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Abstract

Mobile Edge Computing (MEC) system is now one of the most emerg-
ing sectors in wireless communication. It provides computation capa-
bility near the edge users and reduces the dependency on the Internet
Cloud (IC). The edge users offload the task to the MEC server due to
the lack of computing resources for executing resource-hungry applica-
tions. MEC servers can serve faster as they are quite close to the edge
users but have limited computation resources compared to IC. On the
other hand, IC has abundant computation resources but offloading to
IC will add extra latency to complete tasks execution. In this scenario,
an MEC has to decide intelligently which tasks should be executed
by itself and which should be sent to IC. In this paper, we addressed
this issue of task assignment and execution either on MEC or on IC
and formulated an optimization problem to reduce the task process-
ing latency. The problem is Integer Linear and NP-Complete, thus
having higher time complexity. In this regard, we proposed a Genetic
algorithm-based Meta-Heuristic method to solve the task completion
problem considering the delay constraint of the user. Simulation results
of the proposed method indicated improvement in terms of successful
task execution, task turnaround time, and better Quality of experience
(QoE) compared to the state-of-the-art works.

Keywords: Mobile Edge Computing, Task Assignment, Genetic Algo-
rithm, Quality of Experience, Internet Cloud.

Highlights

e Efficient task assignment in Edge-Cloud Networks using Genetic
Algorithm.

¢ Improved task execution success rate and turnaround time.

¢ Enhancing Quality of Experience (QoE) for edge users through
intelligent task offloading.
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1 Introduction

The usage of mobile devices is increasing and the demand
for computing capability is getting higher at the edge net-
work. Resource-hungry applications such as augmented
reality, online gaming, natural language processing, etc.
[11-[3] getting popular. However, the processing capa-
bility and the requirements of external computation re-
source initiates the task offloading from the user device to
the cloud server. As the communication latency with the
cloud server is higher, the Mobile Edge Computing server
(MEC) can play a significant role in decreasing the delay
[4], [5]. Also, the MEC servers can share their resources
with each other to increase the computation capability
at the edge network [6]. The user equipment (UE) has
a delay constraint for executing latency-critical tasks. A
UE can be any mobile device like a smartphone, laptop,
IoT device, etc. When external computation is required
for certain applications then the UE offloads data to the
MEC server. The MEC server can serve UEs faster than
cloud servers as they are deployed at the edge network.
Although MEC is faster in terms of serving UE, they are
not resource-rich like cloud servers. Hence, they cannot
serve all the tasks offloaded by the UEs at a time. Again,
if a UE offloads tasks directly to IC, this will add extra
latency for communication and data transmission. In that
case, if UEs offload tasks to the MEC server, then due to
resource shortage tasks will be placed in the queue for exe-
cution, and hence queuing delay will be increased. To aid
the situation and to meet individual task delay constraints,
MEC can collaborate with the cloud server. MEC server
can send some tasks to IC to reduce queuing latency. Now
the question will arise, which tasks should be executed
on MEC, and which tasks should be executed on the IC?
The MEC server has to solve this problem intelligently to
maintain a better Quality of experience (QoE) for UEs.

In the paper [7]] authors have considered an environment
where UE offloads tasks to MEC and they formulated this
offloading problem using game theory and proved Nash
equilibrium among mobile devices while offloading hap-
pens. Again, after observing [8]], [9] and [10], we saw some
lack while providing computation resources for execut-
ing tasks offloaded by the UEs. They barely consider the
quality of experience (QoE) of the UEs. To achieve QoE,
a collaboration between MEC and IC is required. In this
process, MEC with fewer resources can offload some of the
incoming tasks to the IC which holds enough abundant
resources. In [11] authors proposed an IoT-based smart
stick that can be connected to an MEC server; thus, we can
consider the tasks offloaded by that device will be latency
critical. When we are dealing with latency-critical tasks,
the challenging problems here are what to offload and

what should not, when to offload, and how much should
be offloaded to the IC. In [12] authors proposed collabo-
ration of MEC and IC in the telemedicine or smart health
care environment. They tried to reduce the offloading
cost to the hospital of the UEs. They proposed a genetic
algorithm-based solution called CEGA where, MEC di-
rects UEs to offload tasks either to MEC or IC without
considering task execution latency. In [[13] authors consid-
ered MEC and IC and proposed a cooperative scheduling
scheme (CSS) which is a binary decision-making process
to offload tasks. In their approach when the MEC server
is going to face resource scarcity due to the queued tasks,
MEC decides to offload newly incoming tasks directly
to the IC server without considering the task completion
delay deadline. On the other hand [14] proposed an exe-
cution delay-aware greedy method called heuristic tasks
assignment (HTA) for completing tasks execution either
in MEC or IC server. They calculated a ratio of the task
completion time requirement of MEC and IC and used
this as a heuristic value. Based on the heuristic, tasks are
separated for execution on MEC and IC. In this case, the
solution may not be reliable as this approach does not
consider all possible cases to generate a solution.

In this paper, we have designed tasks offloading and exe-
cution strategy collaborating MEC and IC. In this method,
the tasks offloaded from UEs first come to the MEC server.
The MEC server will be responsible for partitioning tasks
into two groups. One group of tasks will be executed
in MEC and the other in the IC server. The MEC server
must partition the tasks intelligently based on the delay
constraints of the tasks and the computation and storage
resource availability of the MEC server. Hence an opti-
mization problem needs to be formulated and solved by
the MEC server to minimize overall task completion time.
After observing the complexity of the proposed optimiza-
tion problem, we have designed a meta-heuristic solution
called Genetic Algorithm-based Task Assignment (GATA).
Here we designed each chromosome of the initial popu-
lation based on the decision factor of the incoming tasks.
The decision factor is a binary variable that indicates a
task will be placed either in MEC or in IC for execution.
The value of this factor will be randomly selected. Now
crossover and mutation process will generate new chro-
mosomes and the next generation will be created. After
running several iterations, the best chromosome will be
selected based on the fitness value. From this chromo-
some we can easily create two disjoint task sets (based on
the value of the decision factor) to execute tasks in MEC
and IC. The major contribution of our proposed policy is
summarized below:

¢ We formulated our problem of task assignment on
MEC and IC server as a delay optimization problem.
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Where tasks offloading delay, execution delay, and
queuing delay are considered. The objective is to
complete task execution within the task delay dead-
line, and resource constraints of the MEC server to
enhance better QoE of the UEs

* The optimization problem is an Integer Linear and
NP-complete problem. Although the optimal solu-
tion is highly time-consuming according to [[14].

¢ We proposed a meta-heuristic algorithm GATA to
reduce the time complexity of the optimization prob-
lem. Here we iterate the algorithm for several hun-
dreds of generations to achieve a near-optimal solu-
tion.

¢ Finally, we compared our work with some related
literature work CEGA [12]], HTA [14] and CSS [13].
The results represent the performance enhancement
of our proposed policy compared to the existing
works.

The rest of the paper is organized as follows. Section [2]
contains our present literature study. In Section 3| we elab-
orate on our system model and assumptions. Problem
formulation and solution are designed in Section 4 In Sec-
tion |5} we described and analyzed the simulation results.
Finally, we conclude our paper in Section |6}

2 Related works

In recent years, usage of the mobile edge computing server
has increased dramatically. As most people are using
smart devices or making smart homes using IoT and In-
ternet connectivity, the necessity of external computation
is increasing. Hence the devices offload tasks to nearby
MEC servers to execute their tasks. In [7], Chen et al.
discussed the offloading process where the decision to
offload is taken by mobile devices by running a game the-
oretic algorithm that achieves Nash equilibrium. Even
though the algorithm was slightly worse than the central-
ized method. Their main drawback was the considera-
tion of unlimited resource capacity in the telecom (MEC)
cloud. This is not practical as MEC servers are designed
as small-scale servers [15]. In [8]] Liu et al. encountered a
challenging two-timescale stochastic optimization prob-
lem of scheduling tasks offloaded by UEs to the MEC
server. The key limitation of the proposed method is that
the mobile devices require feedback from the MEC server
to decide whether to offload or not and eventually it re-
sults in decreasing QoE of the user. Load sharing scenario
between local cloud and Internet Cloud discussed in [9]
where Gelenbe et al. considers average response time and

energy consumption of the servers. Although average
delay measurement sometimes provides an inappropriate
conclusion for burst traffic. In [10] Guo et al. proposed
a different design policy that assigns tasks generated at
the mobile subscribers with edge clouds according to the
index which is calculated by considering edge cloud delay
and operational power consumption. But again, consider-
ation of the limited resource constraints at the edge server
was not there and energy at the edge server should not be
that much of a concern.

In [12], authors designed a task offloading scheme consid-
ering the telemedicine environment. Here they designed
a smart healthcare system called Cost Effective Genetic
Algorithm for Tasks Offloading (CEGA) where UEs are pa-
tients, and they can offload the health status to the hospital
using MEC or IC. They optimized the cost of offloading
the UEs. They only considered the tasks offloading choice
of the UEs and focused only on minimizing the cost of UEs
for offloading tasks to remote servers combining latency
and energy cost. The impact of task execution and the
queuing delay of MEC and IC servers is not considered.
In [13] Zhao et al. discussed a cooperative scheduling
scheme (CSS). They designed a threshold-based schedul-
ing scheme knowing the limited resource availability of
the MEC server, thus they collaborated with the Internet
cloud’s abundant resources to serve incoming tasks. The
limitation of their work is they offload newly incoming
tasks directly to the IC server if the tasks queue of the
MEC is full. The authors in [14] designed an optimal task
scheduling policy considering task execution delay. Al-
though the complexity of the problem is high. Hence, they
proposed a heuristic task assignment (HTA) algorithm for
partitioning tasks for executing in MEC or IC. Again, the
heuristic greedy approach could stuck in the local opti-
mum solution and can overlook the best possible solution
for task placing either in MEC or IC server and completing
the execution considering offloading delay, queuing delay,
and execution delay.

3 System Model

Fig. [l| represents the total system where we are consid-
ering Mobile device users as UE, MEC server consists of
multiple VMs and is connected to the Internet cloud. The
UEs are scattered and distributed according to the Poisson
Point Process. We assumed that there is an n number of
UEs and that all the UEs are connected to the MEC server
by the wireless medium.

The task arrival rate at the MEC server is A and we con-
sidered each user will offload one task at a certain ref-
erence time. The MEC server has limited computation
and storage resources, on the other hand, we considered
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Internet Cloud Table 1. Notations of variables
Description Notations
Task Delay Deadline T
Task Data Size D
MEC Turnaround Time T.
Internet Cloud Turnaround Time T
. Task Arrival rate A
e Number of VM /Servers in MEC S
e Queuing Time in MEC q
S Bandwidth B
Total tasks set at MEC Sn
Tasks set for MEC execution Se
Tasks set for IC execution Sc
[ e et o it N ___________ \ can be noisy, the effective data rate R; can be calculated as
oo 1
g 1 . . ' . 1 R —B: +1 1 pihi 1
' ml] e ea]--- e[ i =Bitlogy (1+5 57 ), @
e}
S : UE 1 UE 2 UE3 UEN 1
1

Fig 1. System Architecture

the Internet Cloud (IC) to have abundant computation
resources compared to MEC. When UE cannot be able to
compute the tasks by itself, then the tasks are offloaded to
the MEC server. MEC servers having limited computing
resources will determine which tasks can be executed and
which tasks should be sent to the IC based on the task
delay constraints and resource availability constraints of
the MEC server. After the execution of the tasks, the MEC
server will provide the results back to the UEs. The list
of notations of variables we have assumed and used to
express our equations is given in Table

3.1 Network Model of UE and MEC

UEs are executing delay-sensitive applications and if they
cannot compute a task and get the desired result by them-
selves then tasks will be offloaded to the MEC via wireless
communication using the base station. Let’s assume a UE 1
generates a task A; = (Dj, Ci, T;) where Dj is the the task
data size in bits, C; is the number of CPU cycles required
to process per bit of the task, and T; is the task delay dead-

where the transmission power is pj, channel gain is h;
of iy, user. Also, p? represents the noise power which is
normalized by the transmission power p;. Therefore, the
delay for offloading is

@

In this paper, we ignored the delay in downloading the
result after completing task execution, as the downlink
data rate is considerably much higher [16] compared to
the uplink data rate.

3.2 MEC Computation and Storage Resource
Model

MEC server has limited computation resources, where the
VM is the smallest unit that can execute tasks offloaded by
the UEs. Suppose the MEC has a total W GHz computing
resource, Q GB of storage resource, and V number of VMs.
Hence the computation ability of VM is W/V. For a UE 1,
as CPU cycles required for processing per bit is €; then
CPU cycle required for executing tasks A; is

®)

wi :61><£Di.

If the computation resource of the VM where task A; will
be executed is f{ then the execution time at MEC for the
task will be

line. Also, suppose the MEC allocates bandwidth for a UE Wi 1
iis the B; where the total bandwidth is B. As the channels v ? @)
Green University Press vol. 09, no. 01, 2022 45
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Now the total delay faced by the UE i for executing the
task

Te =T +Ti+a 5)

where q; is the queuing delay faced by the tasks A; at MEC
server queue. We considered the MEC server has a task
queue that follows the M/M/C model according to the
paper [14], hence for the case of simplicity we considered
the equations for calculating queuing delay from [14].

3.3 Internet Cloud Model

The MEC server is connected to the Internet cloud via the
wired backhaul network. After offloading a task to the
MEC server by a UE i, the MEC will determine if the task
can be executed in that server, or if it will require sent to
the IC. If there is a resource shortage and the task delay
constraints permit, then the tasks should be executed in
the IC. Hence the UE must face execution, transmission,
and reception delays. We represent this IC delay using T}
following the proposed model of [13], [14].

4 Problem Formulation and Meta
Heuristic Solution

In this section, we have formulated our optimization prob-
lem and based on the nature of the problem’s complexity,
a meta-heuristic solution approach is.described.

4.1 Optimal Tasks Assignment

As the tasks have delay constraints and should be exe-
cuted, and the result of execution needs to be feedback
within the delay deadline. The MEC server needs to de-
cide which tasks should be executed in it and which tasks
should be executed in the IC. As we consider the task exe-
cution delay should be optimized to ensure better QoE of
the UEs, we need to find out the optimal task assignment
sets for MEC 87 and for IC | from the total tasks set 8.
Hence the problem is a minimization problem where we
minimize the total tasks completion delay and generate
two disjoint task sets 87 and 8. Thus, the problem can be
illustrated according to the paper [14] using Eq. [|to Eq.
as follows

argmin 2T)=) Te+) T2 (6
8¢,8c € PSn i€S, jESe
Subject to:
Te < T, @)
T <75, ®)

GUBJSE
> wi W )
1€8,

) DL<Q (10)
i€8,
Se U SC g STL/ (11)
8eNSe = 0. (12)

The objective function in Eq. || finds a minimum process-
ing delay of all tasks offloaded to the MEC server, where
tasks in set 8. are executed in MEC and tasks in set 8. are
executed in IC.

Eq. [/} [8| refers that the task completion time required by
MEC and IC must have to fulfill the delay deadline of
that particular task. The total computation and storage
resources are fixed for the MEC server, hence constraints
(9) and (10) ensure the tasks which will be executed in the
MEC server should not exceed the available computation
CPU cycle and storage resource respectively. Constraint
in Eq. |11| represents that union of 8. and 8. can be the
total tasks set or if it is not possible for some tasks to
complete within delay constraints, that will be considered
as a failure of scheduling. Constraint Eq. [12|refers that the
set 8¢ and 8. are both disjoint to each other.

After analyzing the problem, we have formulated, we
observed that the problem is NP-complete according to
the paper [14], although getting the optimal solution is
time-consuming and the QoE of UEs will be drastically
reduced if we try to get the optimal result.

4.2 Genetic Algorithm-based Tasks Assign-

ment

The optimal solution is not feasible considering the task’s
delay deadline. In this regard, we designed a meta-heuristic
approach to solve the problem. The genetic algorithm runs
based on the generations of the population. The UEs are
offloading tasks to the MEC server at the rate of A. The
MEC server will consider the newly arrived tasks and the
remaining tasks in the previous time slot to make the total
tasks set 8;,. The chromosome represents the combination
of genes.

In Fig. 2| we represented chromosomes considering six
tasks, where the index of the array represents the task
number, and the value of each indexed cell represents the
decision factor x; to represent the single gene of each chro-
mosome. The x; = 1 indicates the task i will be placed in
the 8. set and will be executed in the MEC server. And
xi = 0 means the tasks will be placed in S. set and will be
executed by IC. We made a population that is a reasonable
subset from all possible task arrangements using simple
random sampling without replacement approach. As the

46

vol. 09, no. 01, 2022

Green University Press



GUBJSE

Task Offloading and Execution Using Genetic Algorithm

Task number

Crossover position —>
1 2 3 4 5 6

Parent 1 1 0 1 0 1 1

Parent 2 0 0 1 1 0 0

Offspring 1 1 0 1 0 0 0

Offspring 2 0 0 1 1 1 1

(a) Crossover between two parent chromosomes

Mutation position

|

1 2 3 4 5 6

Task number

Parent 1 0 1 0 1 1

Offspring 1 0 1 1 1 1

(b) Mutation of parent chromosome

Fig 2. Crossover and Mutation operation to generate new
offspring in GATA.

size of 8y, is n then a task A; will be picked with proba-
bility 1/n, which indicates all tasks are equally likely to
be sampled. In Algorithm 1 we presented the proposed
meta-heuristic approach using a genetic algorithm for task
assignment in MEC and IC servers. After generating the
initial population, we have to - calculate the fitness of each
chromosome. Fitness can be calculated using Eq.

F =

Y Ti+ Y T xm.

i€8e JES.

(13)

The value of F includes the total delay for n number of
tasks either executed on the MEC or on the IC server,
multiplied by the weight factor. Here m in Eq. [13|is the
weight factor and the initial value is 1 which indicates all
the tasks are executed within the delay deadline of each
task.

The value of m will increment by one for every task’s fail-
ure (can not be executed within delay constraint). The
intuition to multiply the weight factor is to increase the
value of J for a particular chromosome having many fail-
ures. Hence when we sort chromosomes, then the worst
chromosomes having a large value of F will be ranked
lower. Now we will sort the chromosome according to
the increasing fitness value which means the chromosome
which has a combination of minimum delay requirements
and lower failure of tasks and will be ranked higher.
After sorting the initial population in the increasing order
of fitness value, we choose the best two chromosomes as
the parent and crossover them to get new offspring. To do
so, first, a random value smaller than n will be selected
and then two-parent chromosome will interchange their
genes from the selected index. As depicted in Fig. [_7{%}
let’s say the selected index is 5, then the genes from 5

to the last index from parent 1 will be replaced by parent
2 genes and vice versa. For mutation, we have used the
bit-flip mutation approach. In the mutation process, a
random index or task number will be selected, and the
value of that index will be flipped. For example, in Fig.
the 4™ task is expected to be executed in IC, although
by mutation we changed the bit so that the task is now
expected to be executed in the MEC server. We considered
the crossover and mutation probability according to [17].
This process will continue until the termination condition
is met. Finally, the best chromosome based on the fitness
value will be selected to make the task sets 8, and 8.
Where it" task will be placed in the MEC set or IC set
considering the value of decision factor x; and the selected
server will complete the execution of the task.

Algorithm 1 Genetic Algorithm Based Task Assignment
for Near-Optimal Task Scheduling

Input: set &,

Number of Iteration =1
Crossover probability = P,
Mutation probability = Py
Output: set 8¢, set 8¢

1. Make tasks population for 8;, using simple random
sample without replacement (SRSWOR)

2. fori=1toldo
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(a) Calculate the fitness (&) value of each chromo-
some using Eq. [I3]

(b) Sort population based on fitness value in in-
creasing order

(¢) if random(0, 1) < P, then
i. Select crossover index randomly
ii. Perform crossover between best two genes

(d) if random(0,1) < Py then
i. Perform bit-flip mutation

(e) Add newly created offspring by crossover or
mutation or by both to the next generation

3. Retrieve the first gene as the best possible solution
of 8,

4. Make 8. where value in the tasks index is 1

5. Make 8. where value in the tasks index is 0

Considering the number of tasks or number of genes in
each chromosome N, the number of iterations I, popula-
tion size M, the complexity of the proposed GATA algo-
rithm is - O (NM) for initial population generation, O (N)
for calculating fitness value, O (Nlog N) for sorting the
chromosomes according to the ascending order of the fit-
ness value, O (N) for single-point crossover and mutation,
and finally O (N) for task sets generation. Hence total
complexity willbe O (NM +I(N+NlogN+N)+N) ~
O (NM+INlogN).

5 Performance Evaluation and Result
Analysis

We have evaluated our algorithm based on the assump-
tions and constraints. We followed the similar system
environment and setup requirement of Cloudsim and
device configuration as described in [[14]. We set the sim-
ulation environment considering image processing tasks
and the task arrival rate is between 10 to 90 per second,
having delay deadline distribution between 250 to 400 ms.
Allocated bandwidth by MEC to UE is 10 Mbps, data size
is 5MB, and tasks instruction size 600 ~ 1000 MIPS. For the
MEC server and IC server, we followed the SpaceShared
method in the CloudSim tool for CPU and memory allo-
cation of the virtual machines (VMs). For the compara-
tive study we compared our proposed GATA with three
state-of-the-art works HTA [14], where authors proposed
a heuristic algorithm based on priority factor calculated
using MEC and IC execution time and CSS [13], where au-
thors considered binary decision method to offload either

in MEC or in IC. The GATA is also compared with CEGA
[12], where authors only solved the offloading decision-
making problem without considering queuing delay and
tasks execution delay of MEC or IC server.

5.1 Performance Metrics
5.1.1 Success Rate of Tasks Execution:

The average number of tasks successfully executed within
the constraints of the UEs is measured and the Percentage
is calculated by this method. In this case, we considered
all the tasks either executed on MEC or on IC. The tasks
which delay deadlines were not satisfied are considered
failures, but the execution will be done in any one of the
servers.

5.1.2 Average Turnaround Time of Tasks:

This is calculated for the successful completion of tasks.
When a task of any UE is successfully offloaded and exe-
cuted and the server provides the resulting feedback, the
time required for all these actions will be considered in
this metric.

5.1.3 Average Service Provision Time:

Service Provision can be described as providing some ser-
vices to some entity that require external computation or
other resource-oriented services. A system will be con-
sidered to perform better if its service provision time is
much smaller, that is, it can provide services faster to the
incoming tasks. Faster service provision indicates better
the QoE of UEs.

5.2 Results and Discussion:

We studied the performance of the GATA method by
changing the task’s arrival rate and changing the num-
ber of VMs in the MEC server.

5.2.1 Impact of Varying the Tasks Arrival Rate:

In Fig. 3| we observe the impact of varying task arrival
rates at the MEC server. In this case, we varied the task
arrival rate from 10 to 90 tasks per second. The number
of VMs in the MEC server is considered 7. Task size and
other parameters are generated using random distribution
according to the mentioned range.

Fig. [3alrepresents the successful task execution rate for all
the methods. We can see that when the task arrival rate is
low like 10 or 20 tasks per second, HTA, CSS, CEGA, and
GATA have a nearly similar success rate. When the arrival
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rate increases, the success rate decreases for all the meth-
ods. The GATA outperforms the rest of the methods as in
this approach we are using a meta-heuristic strategy and
we run our algorithm for several hundreds of iterations.
which ensures a near-optimal result for our formulated
optimization problem. This also indicates that the GATA
generated better task assignment decisions than other ap-
proaches, especially CEGA. As in CEGA, authors only
considered task offloading scenarios. But in GATA we
considered the user’s tasks offloading and execution delay
along with queuing delay in remote servers to make the
decision for task completion.

Hence, GATA returns the best possible server selection
decisions for task execution. Therefore, this method im-
proved the successful task completion rate compared to
other approaches.

In Fig. |3b| we can observe the average turnaround time
(TAT) of tasks increases when the task arrival rate in-
creases. When the incoming tasks increase at MEC then
due to resource shortage MEC has to send more tasks
to the IC server. Hence the turnaround time of tasks
increases. Although the proposed GATA approach has
achieved less TAT for the UEs and outperforms the heuris-
tic approach HTA and binary decision-based approach
CSS. Also, GATA ensures better TAT than CEGA since,
the CEGA approach emphasize only on offloading latency.
As MEC is closer to the UEs than IC, the CEGE method
will try to choose MEC as the best possible server for of-
floading, which will increase task queuing in MEC. This
will result in increasing TAT for tasks.

In Fig. [Bdthe average service provision time is measured
for all methods. At the very beginning when the task
arrival rate is very low then the service provision time
for the tasks is very low and nearly similar for all the
related works. When the arrival rate increases the service
provision time also increases. As the increased number of
tasks requires more resources to execute, the MEC cannot
afford to provide resources due to resource shortage. In
that case, more tasks are sent to the IC and the tasks need
to wait more time to get the required service. The GATA
ensures less waiting time for the tasks getting service, than
other strategies. The reason behind this is, that in GATA
when MEC observes a large number of tasks that need to
be completed, then analyzing the load status of itself and
IC, MEC will make better decisions for selecting the tasks
execution server. Which is numerically depicted in the
graph.

5.2.2 Impact of Varying the VMs in MEC

Fig. @]represents the impact of varying the number of VMs
in the MEC server. For this case, we considered the task’s
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arrival rate as 90 per second and changed the VM number
in the MEC server.

Fig. [4a| depicts the successful tasks execution rate of tasks.
As we are increasing the VM number in MEC it means we
are increasing computation resources at the edge. Hence
when we are increasing the VMs more tasks can be easily
served by the MEC server. Thus, the rate of successful
task execution increases. The proposed GATA approach
ensures more success rate compared to HTA, CSS, and
CEGA.

In Fig. [Ab] we can see that the average turnaround time
decreases for all the mentioned methods and the GATA
has a very decent TAT than the rest of the approach. As
the increased number of VMs indicates MEC resources are
increasing, hence more tasks can be executed in the MEC
server. In this case the queuing delay will be reduced, and
more tasks can be executed parallelly.

Similarly in Fig. 4c, we observe that, the average service
provision time decreases due to the increment of MEC
resources in terms of VM. This ensures tasks will face
less delay in getting service at MEC. The proposed GATA
outperforms other works by taking decisions intelligently
using genetic algorithm.

6 Conclusion

In this paper, we have described the task offloading and ex-
ecution problems collaborating with MEC and IC servers.
Tasks offloaded from UEs must be executed within the
delay constraint, hence MEC has to make decisions intel-
ligently considering task offloading delay and execution
delay along with queuing delay at either in MEC or IC
server. We proposed the GATA method for this scenario
based on the genetic algorithm due to the complexity of
the optimal decision-making problem of the MEC server.
The GATA indicates a significant impact on successful
task execution rate, reducing TAT and service provision
latency. In the future, we will consider a multi-MEC sce-
nario for resource sharing and interaction among them.
We will explore different machine-learning techniques to
solve the problem of resource sharing to improve edge
resource utilization.
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