′ = a + a′ + a′γa = 0 for all γ∈Γ.  We note that if R is a left 
quasi-regular ideal of a Γ-ring M and a′ is a left quasi-inverse of a∈R, then a + a′ + a′γa = 
0 so that a′ = –a – a′γa∈R. 

3.8 Theorem.  J(M) is a left quasi-regular ideal of M and contains every left quasi-regular 
left ideal of M. 

Proof.  Let R be a left quasi-regular left ideal of M. Let P be an irreducible left ΓM-
module. Suppose RγP ≠ 0 for some γ∈Γ. Then there exists a p∈P such that Rγp = P. 
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Hence there exists an a∈P such that aγp = –p. Let a′∈R be a left quasi inverse of a. Then 

0 = (a + a′ + a′γa)γp = aγp + a′γp + a′γaγp = aγp + a′γp + a′γ(–p) = – p + a′γp – a′γp =  – 
p. 

Therefore p = 0. Thus Rγp=0, a contradiction. Hence RγP = 0, that is, R⊂l(P). Therefore 
R⊂J(M). By Theorem 3.6, J(M) is the intersection over all maximal regular left ideal of 
the   Γ-ring M. Hence all elements of J(M) is left quasi-regular. Theorefare J(M) is a left 
quasi-regular left ideal. Hence the theorem is proved.  

3.9 Lemma.  If an element a of a Γ-ring M has a left quasi-inverse c and a right quasi-
inverse b, then b = c. 

Proof. Since c and b are respectively left and right quasi inverse of a, then we have           

a + c + cγa = 0  and a + b + aγb = 0  for all γ∈Γ. 

Now   (a + c + cγa)γb = 0γb 

⇒ aγb + cγb + cγaγb = 0. 

Also, cγ(a + b + aγb) = cγ0.    So cγa + cγb + cγaγb = 0. 

Thus cγa + cγb + cγaγb = aγb + cγb + cγaγb. 

⇒ aγb = cγa. Therefore cγa – aγb = 0. 

Now  c – b  = (c – b) + (a – a) + (cγa – aγb) = (a + c + cγa)  – (a + b + aγb) = 0. 

Therefore c = b. Hence the lemma is proved. 

3.10 Lemma.  Every element of J(M) is right quasi-regular. 

Proof.  Let a∈J(M). Then there is an a′∈J(M) such that a +a′+ a′γa =0 for all γ∈Γ. Then 
a′∈J(M), so a′′ is a left quasi-inverse of a′. But a is a right quasi-inverse of a′ and so by 
Lemma 3.9, a = a′′. Thus a +a′+ aγa′ =0, that is, a′ is a right quasi-inverse of a. Hence 
every element of J(M) is right quasi-regular. Thus the theorem is proved. 

The lemmas give us immediately: 

3.11 Theorem.  J(M) is a right quasi-regular ideal and thus a quasi-regular ideal of M. 

Proof. Let J′(M) is a left quasi-regular ideal of M. Then J′(M) contains every right quasi-
regular right ideal, that is, J(M)⊂ J′(M). We have J(M) is a right quasi-regular ideal of M, 
then J(M) contains every left quasi-regular ideal, that is J′(M) ⊂ J(M). Hence J′(M) = 
J(M). Thus J(M) is a quasi-regular ideal of M. Hence the theorem is proved. 

3.12 Theorem. J(M) = {z∈M⏐bγzγa is quasi-regular for all a, b∈M and some γ∈Γ}. 

Proof.  Since J(M) is an ideal of M and if z∈J(M), then bγzγa∈J(M) for all a, b∈M and 
some γ∈Γ. Since J(M) is a quasi-regular ideal, then bγzγa is quasi-regular.  

Conversely, let z be an element of M such that bγzγa is quasi-regular for all a, b∈M. Let P 
be an irreducible left ΓM-module. Then as in the proof of Theorem 3.8, zγa∈l(P) for all 
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a∈M. If 0≠u∈M, then P = Mγu and zγP = zγMγu = 0, so that z∈l(P). Hence z∈J(M). Thus 
the theorem is proved. 

3.13 Theorem.  ( ) 0MJ
MJ =⎟

⎠
⎞⎜

⎝
⎛ . 

Proof.   Let ⎯R be a left quasi-regular left ideal in ( )MJ
M . Let R be its inverse image in 

M. Let a∈R and ⎯a = a + J(M). Let b∈R be such that a + b + bγa = 0 and⎯a + ⎯b + ⎯bγ⎯a 
=⎯0 for all γ∈Γ. Then a + b + bγa∈J(M) and so is left quasi-regular. Let c be such that.  

 a + b + bγa + c + cγ(a + b + bγa) = 0 

Then  a + b + bγa + c + cγa + cγb + cγbγa  = 0 

⇒   a + b + c + cγb + bγa + cγa + cγbγa  = 0 

⇒ a + (b + c + cγb) + (b + c + cγb)γa  = 0  

and thus a is left quasi-regular. Hence R is a left quasi-regular left ideal of M, and so 

R⊂J(M), that is,⎯R = ⎯0. But ( )⎟⎠
⎞⎜

⎝
⎛

MJ
MJ  is a left quasi-reqular left ideal of ( )MJ

M . Hence 

( ) 0MJ
MJ =⎟

⎠
⎞⎜

⎝
⎛ .  Thus the theorem is proved.  

3.14 Definition. A Γ-ring M is called (Jacobson) semi-simple if J(M) = 0. 

We need the following two theorems due to Paul and Kalam [5] 

3.15 Theorem. Every nil left ideal (and hence every nilpotent ideal) of a Γ-ring M is 
contained in J(M). 

3.16 Theorem. If M is a left Artinian Γ-ring, then J(M) is a nilpotent ideal of M. 

3.17 Definition. An element a of a Γ-ring M is called regular (in the sense of von 
Neumann) if there exists an element u in M such that aγuγa = a for some γ∈Γ; u is called 
a relative inverse for a. If every element of a Γ-ring M is regular, then M is called a 
regular Γ-ring. 

3.18 Theorem. Any regular Γ-ring is semi-simple.  

Proof.  Let M be a regular Γ-ring. Suppose a∈J(M). Let u is a relative inverse of a. Then 
–uγa has a quasi-inverse v such that –uγa + v +(–uγa)γv = 0 for some γ∈Γ. Now 

aγ 0 = aγ(–uγa + v + (–uγa))γv  

⇒ 0 = –aγuγa + aγv – aγuγaγv 

⇒ 0 = –a + aγv – aγv = – a. Hence a = 0. Therefore J(M) = 0. Hence M is semi-simple.  

We recall that a classically Γ-ring must have an identity element. We have a related result 
for Jacobson semi-simplicity. First we note that if M is an arbitrary Γ-ring, it can be 
embedded in a Γ-ring M* with identity 1 such that M* = M⊕〈1〉, where 〈1〉, the Γ-ring 
generated by the identity is isomorphic to Z.  
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3.19 Theorem. Let M be an arbitrary Γ-ring and M* = M + 〈1〉, 1 an identity for M*. Then 
J(M) =J(M*)∩M. If in addition M∩〈1〉= {0} and 〈1〉 ≅ Z, then J(M) = J(M*).  

Proof.  Let z∈J(M*)∩M. Then z has a quasi-inverse z′∈M*. So z + z′ + z′γz = 0 for some 
γ∈Γ. Hence z′ = – z – z′γz. Since z′ = – z – z′γz, then z′ is in M and z is quasi-regular in M. 
Hence J(M*)∩M⊂J(M). Since M* = M + 〈1〉, then any left ideal of M is a left ideal of M*. 
Hence J(M)⊂J(M*)∩M. Therefore J(M) = J(M*)∩M. 

Suppose now that M∩〈1〉 = {0} and 〈1〉 ≅ Z. Then if z*∈J(M*), then the coset z* of z* in 

M
*M  is in the radical of the quotient Γ-ring. But J(Z) = 0, being the intersection of the 

maximal ideals of Z. So ⎯z* =⎯0 and z*∈M. Therefore J(M*)⊂M. Hence J(M) = J(M*).  

3.20 Theorem. If J(M) is the radical of a Γ-ring M, then the radical of Mn is J(M)n, where 
Mn  is the Γn-ring, whose entries come from M and J(M)n is matrix Γn-ring, whose entries 
come from J(M). 

Proof.  Consider a matrix of the form 

 

         a11   0    0 . . . 0 

      A =        a21   0    0 . . . 0 

                    a31   0    0 . . . 0 

        -------------------- 

                an1   0    0 . . . 0 

 

where a11 is left quasi-regular. Then there exists a′11 such that a11+ a′11+ a′11γ11a11 = 0 for 
γ11∈Γ. Moreover Mγ11(1– a11) = M so there exist a′i1, i = 2, 3,  . . .n, such that  a′i1– a′i1 

γ11a11 = – ai1. Then if  

         a′11   0    0 . . . 0 

      A′ =       a′21   0    0 . . . 0 

                    a′31   0    0 . . . 0 

        --------------------- 

                a′n1   0    0 . . . 0        , 

 

 A + A′ + A′ ΓnA = 0; thus A is left quasi-regular. 

Now let Jj be the set of elements A∈Mn with entries except possibly the jth column zero 
and jth column consisting of elements of J(M). Each Jj is a left ideal and by arguments 
analogous to the one above for j =1, they are left quasi-regular. Hence Jj ⊂J(Mn), for j = 1, 
2, . . . , n. Thus J(M)n = J1 + J2 +  . . . , Jn ⊂ J(Mn). 
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On the other hand, let C = (cij) belong to J(Mn). If a∈M, let Apq be the matrix with a in the 
(p,q) position and zeros elsewhere. Let a, b be arbitrary elements of M. Form 

         aγppcpq γqq   b    0      0 . . . 0 

    ΣAkp ΓpCΓq Bqk  =                0              0    0 . . . 0 

                       0              0    0 . . . aγpqcγpq b    

But C∈J(Mn) and hence ΣAkp ΓpCΓq Bqk∈J(Mn). Let (C′ij) be the quasi-inverse of ΣAkp 
ΓpCΓq Bqk, so that  

aγppcpq γqq b + c′11+ c′11γ11aγ1p c γqq b = 0 = aγppcpq γqq b + c′11+ aγpp cpqγqqbγq1 c′11 

Thus aγppcpq γqq b is a quasi-regular for all a, b∈M. But then by Theorem 3.12, cpq∈J(M). 
Thus J(Mn)⊂J(M)n. Hence J(Mn) = J(M)n. Thus the theorem is proved. 

Let M be a Γ-ring and let be e an idempotent in M. Since any element m∈M can be 
written as  m = eγm + (m – eγm) for some γ∈Γ, 

we have M = eγM + (1– e)γM, where (1 – e)γM = {m – eγm⏐e∈M} as before. But eγb = b 
for all b∈eγM and eγb = 0 for all b∈(1– e)γM, so that   eγM∩(1– e)γM = 0 

and thus M = eγM ⊕(1– e)γM = Mγe ⊕ Mγ(1–e).  

We can also write M = eγMγe ⊕ eγMγ(1– e) ⊕(1–e)γMγe ⊕(1–e)γ Mγ(1– e). 

These representations are called the right, left and two sided Peirce decomposition of M 
relative to e, repectively. We note that the terms of the first two are right and left ideals, 
repectively, while those of the third are sub Γ-rings of M. Moreover,  

           eγMγe = eγM∩Mγe, 

  eγMγ(1 – e)  = eγM∩Mγ(1 – e), 

   (1 – e)γMγe = (1 – e)γM∩Mγe, 

   (1 – e)γMγ(1 – e) = (1 – e)γM∩Mγ(1 – e). 

3.21 Theorem. Let M be an arbitrary Γ-ring and J(M) its Jacobson radical. Then eγJ(M)γe 
= eγMγe∩J(M) is the radical of eγMγe and (1 – e)γ J(M)γ(1 – e) = (1 – e)γMγ(1 – e) 
∩J(M) is the radical of (1 – e)γMγ(1 – e) for some γ∈Γ.  

Proof.  It is clear that eγMγe∩J(M) = eγJ(M)γe and that this is a quasi-regular ideal in 
eγMγe. Hence eγJ(M)γe⊂J(eγMγe). Suppose z∈J(eγMγe). Using the two sided Peirce 
decomposition of M, we write m∈M as m = m11 + m10 +m01 + m00, where m11∈eγMγe, 
m10∈eγMγ(1 – e), m01∈(1 – e)γMγe and m00∈(1 – e)γMγ (1 – e). Then  

zγm = zγ(m11 + m10 +m01 + m00) = zγm11 + zγm10 +  zγm01 + zγm00 = zγm11 + zγm10, 

since zγm01 = zγeγm01 = zγm00 = zγeγm00 = 0. 

Now let z′ is a quasi-inverse of zγm11 in eγMγe. Since zγm10γz′ = 0 then we have 
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 zγm + z′ + zγmγz′ = zγm10. 

Moreover, (zγm10)γ(zγm10) = 0 and hence by Theorem 3.15, zγm10 is quasi-regular. 
Therefore zγm is quasi-regular for every m∈M. Thus zγM⊂J(M). Hence bγzγa is quasi-
regular for every a, b ∈M. But then z∈J(M) and z∈eγMγe∩J(M) = eγJ(M)γe. Thus 
J(eγMγe)= eγJ(M)γe. The proof for (1 – e)γMγ (1 – e) is analogous. 
 
4. Primitive Γ-rings 

4.1 Definition. A left ΓM-module P is faithful if aγP = 0 implies that a = 0. 

4.2 Defintion. A Γ-ring M is primitive if it has a faithful, irreducible left ΓM-module. An 
ideal R of M is primitve if the Γ-ring R

M is primitive. 

We need the following theorem which is in [5]. 

4.3 Theorem. J(M) = ∩(M:R), where R ranges over all maximal regular left ideals of the 
Γ-ring M. 

4.4 Lemma.  An ideal R in a Γ-ring M is primitive if and only if R = (M : Q), where Q is a 
maximal regular left ideal of M. 

Proof. Let Q be a maximal regular left ideal M. Then Q
M is clearly a faithful, irreducible 

left ( )Q:M
M-Γ -module. Hence ( )Q:M

M is primitive. So (M:Q) is primitive. Thus R is 

primitive. 

Conversely, let R be a primitive ideal of M and let P be a faithful, irreducible left 

R
M-Γ -module. Then P is a left ΓM-module and, infact, is an irreducible left ΓM-

module. As a left R
M-Γ -module P is faithful, so its annihilator is the zero sub R

M-Γ -

module. Thus the annihilator of P considering P as a left ΓM-module, is R. Then 

 R = l(P) = {x∈M⏐xγM = R, some γ∈Γ}= {x∈M⏐xγM = R⊆Q} = {x∈M⏐xγM⊆Q}= (M: 
Q). 

Therefore R = (M:Q), where Q is a maximal regular left ideal of M.  

4.5 Theorem : If M is primitive, then eγMγe and (1–e)γMγ(1–e) are primitive for some 
γ∈Γ. 

Proof. Let P be a faithful, irreducible left ΓM-module. Then we can write 

P = eγP⊕(1 – e)γP. 

Then clearly eγP is a left Γ-eγMγe-module. Since eγmγeγ(1 – e)γP=0, if eγmγeγeγP = 0, 
then eγmγe ∈l(P). Hence eγP is faithful as a left Γ-eγMγe-module. 

Now we let eγx ≠ 0 and eγy∈eγP. Then there exists m∈M such that mγ(eγx) = eγy. But 
then eγmγ(eγx) = eγ(eγy). This implies that eγmγ(eγeγx) = (eγe)γy. 
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Thus (eγmγe)γ(eγx) = eγy and eγP is an irreducible left Γ-eγMγe module, since any 
nonzero element generates all of eγP. Hence eγMγe has a faithful, irreducible left module 
eγP. Therefore eγMγe is primitive. The proof for (1 – e) γMγ(1 – e) is analogous. 

4.6 Definition. Let P be a left ΓM-module and let E(P) be the  Γ-ring of all 
endomorphisms of the additive group of P with the obvious addition and multiplication. If 
m∈M, we define Tm∈E(P) by Tmγp = mγp for all p∈P and γ∈Γ. The set 

 CM(P) = {ϕ∈E(P)⏐ϕγTm = Tmγϕ for all m∈M and γ∈Γ} 

is a sub Γ-ring of E(P) called the commuting Γ-ring of M on P. 

4.7 Theorem (Schur’s Lemma). If P is an irreducible left ΓM-module, then CM(P) is a 
division Γ-ring. 

The proof is given in [5]. 

If M is a primitive Γ-ring and P is a faithful, irreducible left ΓM-module, then P can be 
regarded as a left Γ-vector space over the division Γ-ring CM(P). 

4.8 Definition. A Γ-ring M is called a dense Γ-ring of linear Γ-transformations on P if, 
given any v1, v2,  . . . , vn ∈P which are linearly Γ-independent over CM(P) and any w1, w2,  
. . . , wn ∈P, there is an m∈M such that mγvi, = wi, i = 1, 2, . . . , n and some γ∈Γ. We 
sometimes say simply that M is dense on P. 

4.9 Theorem (Jacobson Density Theorem). Let M be a Γ-ring and P be an irreducible 
left ΓM-module. Then, considering P as a left Γ-vector space over CM(P), M is a dense Γ-
ring of linear Γ-tranformations on P.  

Proof.  It is sufficient to prove the following : (*) if V is a finite-dimensional sub Γ-space 
of P over CM(P) and if p∈P, p∉V, then there is an m∈M such that mγV = 0 but mγp ≠ 0 
for some γ∈Γ. 

For suppose we can always find such an m. Since mγp ≠ 0, we can apply the statement to 
the 0 sub Γ-space and mγp. Thus we can find m1∈M such that m1γmγp ≠ 0. Since Mγmγp 
≠ 0, then we must have Mγmγp = P. Thus, given any p1∈P, we can find s∈M such that 
sγmγV = 0 and sγmγp = p1. 

If we are given v1, v2,  . . . , vn ∈P, linearly Γ-independent over CM(P) and w1, w2,  . . . , wn 
∈P, then we can, by virtue of the above argument, find m1, m2,  . . . , mn ∈P such that  

       0 if j ≠ i 

  miγvj =    

    wi if j = i 

Let m = m1+ m2+  . . . + mn . Then for i = 1, 2,  . . . , n, 

  mγvi = (m1+ m2+  . . . + mn)γvi = m1γvi + m2γvi + . . . + mnγvi = miγvi = wi. 

Therefore mγvi = wi . Thus M is dense on P. 
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We now establish (*) by induction on the demension of V. 

First suppose that [V: CM(P)] = 0, and let p∈P, p ≠ 0. Then V ≠ 0 and we choose an 
element m∈M such that mγp ≠ 0; the existence of such an m is guaranteed by the 
irreduciblity of P. 

Now suppose [V: CM(P)] > 0 and let V = V0 ⊕ CM(P)γw, w ≠ 0, w∉V0. Then           [V0: 
CM(P)] = [V: CM(P)] –1 and we assume that the statement holds for V0, that is, we assume 
that for any p∈P, p∉V0, then there is an m∈M such that mγV0=0 and mγp ≠ 0 for some 
γ∈Γ.  

Let l(V0) be the left annihilator of V0 in M. Then if l(V0)γp = 0 for all p∈P, we must have 
p∈V0. l(V0) is a left ideal of M and so l(V0) is a sub ΓM-module of P. Since w∉V0, l(V0)γw 
≠ 0, so we have l(V0)γw = P. 

Suppose the desired result does not hold. Then there is a p∈P, p∉V, such that mγp = 0 
whenever mγV = 0. Define Tm:P → P by Tmγp = mγp. It is clear that Tm is well defined. 
Clearly Tm∈E(P). If x = mγw, m∈l(V0) and m1∈M, then m1γx = m1γ(mγw) = (m1γm)γw. 

Thus Tmγ(m1γx) = mγ(m1γx)= m1γ(Tmγx). 

Therefore Tm∈CM(P). Hence if m∈l(V0), we have mγx = Tmγ(mγw) = mγ(Tmγw), so that 
mγx – mγ(Tmγw) = 0 So  mγ(x – Tmγw) = 0.Thus x – Tmγw∈V0 and so x∈V0 ⊕CM(P)γw = 
V, a contradiction. Hence the theorem is proved. 

4.10 Definition. Let M be a Γ-ring of linear Γ-tranformations on a left Γ-vector space 
over a division Γ-ring Δ. Then M is called k-fold transitive if given i ≤ k and any v1, v2,  . 
. . , vi ∈V linearly Γ-independent over Δ, and any w1, w2,  . . . , wi ∈V , there is an m∈M 
such that mγv1 = w1, mγv2 = w2 , . . ., mγvi = wi. 

In this terminology the Jacobson Density Theorem for Γ-rings say that under the 
hypothesis of that theorem, M is n-fold transitive for any finite n less than or equal to the 
dimension of P over CM(P). We have the following strong converse of the Density 
Theorem for Jacobsion Γ-rings. 

4.11 Theorem. Let M be a two-fold transitive Γ-ring of linear Γ-transformations on a non 
trivial left Γ-vector space over a division Γ-ring Δ. Then V is an irreducible left ΓM-
module, M is dense on V and Δ = CM(V). 

Proof.   Let v∈V, v ≠ 0. Since M is one-fold transitive, given any w∈V, then there is an 
element m∈M such that mγv = w for some γ∈Γ. But this implies that V is an irreducible 
left ΓM-module. We consider the elements of Δ as linear Γ-transformations of V by 
identifying an element with the left translation by that element. Since δγ(mγv) = mγ(δγv) 
for all v∈V, m∈M, δ∈Δ and some γ∈Γ, then Δ⊂CM(V). 

Suppose we have ϕ∈CM(V), ϕ∉Δ. Let v∈V, v ≠ 0. Suppose v and (ϕγv) are not linearly Γ-
independent, i. e., suppose we can find δ1, δ2 ∈Δ, not both zero, such that δ1γv + 
δ2γ(ϕγv)=0. If δ1=0, then δ2γ(ϕγv)=0 and δ2 ≠ 0. Hence ϕγv = 0 and since ϕ ≠0 and V is 
irreducible, then v = 0, a contradiction. Thus δ1≠ 0. Similarly δ2 ≠ 0. 
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Let δ = – δ1
–1γδ2

 for some γ∈Γ so that v = δγ(ϕγv). Thus v – δγ(ϕγv) = 0. So v – (ϕγδ)γv = 
0. Therefore (1–ϕγδ)γv = 0. If (1– ϕγδ)∈Δ, then ϕ∈Δ, so (1– ϕγδ)∉Δ and hence   1– ϕγδ 
≠ 0. So as before v = 0, a contradiction.  

Since v and (ϕγv) are thus linearly Γ-independent, then there is an m∈M such that mγv = 0 
and mγ(ϕγv) = v. However, since ϕ∈CM(V), then we have 

v = mγ(ϕγv) =  ϕγ(mγv) = ϕγ0 = 0, a contradiction. Therefore, we can not have ϕ∈ CM(V) 
\ Δ. Hence CM(V) = Δ. Thus the theorem is proved. 
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