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ABSTRACT

The quickest multi-commodity flow problem arises when more than one commodity is to be transported
from the specific source nodes to corresponding sink nodes through the arcs in an underlying dynamic
network within the minimum possible time. Sharing of the capacity of the bundle (common) arcs
is one of the major issues for the multi-commodity flow problem. In this paper, we deal with the
quickest multi-commodity flow problem by sharing the capacity of bundle arcs using proportional
and flow-dependent capacity sharing techniques, which reduce the multi-commodity flow problem into
single commodity flow problems. We present the polynomial and pseudo-polynomial algorithms to
solve the problem by proportional and flow-dependent sharing, respectively. A three dimensional
time-expanded layer graph is introduced to solve the problem with flow-dependent capacity sharing
technique.
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1 Introduction

Literature Review. The network flow problem is modelled by using a topological structure corre-
sponding to some region in which entities are transmitted from one point to another point through
some feasible routes. The transportation network is a key example of network topology, where road
segments are depicted as arcs and their intersections as nodes. Vehicles or pedestrians on the roads
are viewed as flows, with their starting points and destinations represented as the source and sink
nodes, respectively.

In a dynamic network, arcs have capacities that limit the flow and transit times indicating the
time needed to move the flow between nodes. The network flow over time problem, or dynamic flow,
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is a significant topic of research in mathematical programming and operations research. This involves
transferring flow from the supply area (source) to the demand area (sink), taking into account the
required travel time. This issue is commonly applied to communication networks, highway and railway
systems, supply and demand chains, and message routing problems. For the single commodity case,
Ford and Fulkerson [, 2] introduced the concept of flow over time problem and presented algorithm
to solve the maximum flow over time problem. In this problem, the goal is to transfer the maximum
possible flow from the origin/source to the destination/sink within a specified time frame. Khanal et
al. [3] and Pyakurel et al. [4] solved the maximum dynamic flow problem with intermediate storage
in a general network and abstract network structures, respectively, where excess flow that can not
reach to the destination is stored at appropriate intermediate elements. Similarly, Dhamala et al. [5]
solved the maximum flow problem with intermediate storage in lossy network topology. The solution
strategy of the maximum dynamic flow model with speed and transit time variation incorporating the
intermediate storage can be found in [6].

The quickest flow problem is an inverse problem of the maximum dynamic flow problem, which aims
to transport a specified amount of flow from the origin/source to the destination/sink in the smallest
possible time. Chen and Chin [7] and Rosen et al. [8] used the quickest path to transit the given amount
of flow from the source to the sink in shortest possible time. They used the single quickest path in
their model. Burkard et al. [9] presented a polynomial time algorithm of quickest flow problem by
using binary search and Newton’s methods. Fleischer and Tardos [10] provided an equivalent solution
for the continuous time settings. Lin and Jaillet [11] solved the quickest flow problem applying the
cost-scaling algorithm of Goldberg and Tarjan [12] within the same time complexity.

The multi-commodity network flow problem involves transmitting multiple commodities from their
respective sources to corresponding sinks while ensuring optimal flow allocation without exceeding the
arcs’ capacity constraints. This problem was first introduced by Ford and Fulkerson [1], and many
researchers have since extended the models and algorithms to incorporate various aspects such as
maximum flow, maximum concurrent flow, quickest flow, and minimum cost flow. Multi-commodity
flow problems differ significantly from single-commodity ones in bundle arcs, as they carry more than
one commodity. Contrary to the multi-commodity cases, single-commodity models cancel out flows to
avoid cycles in opposite directions. The well-known max-flow min-cut theorem, often used to calculate
maximum flow for single-commodity problems, does not apply to multi-commodity flow problems.
Additionally, if the capacities and flows on each arc are integers, single-commodity flow problems result
in integer solutions. However, this does not necessarily hold true for multi-commodity flow problems.
For further illustrations and applications, we refer to the book of [13], articles [14, 15, 16, 17, 18, 19]
and references therein. Recently, Fan et al. [20] studied the minimum-cost multi-commodity flow
problem on evolving networks where the network topology dynamically changes over time. Similarly,
Lienkamp and Schiffer [21] solved a standard integer minimum-cost multi-commodity flow problem to
obtain the passenger flow system optimum for an intermodal transportation system.

Given supplies at sources and demands at sinks, the quickest multi-commodity flow (QMCF)
problem involves distributing various commodities from their respective sources to corresponding sinks
through a designated network. The goal is to meet the total demand for each commodity within the
shortest possible makespan. Hall et al. [22] proved that the multi-commodity flow over time problem is
NP-hard even in the case of series-parallel network or in the case of two commodities. Together with
this, the AP-hardness of the quickest multi-commodity flow problem with or without intermediate
storage and simple paths is also found in it. Fleischer and Skutella [23] presented the length bounded
approximation and condensed time-expanded graph to solve the QMCEF problem in polynomial time
complexity. For most of the real world problems, transit times are not fixed but flow-dependent.
Kohler and Skutella [24] introduced the concept of load-dependent transit times by considering the
total amount of flow on the arc as the load. Hall et al. [25] presented an FPTAS (fully polynomial
time approximation scheme) for QMCF with inflow-dependent transit times, where transit time on arc
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depends on the inflow rate of the flow. Priority based multi-commodity flow problems and polynomial
time solution strategies can be found in [26, 27]. Khanal et al. [28] introduced the proportional and
flow dependent capacity sharing techniques to share the capacity of bundle arc for each individual
commodity and used it to solve the maximum multi-commodity flow problem.

Research Gap. Solving quickest multi-commodity flow problem using two techniques of sharing
capacity on bundle arcs - one based on incoming arc capacities (i.e., proportional capacity sharing)
and another based on inflow rates of the flow (i.e., flow-dependent capacity sharing) remain unexplored
in existing literature. Proportional capacity sharing simplifies the multi-commodity flow problem by
breaking it down into independent single-commodity flow problems. This can be useful on solving
the quickest multi-commodity flow problem using cost-scaling method which is not yet explored in
the literature. Similarly, the application of a three-dimensional layer graph to solve the quickest
multi-commodity flow problem remains unexamined.

Contributions. In this paper, we employ two capacity sharing techniques to solve the quickest multi-
commodity flow (QMCF) problem, termed as proportional and flow-dependent capacity sharing. We
introduce models for the QMCF problem using these techniques. To tackle the issue of proportional
capacity sharing on arcs, we propose polynomial time algorithms using the cost-scaling method. Ad-
ditionally, a pseudo-polynomial time algorithm is presented for solving the QMCEF problem adopting
flow-dependent capacity sharing on arcs. By introducing a three-dimensional layer graph, we provide
solutions using flow-dependent capacity sharing technique. As far as we know, QMCF problem has
been solved using these sharing techniques for the first time.

Organization of the Paper. The organization of the paper is as follows. By setting the basic
notations, mathematical formulations of flow models and the three dimensional time-expanded layer
graph are presented in Section 2. In Section 3, we present the QMCF problem with proportional
capacity sharing. Our main result in this section is a polynomial time algorithm to solve the problem
by using a cost-scaling approach. We introduce flow-dependent capacity sharing in Section 4 and
present a pseudo-polynomial time algorithm to solve the QMCF problem. The paper is concluded in
Section 5.

2 Mathematical Formulations

In this section, we set necessary notations and give mathematical formulations of different classes of
multi-commodity flow problems. As most of the real world problems are associated with the shipment
of multiple commodities, these models can be applied to solve transportation problems, demand supply
chains and many more.

Basic Terminologies. Let us consider a set N of nodes in a graph with |N| = n and another set
E C N x N of links joining two nodes, known as arcs, with |E| = m. We represent S C N and D C N
as the set of sources and sinks, respectively. For each commodity i € K = {1,2,...,k}, d; denotes the
demand which is routed through a unique source-sink pair s; — t;, where s; belongs to the set S and
t; contained in the set D. Each arc e = (v,w) € E is associated with a capacity function b: E — R™
which represents the upper limit of the flow on it, where head(e) = w and tail(e) = v. Similarly,
7: E — R7" indicates the transit time function which refers the time needed to transfer the flow from
node v to node w. The symbols §°“!(v) represents the set of outgoing arcs from node v whereas 6 (v)
represents the set of incoming arcs to node v. We represent 7 = {0, 1, ...,T'} as a set of timeslots with
time horizon T in discrete time settings. With these components, we represent the dynamic network
as Q = (N,E,K,b,7,d;,S,D,T). For the static network, the time parameters 7' and 7 are absent.
The list of symbols are presented in Table 2.1.
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Table 2.1: Symbols used throughout the paper.

Symbol | Meaning Symbol | Meaning

Q Network topology N Set of nodes

E Set of arcs be Capacity of an arc e € E

Te Transit time of an arc e € F K Set of commodities

S Set of source nodes s; for i € K D Set of destination nodes t; for i € K

T Time horizon d; Demand of Commodity i € K

T Set of discrete time steps {0,1,...,T} || 6°“(v) | Sets of outgoing arcs from node v

§°u(v) | Sets of outgoing arcs from node v head(e) | Head node of arc e

tail(e) | Tail node of arc e @ Static flow of commodity ¢ on arc e

JHO) Dynamic flow of commodity i on arc e || a’(e) s; — v path from source s; to the tail
at time 6 € T node v of the bundle arc e

or Time-expanded layer graph Ce Cost associated with arc e

I Set of intermediate nodes N \ {S,D} | C maxecp{7e}

v(e) Set of incoming arcs to bundle arc e P;(0) Set of paths from s; at time 6

Static Flow Model. For a static network Q = (N, E,K,b,d;, S, D), the multi-commodity flow
function ¢ is a set of non-negative flows ' : E — RT for each i with demand d; satisfying the
conditions (2.1 - 2.3).

di ifU:Si

Soovi- D> 6l = { —diifuv=t; YweNieK (2.1)
ec€dout(v) e€di™ (v) 0 otherwise
d gl < b VeeE (2.2)
ieK
v, > 0VeecFEicK (2.3)

Here, the notation ¢! represents the flow of commodity i on arc e. The boundedness of the arc
flows by their capacities are represented in (2.2), known as bundle constraints. The non-negativity
of the flows are presented in constraint (2.3). Similarly, the first two conditions in (2.1) represent
supply/demand at source/sink nodes whereas the flow conservation at intermediate nodes is reflected
by its third condition. Moreover, the cost of static flow ¢ can be defined as follows: if c. be the cost
coefficient associated with arc e and commodity i,

=3 el (2.4)
ecFEieK

Dynamic Flow Model. Considering a dynamic network € with constant transit times 7 on arc e,
the dynamic multi-commodity flow function f is the collection of flows f: E x T — R¥, satisfying
the constraints (2.5 - 2.8).

= > Zfe - > Zfe YveN,i€ K (2.5)

eeéom(v 666”7‘( 0=0
B
Z PIFHOEEDS Zfé(é’) <0, Wwé¢{sit},icK BeT (2.6)
ec ) 6=0 e€éin (v) 6=0

T
SN fi) <be, VeeE (2.7)

1€K =0
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fi6)>0, VicK and ecE. (2.8)
where,

' d; ifv=s;
d, = —d; Hv=t; VieK
0 otherwise

Here, f!(0) represents the flow rate of commodity i on arc e at time §# € 7. The constraints
outlined in (2.5) ensure the supply and demand at the sources and sinks, as well as the conservation of
flow at intermediate nodes during the time horizon 7". Constraints in (2.6) account for the lack of flow
conservation at intermediate nodes at any time step 8 € T = {0, 1, ...,T}. Meanwhile, the constraints
in (2.7) are restricted by capacities, and (2.8) ensures non-negativity. The cost of a discrete dynamic
flow is defined by

T

()= fio). (2.9)

ecFieK  6=0

Time-expanded Layer Graph. For multi-commodity flow, the time-expanded layer graph can be
constructed as a three-dimensional graph that replicates nodes from a static network for each discrete
time step and commodity. As in [29], consider a dynamic network  with integral transit times on arcs
and time horizon T'. For the purpose of T-time-expanded layer graph Q7' we creating T + 1 copies of
the node set N labeled N (0), N(1),..., N(T). In this setup, the 8"* copy of node v is denoted as v(6),
where 6 € T. For each time step 0 € {0,1,...,T — 7.}, we create the copy of an arc e = (v,w) € F
from v;(0) to w;(6 + 7.) and represent it as e;(#), which has the same capacity as arc e if the flow
on arc is of single commodity and shared capacity if arc e is a bundle arc. Moreover, arc from v;(6)
to v;(# + 1) with infinite capacity is known as holdover arc, which holds the flow for a unit time
interval [#,6 + 1). In continuous time settings, 7'+ 1 copies of N are labeled in layer graph Q7 as
N[0,1),N[1,2),...,N[T,T + 1) where 6" copy of node v is labeled as v[f,0 + 1) for § € T. For
graphical representation, the three-dimensional layer graph Q7 is displayed with node N, time T,
and commodity K as the coordinate axes in Figure 2.1. Each commodity ¢ € K forms a horizontal
layer of graphs in vertical axis. Figure 2.1(a) shows a two-commodity network, where commodity-1
is transported from s; to ¢; and commodity-2 from s to ta. Arc (x,y) is a bundle arc carrying both
commodities. Figure 2.1(b) represents the time-expanded layer graph of Figure 2.1(a).

Quickest Flow Problem. For the given network, quickest multi-commodity flow problem intends
to find a minimum possible time to satisfy all demands d; from s; to t;. Mathematically, it can be
presented as

dit 3 Tegl .
T =min—F— =1, (|¢'|#0) (2.10)
satisfying the constraints (2.1 — 2.3)

where, ¢! denotes the feasible static flow of 7*"-commodity on arc e with flow value |¢?|. Similarly,
Te is the arc cost (or transit time) of arc e. The quickest time to satisfy all the demands d; is
T* = max{T} |i e K}.

3 QMCF with Proportional Capacity Sharing

The commodity-wise sharing of a bundle arc capacity creates a significant challenge in multi-
commodity flow problems. The resource directive decomposition method treats this problem as a
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(a) network with transit time (b) layer graph

Figure 2.1: Time-expanded layer graph Q7 in (b) for a two-commodity network (a).

capacity allocation problem. Initially, it distributes the available capacity among various commodities,
using insights gained from previous solutions. The method then reallocates these capacities to enhance
overall system efficiency and reduce costs. During each iteration, it resolves k single-commodity flow
problems. The total capacity assigned across all commodities always equals the original arc capacity,
ensuring resource constraints are respected.

As in Khanal et al. [28], we reallocate the bundle arc capacity by a proportional capacity sharing
approach, where the capacity is shared proportionally to each commodity and reduces the multi-
commodity flow problem to k independent single commodity flow problems (c.f. [29]). The total
capacity assigned across all commodities always equals the original arc capacity and the capacity
of each individual commodity restricts the flow of the commodity on it. Hereafter, we present the
proportional capacity sharing technique and formulate the QMCF problem. With the help of cost-
scaling approach of [11], we present a polynomial time algorithm to solve the problem.

3.1 Proportional Capacity Sharing

In single-commodity flow problems, all flow is treated as identical. However, in multi-commodity
flow problems, flows are differentiated based on their unique attributes, meaning the demand of one
commodity cannot fulfill that of another. This distinction increases the complexity of the prob-
lem. Consequently, multi-commodity flow problems are more challenging than their single-commodity
counterparts due to the constraints imposed by shared capacities on bundle arcs. When multiple
commodities traverse the same bundle arc, the issue of capacity allocation arises.

To address this, we assume that every commodity is associated with a unique source-sink pair.
The intermediate nodes, defined as I = N \ {S, D}, exclude both the source set S and the destination
set D, ensuring I, S, and D are mutually exclusive. Arcs connecting pairs of intermediate nodes
are considered bundle arcs if they transport more than one commodity. For instance, a bundle arc
e = (v,w) satisfies v,w € I, though the reverse is not necessarily true. To allocate the capacity of
a bundle arc effectively, we introduce a proportional sharing method. This technique relies on the
bottleneck capacities of the paths corresponding to each commodity 4, which originate from their
respective sources s; and lead to the bundle arc e. For a bundle arc e = (v, w) with capacity b, the
proportional sharing of capacity b, to each commodity ¢ € K is,
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bl = ——% b, (3.1)
aca’i(e)ieK
where, a'(e) is the s; — v path from source s; to the tail node v of the bundle arc e and a € a'(e) is

an arc with bottleneck capacity of path af(e). Here, b’ represents the portion of the capacity of arc e

allocated for the commodity i. Clearly, >_ bl = b.. In Figure 2.1(b), red color arcs of the layer graph
€K

share the capacity of the bundle arc (z,y) in Figure 2.1(a) for both commodities.

When distributing the capacity of a bundle arc, fractional values may arise, expressed as bl =
int(b?) +fra(b), where the capacity is split into an integral and a fractional component. Unless b% < 1
with no alternative path available for commodity ¢, fractional capacities can be converted to integral
capacities using the following method ([29]):

e Calculate the total sum of fractional components, >, fra(b?). If this sum equals p, round up the
p largest fractional components using ceiling function [.]. The remaining fractional components
are rounded down using the floor function |.|.

e In cases where multiple commodities share the same fractional value, preference is given to the
commodity with the largest integral capacity.

o If the integral capacities are identical as well, priority shifts to the commodity with the highest
demand. Should the demand also be equal, any of the tied commodities may be rounded up
arbitrarily.

For example, let a bundle arc e has capacity b, = 21 and sharing capacities b’ for five commodities
are 3, 2.8, 3.5, 4.5, and 7.2. Then, being Y_ fra(b’) = 2, two sharing capacities out of five are rounded
up. Having the greatest fractional part, 2.8 is first rounded up by 3. For the second one, fractional
part 0.5 occurs in two commodities. Priority is given to the greatest integral part among these two,
and so 4.5 is rounded up to 5. The rest are rounded below. Thus capacities assigned to respective
commodities are bl = 3, 3,3, 5 and 7. It is to be careful that if shared capacity of some commodity i
in bundle arc is less than one and has no alternative path, floor function can block the flow. If so, we
can accept the fractional capacity or can use flow-dependent capacity sharing described in Section 4.

3.2 Problem Formulation

Ford and Fulkerson [2] presented a generic method to solve the maximum flow over time problem for
a single source single sink network, known as temporally repeated flow formulation. The quickest flow
problem is inherently linked to the maximum flow problem, where the maximum flow is repeated over
the time from origin to destination until the demand is fully met. By transforming this formulation,

Lin and Jaillet [11] presented the quickest flow problem for the single commodity flow with fractional
programming. We formulate the quickest multi-commodity flow problem by extending the concept of
single commodity flow problem of [11] and incorporating the proportional capacity sharing as follows.
dit+ 3 Tepl
* ) eckE _ %
T = min '\W\ iL (I #0) (3.2)
subject to, b} = %be and the constraints (2.1 — 2.3).

acat(e):ic K

The new constraint b® obtained from (3.1) reduces the multi-commodity flow problem into k inde-
pendent single commodity sub-problems so that the QMCF problem (3.2) with proportional capacity
sharing can be solved by solving k independent single commodity flow problems. The objective of the
problem is to find the minimum time 77 satisfying the given demand d; for each commodity 7 € K.
By setting T* = max{T; | i € K}, it provides the quickest time satisfying all the demands.
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3.3 Solution Strategy: The Cost-scaling Approach

In this subsection, our aim is to present the cost-scaling algorithm for the QMCF problem presented
in (3.2) with proportional capacity sharing on the bundle arcs depending on the algorithms of [11].
The algorithmic framework is presented in Algorithm 1 herein.

Algorithm 1: The cost-scaling algorithm for QMCF

1 Input: Multi-commodity dynamic network Q = (N, E, K, b,7,d;,S,D,T).
2 Output: Quickest time to satisfy all demands d; with proportional capacity sharing on (2.

1. Create k independent sub-problems by sharing the capacity on bundle arcs using
Equation (3.1).

2. Initialize the node potentials 7(v) = 0 for all nodes v € N, set the initial flow ¢? = 0 for all
edges e € E, and define € as € = C' = maxecp{7e}.

3. Transform the 2e-optimal flow into an e-optimal flow.
4. Minimize the gap between 7; and the difference in potential 7(s;) — 7(¢;).
5. Halve € and repeat Steps 3 and 4 if ¢ > 8%”.

6. In the residual network Q, if T} exceeds the cost of the shortest simple path, then send the
maximum static flow ¢’ from s; to t; to saturate the flow within the subnetwork €’ which
includes those arcs lying on shortest path in residual network ().

7. Finally, determine T as the maximum of 7; for all ¢ € K.

To minimize the ratio )
di + > Tepe
eclk
||
dual variables related to the flow conservation constraints are introduced, along with node potentials
7 and the residual network Q. For each arc e = (v,w) in Q, reduced cost c(e,n) is calculated by

c(e,m) = m(w) — w(v) + 7. which we consider not less than —e, for some € > 0.

The algorithm begins with constructing & independent sub-problems for each commodity i € K
by sharing the capacity of bundle arcs proportionally. Then we initialize each node potential as zero,
arc flow as zero and € = C' = max.cp{7.}, for all e € E. By assigning

i 0 ifc(e,m)>0
Ye = bl if c(e,m) <0

n: _]-a

Ve € E,

each 2e-optimal flow is modified to an e-optimal flow. The Push/Relabel algorithm is applied to active
nodes with positive excess flow. It is important to note that a static flow ¢’ is considered e-optimal
if its reduced cost is no less than —e. To reduce the gap between T; and w(t;) — 7(s;), extra flow is
created at the source node s;, and the admissible flow is directed through the arcs in  to the sink
node t;. Node potentials are adjusted as needed. Then, € is halved, and this process is repeated until
€ drops below 8%1,, where n; denotes the number of nodes corresponding to commodity ¢. If the T;
obtained from the scaling phases surpasses the cost of the simple shortest path from s; to ¢; in Q,
the flow is then maximized by sending the highest feasible flow from s; to ¢; within the subnetwork
Y. The subnetwork ' is formed from the residual network €, consisting of arcs that belong to some
shortest path between s; and ¢;. Finally, T is defined as the maximum of 7; for all ¢ € K, representing
the quickest possible time to fulfil all demands in the original network €.
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Before presenting the correctness of Algorithm 1, we establish the optimality condition for the

QMCF problem. For simplicity, we represent |¢?| as the parameter 3 and define h(y’) = 3. 7.¢l.
ecFE
Using this notation, we can rewrite the objective function of the problem in (3.2) as

T = min 7di + sz(y )

1

—1=minT}(y"), % >0
Lemma 1. The function Tl*(yz) has local minimum at flow value y* if and only if

_(Cti_Si + 1) < Tz*(yl) < Csi—t;

where, —ci,—s, and cs,—t, represent the costs associated with the shortest paths from t; to s; and from
s; to t; in the residual network of flow y*, respectively.

Proof. The function T7(y") is local minimum at y* if for arbitrary small € > 0,

o i di+h(y)) d; + h(y' +€) ,

Tryf) = 7 1< T T ] - Tyt 4 3.3

() " ST iie Ty +e) (3.3)
and,

7)) g cBEAZD g, (3.4)

In this context, h(y’ + €) denotes the increase in the flow value ¥ by € in the cost function h(y®). This
indicates the sending of an additional € amount of flow from s; to t; while maintaining the minimum-
cost flow. To achieve this, the extra flow is routed through the shortest path in the residual network
Q) at a cost of ecs,_4,. Consequently, h(y’ + €) = h(y") + ecs,—¢,. With this relation, Equation (3.3)
becomes

di+h<y) —1< di—"_h‘(y‘)—i_ecsi—ti 1
yz yl—i-f
:>Csi*ti 2 Lh(y)
Yyl
< d; + h(y d; + h(y'
- ﬂ*(yz) — _‘_yl(y) —1< _|_y7,(y) < Csi—t; (35)

In a similar manner, h(y® —¢) denotes the reduction in the flow value y° by € in the cost function h(y?).
This implies the return of an e amount of flow from ¢; to s;, incurring a cost of € (—c;_s;). Thus,
h(y* —€) = h(y") — € (—ct,—s, ). Using this relation in Equation (3.4), we get

sy < T
:}-Cti_si_lgw_l
y’L
di + h(y
LY = Gt h) > —(ct;—s; +1) (3.6)

Yyt
O

Theorem 1. The temporally repeated flow of a feasible static flow ¢°, for each commodity i, is con-
sidered optimal if and only if ¢* is a minimum-cost flow with a flow value of |¢'| and satisfies

d; + Z 7—6902
eckE

_(Cti* i T 1) < i
’ ||

-1 S Cs;—t; (37)
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Proof. For the QMCF problem in (3.2), if we consider the flow value |¢’| = y* as a parameter, then
the objective function is defined as one less than the sum of % and % times the minimum-cost flow

7 7

problem. As in [29], the minimum-cost flow problem can be expressed as follows.

h(y') = min Y 7epl
eckE )
b'L

subject to, b’ = ﬁbe and the constraints (2.1 — 2.3) (3.8)

acat(e):icK
For the problem in (3.2), objective function is to minimize

B d; + h(yi)

T (y") "

; -1, y" > 0.
According to Lemma 1, the flow value y® represents a local minimum for the function T;(yi) if and
only if the inequality —(c,—s, +1) < T (yi) < cs,—¢, is satisfied. Additionally, the problem described in
(3.8) is a linear programming problem aimed to minimizing costs, and h(y") is a convex function that
is piecewise linear in y*. Consequently, 77" (yi) exhibits a unimodal nature, and so a local minimum of
T (yi) is also the global minimum, [11].

Let g* be the optimal flow value for T7*(yi). In this case, the inequality —(cy,—s, + 1) < T (yi) <

¢s;—t; must hold. Furthermore, if ¢' is a feasible flow with a value of ¢, then A(y') = min Y 7@l if
eckl
and only if @' represents a minimum cost flow. As a result,

d; + Z Te‘pé

i c€E
)= —F— -1

T*

)

if and only if @' is a minimum cost flow with flow value °. Thus, the optimality of a feasible flow @
with a value of " is possible only if ¢" is the minimum cost flow and

di+ 3 ey

E
_(cti—si + 1) < e;,i -1 < Csi—t;-
Therefore, the temporally repeated flow of the static flow @’ is an optimal solution to the QMCF,

considering proportional capacity sharing on the bundle arcs for all i € K. ]

Theorem 2. The QMCF problem can be solved by Algorithm 1 using proportional capacity sharing
on bundle arcs correctly.

Proof. We prove the theorem in two parts. In the first part, we show the existence of minimum cost
static flow ¢’ and in the second part, we show that the flow is optimal quickest flow.

Given our assumption that all transit times on the arcs are integers, the arc transit times/costs
must also be integers. Let m denote the node potential, and c(e,n) represent the reduced cost in
the residual network Q. To allow for negative reduced costs, we select a value € > 0 such that
—e < c(e,m) < 0. Any flow ¢’ that meets this condition is termed e-optimal flow.

To solve the problem, we begin with a large ¢ = C and halve it in each iteration to ensure the
modified flow ¢’ and node potential 7 remain e-optimal. This process continues until € becomes very
small, ensuring that the sum of the reduced costs through cycles in €2 is greater than -1. Since all arc
costs are integers, there must be no negative cycles in Q with positive flow. Hence, the flow ¢ is the
minimum cost flow.

To show that condition (3.7) is satisfied when the algorithm ends, an additional step is incorporated
into each scaling phase so that m(s;) — m(¢;) accurately approximates both —(ct,—s, +1) and ¢g,—¢,. To
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dit+ 32 Tepl
ek

i e’ i :

from s; to t;, reducing the gap to less than 1 by the end of the scaling phase. Given that arc costs

are integers, an optimal solution is achieved by solving an additional maximum flow problem. This

process continues until the optimal solution for each commodity ¢ € K is obtained. Consequently,

Algorithm 1 correctly solves the QMCF problem with proportional capacity sharing.

reduce the gap between — 1 and 7(s;) — 7(t;) by half in each iteration, extra flow is pushed

O]

Theorem 3. The QMCF with proportional capacity sharing is polynomial time solvable by Algo-
rithm 1.

Proof. The computational time of Step 1 of Algorithm 1 is O(m|K|), where |K| = k signifying the
number of commodities. The time complexity of Steps 3 and 4 is O(n?®). Because of the cost-scaling
phase in Step 5, Steps 3 and 4 are repeated up to O(log(nC')) times, [11]. Similarly, the running time
of Step 6 is O(n3log(n)). Therefore, the overall running time of Algorithm 1 is O(n®*m|K [log(nC)),
which is polynomial. Moreover, the solution obtained is an approximate optimal because of the use
of ceiling and floor functions while sharing the capacity proportionally. O

Example 1. Consider a two commodity network with demands dy = 35 for Commodity-1 and dy = 25
for Commodity-2 (c.f. Figure 3.1(a)). Flows of Commodity-1 and Commodity-2 routed via si-t; paths
and sg-to paths, respectively. We aim to use proportional capacity sharing on the bundle arc (x,y)
which provides the capacity of 2 units each for both commodities (as shown in Figure 3.1(b)). This
problem is now converted to two independent sub-problems as follows.

S92 37 4 t2 S92 37 4 t2
@ [ @ [
4,§\ 2 4,3\ 21 / 2
x .T’ Yy r1@__S@Y
3% ’ 3,1 3,%' 2,1 \\3‘ 1
@ [ @ [
S1 4,3 t1 51 4,3 t1
(a) capacity, transit time (b) capacity, transit time

Figure 3.1: (b) represents proportional capacity sharing of (a).

Sub-problem 1: The quickest time to satisfy the demand-supply di = 35 from sy to t1 on the
network 3.1(b) is,

d1+ZTe¢é
35+4+2+2+12
lemin%ﬂ: i +6+ T2 1316
v

Sub-problem 2: As above, the quickest time satisfy the demand-supply of do = 25 from so to ta on the
network 3.1(b) is,

do + To
0 %4 ee 25+ 04+2+4+12
ngmmT—lz - —1=176.

Therefore, the quickest time (in an integer) to satisfy both demands is T = 9.
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4 QMCF with Flow-Dependent Capacity Sharing

In Section 3, we solved the QMCF problem by sharing the capacity on bundle arcs proportionally,
where the shared capacity remains constant at each time step 6. In this section, our aim is to introduce
the flow-dependent capacity sharing technique, where the commodity-wise shared capacity of a bundle
arc is based on the inflow rate of the commodities in its incoming arcs. At any given time 6, the flow-
dependent capacity sharing of a bundle arc b, to each commodity i € K is determined as follows.

i _ fé(e - Ta)
6E(6) = <" i b (4.1)
acy(e):ieK

Here, y(e) is a set of incoming arcs to bundle arc e, where a € y(e) implies that head(a) = tail(e), and
be? () denotes the share of capacity of arc e allocated to commodity i at time §. The sum of the shared
capacities be’(f) across all commodities i € K equals the given capacity of arc e. Mathematically, this
is expressed as Y. bi(f) = be. In cases where the flow-dependent capacities are fractional, they can
€K

be converted into integer values as described in Subsection 3.1, even when be’(f) < 1 and there are
no alternative paths for commodity i. As in [29], the QMCF problem with flow-dependent capacity
sharing can be introduced as follows.

min T’ (4.2)
subject to the constraints (4.1) and (2.5 - 2.8) )

The constraint in (4.1) plays an important role in the QMCF problem (4.2). One of the reasons is
that, a multi-commodity flow problem is reduced to k single commodity sub-problems at each time 6
and can be solved as the single commodity flow problems. On the other hand, shared capacity b%(6)
is not depending on the capacity b, of predecessor arc but on the flow entering on arc e through
predecessor arcs a so that the absence of any commodity at any time step 6 helps to increase the flow
of other commodities. The quickest time to satisfy the given demand d; is T* = max{T} | i € K}.

As in [29], the solution strategy starts by constructing temporal paths, denoted as P(6) € P;(0),
where P(f) represents a path that originates from s; at time 6 and reaches to t; at time 6 + 7p via
arcs e € P. The time-expanded layer graph is the way to visualize such paths. We define P(0)
as {UP;(#) : i € K}, which represents a set of all temporal paths starting at time 6. Similarly,
75 = min{rp : P € P;, Vi} is the length of the shortest path in the network. Let us represent ¢ ()
as the time-dependent static flow on the temporal paths P(0) € P;(#). Due to flow-dependent capacity
sharing on bundle arcs, amount of flow in such paths may vary over time. For any two temporal paths
of different commodities i, j € K, if paths P;(01) and P(f2) meet at u(f) with 61,62 < 0, then
capacity along the arc e = (u(#),v(0 + 7)) is shared by employing flow-dependent capacity sharing.

Initially, we construct a time-expanded layer graph with the time horizon 7' = 7}, and obtain
the commodity-wise flow using flow-dependent capacity sharing. The time horizon is then increased
by one unit (i.e., T = 7p + 1) at each iteration as long as the demand of each commodity is met.
The flow of commodities whose demand is already met is set to 0 in subsequent constructions of the
time-expanded layer graph. Algorithm 2 presented hereafter is the stepwise procedure to find QMCF
with flow-dependent capacity sharing.

Theorem 4. Algorithm 2 provides an approximate solution to the quickest MCF problem with flow-
dependent capacity sharing in pseudo-polynomial time.

Proof. In Step 2(a), flow-dependent capacity sharing is used to distribute the bundle arc capacity,
and the integer solution is obtained by applying the ceiling (]-]) and floor (|-|) functions. As a result,
Algorithm 2 produces an approximate solution. The shared capacity in the bundle arc depends on
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Algorithm 2: Flow-dependent QMCF algorithm
1 Input: Multi-commodity dynamic network Q = (N, E, K, b,7,d;,S,D,T).
2 Output: Quickest time with flow-dependent capacity sharing on €.

1. Initialize the time horizon: T = 7, = min{rp : P € P;, Vi} and set the flow for each
commodity to zero: f(T) = 0.

2. While the flow for any commodity f? is less than its demand d; for all i € K, do

(a) Construct the time-expanded layer graph of time 7" and calculate the static flow @' by
sharing the capacity on bundle arcs of temporal paths using Equation (4.1).

(b) Calculate the flow value of each commodity within the current time horizon T as f*(T).

(c) Set ' =0 if f4(T) > d;.

d) Update f{(T) = f{(T)+¢' and T =T + 1.

(
3. T= Quickest time to satisfy all the demands d;.

the inflow rate from predecessor arcs, and the sharing process continues on the layer graph until all
the demand d; for each commodity ¢ € K is fulfilled. Consequently, the algorithm’s running time is
influenced by the demand d;, leading to a pseudo-polynomial time complexity for solving the quickest
multi-commodity flow over time problem with flow-dependent capacity sharing.

O

Example 2. Consider the network from Figure 3.1 of Example 1 having the same demands dy = 35
and do = 25 for Commodity-1 and Commodity-2, respectively. Here, we solve the QMCE problem by
using flow-dependent capacity sharing on bundle arc. Capacity on bundle arc (z,y) is shared after
2 unit times because of the absence of commodity-1. Similarly, after T = 5 only Commodity-1 is
transported from the bundle arc due to the absence of Commodity-2, (see Figure 4.1). At each time 6,
the capacities after flow-dependent capacity sharing on the arc (z,y) are presented in Figure /.1. The
quickest time to satisfy both demands is T = 8. This can be presented by using a time-expanded layer
graph as follows.

K

<+ Commodity 2

0 1 2 3 4 5 6 7 8

+ Commodity 1

Figure 4.1: The time-expanded layer graph with flow-dependent capacity sharing.
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Table 4.1 represents the flow pattern of two commodities that reach the destination with different
time horizons T'. Due to the absence of Commodity-1 in the first two time steps, only Commodity-2
with flow value 4 is transported from path so —x —y — to. Similarly, only Commodity-1 is transported
i path s1 —x — y — t1 with flow value 8 after the demand of Commodity-2 is fulfilled.

Table 4.1: Transshipment of flow in paths.

Time Commodity-1 (d; = 35) Commodity-2 (do = 25)
Horizon | si-t1 | si-x-y-t1 | flow | cumf. | sg9-z-y-to | so-to | flow | cumf.
3 4 - 4 4 4 - 4 4
4 4 2 6 10 4 3 7 11
5 4 2 6 16 2 3 5 16
6 4 2 6 22 2 3 5 21
7 4 3 7 29 2 3 5 26
8 4 3 7 36 - - - -

cumf. = cumulative flow

Although the time complexity in the worst case analysis for the QMCF problem with flow-
dependent capacity sharing is weaker (pseudo-polynomial) than the proportional capacity sharing
(polynomial), the quickest time to satisfy the given demand by flow-dependent capacity sharing is
better than the proportional capacity sharing. In Figure 4.2, we compare the change in cumulative
flow with respect to time for Commodity-2 by using proportional as well as flow-dependent capacity
sharing graphically. Comparison for Commodity-1 is as similar to the Commodity-2. It shows that
the quickest time to satisfy demand dy = 25 with proportional capacity sharing is 7' = 8 and with
flow-dependent capacity sharing is 7' = 7.

cumf.
28
=% K

20 ,

S
Q
&
3
Q
Q

R
N

16

12 /o

o1 2 3 4 5 6 7 8 9 T

Figure 4.2: Cumulative flow (cumf.) for Commodity-2. Dashed blue curve represents the flow-
dependent capacity sharing and solid red curve represents the proportional capacity sharing.
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5 Conclusions

Quickest multi-commodity flow (QMCEF) problems are relevant to real-world scenarios such as
transportation management, communication networks, emergency response, and supply chains, where
the goal is to deliver services as quickly as possible. Although QMCF problems are N'P-hard, re-
searchers are exploring various approximation methods like length-bounded approximation and con-
densed time-expanded networks. Not only on fixed transit times but flow-dependent transit times,
time-dependent flows, flow-dependent capacity distribution, scaling of time, capacity and cost are
active areas of new research.

In this paper, we have presented flow models for the quickest flow problem with multiple commodi-
ties and provided an analytical solutions using two different capacity-sharing techniques: proportional
and flow-dependent. We developed an algorithm to solve the QMCF problem using a cost-scaling
approach with proportional capacity sharing on the bundle arcs, achieving a time complexity of
O(n*m|K|log(nC)). Additionally, we presented an algorithm for solving the problem with flow-
dependent capacity sharing by introducing a three-dimensional time-expanded layer graph. Although
the time complexity for the quickest flow with flow-dependent capacity sharing is pseudo-polynomial,
it achieves quicker solutions for the multi-commodity flow problem than proportional capacity sharing.
As far as we know, the solution strategies for the QMCF problem presented in this article are novel
contributions. The possible extension of this work can be stochastic demand scenarios or uncertain
transit times together with solution strategy using graph condensation.
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