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Abstract
Time and cost are two remarkable elements prescriptive of  success in project management. 
The anticipated project length may go over the desired period in many projects. Therefore, it 
becomes vital to shorten the critical path in order to finish the project by the goal date. 
Time-cost trade-off  (TCT) in project network, the reduction in time with a minimum cost of  
project activities, has increased efficiency of  the project. To shorten a project duration activity 
crashing, which includes allocating additional resources to an activity with the objective of  
diminishing its duration, is the most commonly employed compression technique. The 
objective of  an optimum solution of  time-cost trade-off  is to provide maximum profit 
opportunity with a minimum time. There are many algorithms (heuristic, meta-heuristic and 
exact) established in this regard. In this paper a constructive algorithm is proposed and 
implemented with a fairy application example to acquire optimum solution or close-optimum 
solution of  TCT problems.
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1. Introduction
In the construction sector, construction management is a relatively new field. 
Its impact, on the other hand, has been enormous. It is now a widely used 
strategy for improving the efficiency of  building projects in everywhere. In 
the construction sector, construction management is a 
relatively new field. Its impact, on the other hand, has been 
enormous. Due to the entry of  new enterprises into the 
market, competition in the construction industry has been 
increasing. As a result, project management struggles to 
identify the most effective schedule based on a variety of  
factors such as time, money, and other operational 
resources. The ability to complete a project in minimum 
time and at a lower cost is an important factor to consider 
while designing a structure. Accelerating the project 

timetable, on the other hand, costs more because the activity length is 
reduced, necessitating the use of  extra resources. Decision makers can 
perform a TCT problem if  a project is running behind schedule. TCTP 
assists in familiarizing oneself  with the collection of  time–cost options that 
will ensure the best timetable under certain conditions.

2. Existing methods of  Time-Cost Trade-off
The time of  a project can be shortened by spending more money to expedite 
important processes. The expense of  a critical activity raises when the activity 
is crashed, shortening the project's duration. The indirect cost is reduced 
when the project time is reduced, Optimum project budget in Time-Cost 
Trade-off  situations is sought (Hegazy, 1999a)
 The significance of  the TCT matter was identified nearly alongside with 
the outline of  project investigation methods (Kelley Jr. & Walker, 1959; 
Kelley Jr, 1961; Fulkerson, 1961). Some heuristic methods have been created 
with the goal of  finding the best answer to TCT problems. The heuristic 
algorithm developed by Siemens (1971) was the first significant attempt to 
address the TCT problem, and further (Goyal, 1975; Siemens, & Gooding, 
1975) enhanced this algorithm. Heuristic methods for TCT with linear cost 
curves were further developed by Barber and Boardman (1988), Chiu and 
Chiu (2005). The above-mentioned methods afford the best result for 
continuously crashing jobs, but they cannot assurance convergence to the 
worldwide best for discrete or non-linear crashes. Berman (1964) devised a 
method for optimizing networks with continuous cost functions that are 
concave. Falk and Horowitz (1972) used the branch-and-bound algorithm to 
investigate concave continuous cost functions. Vanhoucke (2005) also 
suggested the BaB method for the TCT problem. TCT was also solved using 
network decomposition methods (Vanhoucke & Debels, 2007; Schwarze, 
1980; Demeulemeester, Herroelen, & Elmaghraby, 1996; Demeulemeester, 
De Reyck, Foubert, Herroelen, & Vanhoucke, 1998; Haz r, Haouari, & Erel, 
2010).
 Srivastava and Pathak (2014) used a neural network to solve the TCT 
problem. Lower boundaries for time-cost relationships are provided by 
integer programming, mixed integer programming and linear programming. 
IP, LP and mixed-integer are established (Sakellaropoulos & Chassiakos, 
2004; Moussourakis & Haksever, 2004; Bidhandi, 2006; Hazr, Haouari, & 
Erel, 2010; Liberatore & Pollack-Johnson, 2006; Liu, Burns, & Feng, 1995; Al 
Haj & El-Sayegh, 2015; Moussourakis & Haksever, 2007).
 TCT (De, Dunne, Ghosh, & Wells, 1997) is the search domain which 
grows much quicker than the project size, known as NP-Hard. As a result, 

the memory requirements and computational demands of  accurate 
algorithms skyrocket. For the solution of  TCT, GA is by far the most 
popular meta-heuristic algorithm (Lee, Roh, Park, & Ryu, 2010; Zhang & 
Xing, 2010; Li, Cao, & Love, 1999; Bettemir, 2009; Feng, Liu, & Burns, 1997; 
Hegazy, 1999a). Shuffled Frog Leaping and the Hybrid Genetic Algorithm 
successfully determine small projects in a sensible amount of  time (Sonmez 
& Bettemir, 2012; Elbeltagi, Hegazy, & Grierson, 2005). For large projects, 
however, an optimal or near-optimal solution necessitates nearly 1.5 million 
schedule evaluations (Bettemir, 2009). Furthermore, for the TCT problem, 
(Anagnostopoulos & Kotsikas, 2010) Simulated Annealing is  
(Anagnostopoulos & Kotsikas, 2010; Yang, 2007) implemented Particle 
Swarm Optimization, and (Zhang & Thomas, 2012; Zhang & Xing, 2010) 
employed Ant Colony Optimization, hybrid evolutionary algorithm  
(Rogalska, Bo ejko, & Hejducki, 2008; Geem, 2010) used Harmony Search. 
Using Building Information System software TCT was studied by Cha and 
Lee (2015).
 Time and money aren't the only factors to consider while designing a 
project. As a result, different variations of  the time-cost trade-off  dilemma 
are investigated. Time-cost-quality trade-off  is improved by adding quality to 
the TCT problem (Babu & Suresh, 1996; Monghasemi, Nikoo, Fasaee, & 
Adamowski, 2015; Khang & Myint, 1999; Kim, Kang, & Hwang, 2012; 
Tareghian & Taheri, 2006; Tavana, Abtahi, & Khalili-Damghani, 2014; Zhang 
& Xing, 2010; Mungle, Benyoucef, Son, & Tiwari, 2013).
 In TCT, time and cost required options are considered to be predictable. 
Both activity costs and durations, on the other hand, are unpredictable, 
(Yang, 2005; Kalhor, Khanzadi, Eshtehardian, & Afshar, 2011; Azaron, 
Perkgoz, & Sakawa, 2005; Zheng, Ng, & Kumaraswamy, 2005; Leu, Chen, & 
Yang, 2001; Ke, Ma, & Ni, 2009; Li & Wang, 2009; Yang, 2011; Xu, Zheng, 
Zeng, Wu, & Shen, 2012; Eshtehardian, Afshar, & Abbasnia, 2009; Said & 
Haouari, 2015; Chen & Tsai, 2011).
 TCT matter is solved by presuming an endless supply of  resources. 
When resources are limited in quantity, the problem is referred to as 
multi-mode resource restricted project scheduling. TCT with restricted 
resources to account for resource availability is solved (Liu & Wang, 2008; 
Hegazy, 1999b; Ghoddousi, Eshtehardian, Jooybanpour, & Javanmardi, 
2013; Cheng & Tran, 2016; Rostami, Moradinezhad, & Soufipour, 2014; 
Afruzi, Najafi, Roghanian, & Mazinani, 2014).
 TCT problem was solved by Metwally and Elazouni (2007) by reducing 
the negative cash flow, while (Ammar, 2011) was solved it by optimizing the 
principal. Furthermore, (Fathi & Afshar, 2010) used GA to optimize the 

NPV of  the profit, whereas Koo, Hong and Kim (2015) solved the 
Time-Cost situation trade-off  by introducing ecological impact.
 To summarize, meta-heuristic algorithms are computationally intensive, 
heuristic methods do not always show a proper solution, and proper 
techniques are difficult for building organizers to perform. Thus, a reliable 
constructive algorithm for the distinct Time-Cost Trading issue is till now 
missing. The best solution for the united TCT problem is found using the 
minimum cost slope approach. However, because discrete crashing choices 
limit the creation of  linear cost functions, the approach is not appropriate for 
the distinct TCT problem. To solve the distinct TCT problem, a simple, 
maximum converging, and fast network analysis technique stimulated by the 
lowest cost-slope procedure is suggested in this study.

3. Proposed model structure
PCA (Proposed Constructive Algorithm) finds the best schedule by crashing 
activities one by one. The crashing possibilities are not chosen grounded on 
the greatest advantage, because the greatest advantage might not have been 
the greatest option if  the staff  conditions are removed. When a project is 
completed forward of  schedule, however, the prize becomes a permanent 
payment. The crashing cost is contrasted to the entire of  the incentive and 
the indirect cost in this situation.
The technique for reducing the project duration with minimum cost can be 
abridged in the following phases:

Step-01: Enumerate the cost slope of  each activity.
Step-02: Determine all possible paths of  the network.
Step-03: Determine the critical path(s).
Step-04: If  there be a single critical path, find the activity with the minimum 

crashing slope in the critical path.
Step-05: Estimate the reducing(saving) time.
Step-06: If  there are multi critical paths, determine the crashing 

combinations.
Step-07: Find the lowest combination crashing curve.
Step-08: Go to step-06.
Step-09: If  the crashing is feasible, then crash the activity (or combination of  

activities).
Step-10: Is the path(s) should be rescheduled?
Step-11: If  yes, evaluate schedule and then go to step-04.
Step-12: If  no, then go to step-04.
Step-13: If  the crashing is not feasible, then select the untried crashing choice 

with the minimum crashing cost and then go to step-06.
Step-14: If  the crashing is fuzzy, then evaluate schedule.
Step-15: Test the feasibility of  crashing.
Step-16: If  yes, then go to the step-10.
Step-17: If  no, determine any other crashing opportunity.
Step-18: If  there is a crashing opportunity, then go to the step-14.
Step-19: If  there is no other crashing opportunity, search through the 

activities with float to find feasible combination.
Step-20: If  there be new combination found, then go to the step-10.
Step-21: If  there be no new combination found, then Time-Cost Trading-off  

is finished.

The search method identifies a large number of  crashing alternatives, which 
necessitates a large amount of  processing. The proposed strategy, on the 
other hand, is designed to be fast convergent. As a result, the crashing 
possibilities must be evaluated without regard to the timeline. If  a path which 
is not critical with insufficient total float becomes critical, crashing does not 
result in the predicted reduction in project length. On either hand, the 
accelerated activity may shorten non-critical pathways, resulting in the 
anticipated project duration reduction.

4. Numerical example with calculation
This algorithm examined on a project of  18-activity which was propagated 
by Burns, Liu and Feng (1996) and reformed by Hegazy (1999a). There are 2 
to 5 different duration and cost choices for each activity. 

The number of  possible different alternatives of  cost-duration here is: 

55 *42 *310*21 = 5904900000 

Even on a high-speed computer, a complete examination of  this maximum 
value takes a significant amount of  time. As a result, carrying out a thorough 
enumeration is nearly difficult. The analysis of  the project is applicable for 
the following 2 cases: 
i. Minimum overall project cost based on an overhead cost of  constant 
$210/day and a $1000/day incentive for earlier completions starting at 110 
days and liquidated damages of  $20000/day for after completions starting at 
110 days.
ii. Minimum overall project cost based on an overhead cost of  constant 
$210/day.
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1. Introduction
In the construction sector, construction management is a relatively new field. 
Its impact, on the other hand, has been enormous. It is now a widely used 
strategy for improving the efficiency of  building projects in everywhere. In 
the construction sector, construction management is a 
relatively new field. Its impact, on the other hand, has been 
enormous. Due to the entry of  new enterprises into the 
market, competition in the construction industry has been 
increasing. As a result, project management struggles to 
identify the most effective schedule based on a variety of  
factors such as time, money, and other operational 
resources. The ability to complete a project in minimum 
time and at a lower cost is an important factor to consider 
while designing a structure. Accelerating the project 

timetable, on the other hand, costs more because the activity length is 
reduced, necessitating the use of  extra resources. Decision makers can 
perform a TCT problem if  a project is running behind schedule. TCTP 
assists in familiarizing oneself  with the collection of  time–cost options that 
will ensure the best timetable under certain conditions.

2. Existing methods of  Time-Cost Trade-off
The time of  a project can be shortened by spending more money to expedite 
important processes. The expense of  a critical activity raises when the activity 
is crashed, shortening the project's duration. The indirect cost is reduced 
when the project time is reduced, Optimum project budget in Time-Cost 
Trade-off  situations is sought (Hegazy, 1999a)
 The significance of  the TCT matter was identified nearly alongside with 
the outline of  project investigation methods (Kelley Jr. & Walker, 1959; 
Kelley Jr, 1961; Fulkerson, 1961). Some heuristic methods have been created 
with the goal of  finding the best answer to TCT problems. The heuristic 
algorithm developed by Siemens (1971) was the first significant attempt to 
address the TCT problem, and further (Goyal, 1975; Siemens, & Gooding, 
1975) enhanced this algorithm. Heuristic methods for TCT with linear cost 
curves were further developed by Barber and Boardman (1988), Chiu and 
Chiu (2005). The above-mentioned methods afford the best result for 
continuously crashing jobs, but they cannot assurance convergence to the 
worldwide best for discrete or non-linear crashes. Berman (1964) devised a 
method for optimizing networks with continuous cost functions that are 
concave. Falk and Horowitz (1972) used the branch-and-bound algorithm to 
investigate concave continuous cost functions. Vanhoucke (2005) also 
suggested the BaB method for the TCT problem. TCT was also solved using 
network decomposition methods (Vanhoucke & Debels, 2007; Schwarze, 
1980; Demeulemeester, Herroelen, & Elmaghraby, 1996; Demeulemeester, 
De Reyck, Foubert, Herroelen, & Vanhoucke, 1998; Haz r, Haouari, & Erel, 
2010).
 Srivastava and Pathak (2014) used a neural network to solve the TCT 
problem. Lower boundaries for time-cost relationships are provided by 
integer programming, mixed integer programming and linear programming. 
IP, LP and mixed-integer are established (Sakellaropoulos & Chassiakos, 
2004; Moussourakis & Haksever, 2004; Bidhandi, 2006; Hazr, Haouari, & 
Erel, 2010; Liberatore & Pollack-Johnson, 2006; Liu, Burns, & Feng, 1995; Al 
Haj & El-Sayegh, 2015; Moussourakis & Haksever, 2007).
 TCT (De, Dunne, Ghosh, & Wells, 1997) is the search domain which 
grows much quicker than the project size, known as NP-Hard. As a result, 

the memory requirements and computational demands of  accurate 
algorithms skyrocket. For the solution of  TCT, GA is by far the most 
popular meta-heuristic algorithm (Lee, Roh, Park, & Ryu, 2010; Zhang & 
Xing, 2010; Li, Cao, & Love, 1999; Bettemir, 2009; Feng, Liu, & Burns, 1997; 
Hegazy, 1999a). Shuffled Frog Leaping and the Hybrid Genetic Algorithm 
successfully determine small projects in a sensible amount of  time (Sonmez 
& Bettemir, 2012; Elbeltagi, Hegazy, & Grierson, 2005). For large projects, 
however, an optimal or near-optimal solution necessitates nearly 1.5 million 
schedule evaluations (Bettemir, 2009). Furthermore, for the TCT problem, 
(Anagnostopoulos & Kotsikas, 2010) Simulated Annealing is  
(Anagnostopoulos & Kotsikas, 2010; Yang, 2007) implemented Particle 
Swarm Optimization, and (Zhang & Thomas, 2012; Zhang & Xing, 2010) 
employed Ant Colony Optimization, hybrid evolutionary algorithm  
(Rogalska, Bo ejko, & Hejducki, 2008; Geem, 2010) used Harmony Search. 
Using Building Information System software TCT was studied by Cha and 
Lee (2015).
 Time and money aren't the only factors to consider while designing a 
project. As a result, different variations of  the time-cost trade-off  dilemma 
are investigated. Time-cost-quality trade-off  is improved by adding quality to 
the TCT problem (Babu & Suresh, 1996; Monghasemi, Nikoo, Fasaee, & 
Adamowski, 2015; Khang & Myint, 1999; Kim, Kang, & Hwang, 2012; 
Tareghian & Taheri, 2006; Tavana, Abtahi, & Khalili-Damghani, 2014; Zhang 
& Xing, 2010; Mungle, Benyoucef, Son, & Tiwari, 2013).
 In TCT, time and cost required options are considered to be predictable. 
Both activity costs and durations, on the other hand, are unpredictable, 
(Yang, 2005; Kalhor, Khanzadi, Eshtehardian, & Afshar, 2011; Azaron, 
Perkgoz, & Sakawa, 2005; Zheng, Ng, & Kumaraswamy, 2005; Leu, Chen, & 
Yang, 2001; Ke, Ma, & Ni, 2009; Li & Wang, 2009; Yang, 2011; Xu, Zheng, 
Zeng, Wu, & Shen, 2012; Eshtehardian, Afshar, & Abbasnia, 2009; Said & 
Haouari, 2015; Chen & Tsai, 2011).
 TCT matter is solved by presuming an endless supply of  resources. 
When resources are limited in quantity, the problem is referred to as 
multi-mode resource restricted project scheduling. TCT with restricted 
resources to account for resource availability is solved (Liu & Wang, 2008; 
Hegazy, 1999b; Ghoddousi, Eshtehardian, Jooybanpour, & Javanmardi, 
2013; Cheng & Tran, 2016; Rostami, Moradinezhad, & Soufipour, 2014; 
Afruzi, Najafi, Roghanian, & Mazinani, 2014).
 TCT problem was solved by Metwally and Elazouni (2007) by reducing 
the negative cash flow, while (Ammar, 2011) was solved it by optimizing the 
principal. Furthermore, (Fathi & Afshar, 2010) used GA to optimize the 

NPV of  the profit, whereas Koo, Hong and Kim (2015) solved the 
Time-Cost situation trade-off  by introducing ecological impact.
 To summarize, meta-heuristic algorithms are computationally intensive, 
heuristic methods do not always show a proper solution, and proper 
techniques are difficult for building organizers to perform. Thus, a reliable 
constructive algorithm for the distinct Time-Cost Trading issue is till now 
missing. The best solution for the united TCT problem is found using the 
minimum cost slope approach. However, because discrete crashing choices 
limit the creation of  linear cost functions, the approach is not appropriate for 
the distinct TCT problem. To solve the distinct TCT problem, a simple, 
maximum converging, and fast network analysis technique stimulated by the 
lowest cost-slope procedure is suggested in this study.

3. Proposed model structure
PCA (Proposed Constructive Algorithm) finds the best schedule by crashing 
activities one by one. The crashing possibilities are not chosen grounded on 
the greatest advantage, because the greatest advantage might not have been 
the greatest option if  the staff  conditions are removed. When a project is 
completed forward of  schedule, however, the prize becomes a permanent 
payment. The crashing cost is contrasted to the entire of  the incentive and 
the indirect cost in this situation.
The technique for reducing the project duration with minimum cost can be 
abridged in the following phases:

Step-01: Enumerate the cost slope of  each activity.
Step-02: Determine all possible paths of  the network.
Step-03: Determine the critical path(s).
Step-04: If  there be a single critical path, find the activity with the minimum 

crashing slope in the critical path.
Step-05: Estimate the reducing(saving) time.
Step-06: If  there are multi critical paths, determine the crashing 

combinations.
Step-07: Find the lowest combination crashing curve.
Step-08: Go to step-06.
Step-09: If  the crashing is feasible, then crash the activity (or combination of  

activities).
Step-10: Is the path(s) should be rescheduled?
Step-11: If  yes, evaluate schedule and then go to step-04.
Step-12: If  no, then go to step-04.
Step-13: If  the crashing is not feasible, then select the untried crashing choice 

with the minimum crashing cost and then go to step-06.
Step-14: If  the crashing is fuzzy, then evaluate schedule.
Step-15: Test the feasibility of  crashing.
Step-16: If  yes, then go to the step-10.
Step-17: If  no, determine any other crashing opportunity.
Step-18: If  there is a crashing opportunity, then go to the step-14.
Step-19: If  there is no other crashing opportunity, search through the 

activities with float to find feasible combination.
Step-20: If  there be new combination found, then go to the step-10.
Step-21: If  there be no new combination found, then Time-Cost Trading-off  

is finished.

The search method identifies a large number of  crashing alternatives, which 
necessitates a large amount of  processing. The proposed strategy, on the 
other hand, is designed to be fast convergent. As a result, the crashing 
possibilities must be evaluated without regard to the timeline. If  a path which 
is not critical with insufficient total float becomes critical, crashing does not 
result in the predicted reduction in project length. On either hand, the 
accelerated activity may shorten non-critical pathways, resulting in the 
anticipated project duration reduction.

4. Numerical example with calculation
This algorithm examined on a project of  18-activity which was propagated 
by Burns, Liu and Feng (1996) and reformed by Hegazy (1999a). There are 2 
to 5 different duration and cost choices for each activity. 

The number of  possible different alternatives of  cost-duration here is: 

55 *42 *310*21 = 5904900000 

Even on a high-speed computer, a complete examination of  this maximum 
value takes a significant amount of  time. As a result, carrying out a thorough 
enumeration is nearly difficult. The analysis of  the project is applicable for 
the following 2 cases: 
i. Minimum overall project cost based on an overhead cost of  constant 
$210/day and a $1000/day incentive for earlier completions starting at 110 
days and liquidated damages of  $20000/day for after completions starting at 
110 days.
ii. Minimum overall project cost based on an overhead cost of  constant 
$210/day.
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solution of  TCT problems.

Keywords Critical path, Time-Cost Trade-off, Crash, Proposed constructive   
 algorithm, Cost-slope.
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1. Introduction
In the construction sector, construction management is a relatively new field. 
Its impact, on the other hand, has been enormous. It is now a widely used 
strategy for improving the efficiency of  building projects in everywhere. In 
the construction sector, construction management is a 
relatively new field. Its impact, on the other hand, has been 
enormous. Due to the entry of  new enterprises into the 
market, competition in the construction industry has been 
increasing. As a result, project management struggles to 
identify the most effective schedule based on a variety of  
factors such as time, money, and other operational 
resources. The ability to complete a project in minimum 
time and at a lower cost is an important factor to consider 
while designing a structure. Accelerating the project 

timetable, on the other hand, costs more because the activity length is 
reduced, necessitating the use of  extra resources. Decision makers can 
perform a TCT problem if  a project is running behind schedule. TCTP 
assists in familiarizing oneself  with the collection of  time–cost options that 
will ensure the best timetable under certain conditions.

2. Existing methods of  Time-Cost Trade-off
The time of  a project can be shortened by spending more money to expedite 
important processes. The expense of  a critical activity raises when the activity 
is crashed, shortening the project's duration. The indirect cost is reduced 
when the project time is reduced, Optimum project budget in Time-Cost 
Trade-off  situations is sought (Hegazy, 1999a)
 The significance of  the TCT matter was identified nearly alongside with 
the outline of  project investigation methods (Kelley Jr. & Walker, 1959; 
Kelley Jr, 1961; Fulkerson, 1961). Some heuristic methods have been created 
with the goal of  finding the best answer to TCT problems. The heuristic 
algorithm developed by Siemens (1971) was the first significant attempt to 
address the TCT problem, and further (Goyal, 1975; Siemens, & Gooding, 
1975) enhanced this algorithm. Heuristic methods for TCT with linear cost 
curves were further developed by Barber and Boardman (1988), Chiu and 
Chiu (2005). The above-mentioned methods afford the best result for 
continuously crashing jobs, but they cannot assurance convergence to the 
worldwide best for discrete or non-linear crashes. Berman (1964) devised a 
method for optimizing networks with continuous cost functions that are 
concave. Falk and Horowitz (1972) used the branch-and-bound algorithm to 
investigate concave continuous cost functions. Vanhoucke (2005) also 
suggested the BaB method for the TCT problem. TCT was also solved using 
network decomposition methods (Vanhoucke & Debels, 2007; Schwarze, 
1980; Demeulemeester, Herroelen, & Elmaghraby, 1996; Demeulemeester, 
De Reyck, Foubert, Herroelen, & Vanhoucke, 1998; Haz r, Haouari, & Erel, 
2010).
 Srivastava and Pathak (2014) used a neural network to solve the TCT 
problem. Lower boundaries for time-cost relationships are provided by 
integer programming, mixed integer programming and linear programming. 
IP, LP and mixed-integer are established (Sakellaropoulos & Chassiakos, 
2004; Moussourakis & Haksever, 2004; Bidhandi, 2006; Hazr, Haouari, & 
Erel, 2010; Liberatore & Pollack-Johnson, 2006; Liu, Burns, & Feng, 1995; Al 
Haj & El-Sayegh, 2015; Moussourakis & Haksever, 2007).
 TCT (De, Dunne, Ghosh, & Wells, 1997) is the search domain which 
grows much quicker than the project size, known as NP-Hard. As a result, 

the memory requirements and computational demands of  accurate 
algorithms skyrocket. For the solution of  TCT, GA is by far the most 
popular meta-heuristic algorithm (Lee, Roh, Park, & Ryu, 2010; Zhang & 
Xing, 2010; Li, Cao, & Love, 1999; Bettemir, 2009; Feng, Liu, & Burns, 1997; 
Hegazy, 1999a). Shuffled Frog Leaping and the Hybrid Genetic Algorithm 
successfully determine small projects in a sensible amount of  time (Sonmez 
& Bettemir, 2012; Elbeltagi, Hegazy, & Grierson, 2005). For large projects, 
however, an optimal or near-optimal solution necessitates nearly 1.5 million 
schedule evaluations (Bettemir, 2009). Furthermore, for the TCT problem, 
(Anagnostopoulos & Kotsikas, 2010) Simulated Annealing is  
(Anagnostopoulos & Kotsikas, 2010; Yang, 2007) implemented Particle 
Swarm Optimization, and (Zhang & Thomas, 2012; Zhang & Xing, 2010) 
employed Ant Colony Optimization, hybrid evolutionary algorithm  
(Rogalska, Bo ejko, & Hejducki, 2008; Geem, 2010) used Harmony Search. 
Using Building Information System software TCT was studied by Cha and 
Lee (2015).
 Time and money aren't the only factors to consider while designing a 
project. As a result, different variations of  the time-cost trade-off  dilemma 
are investigated. Time-cost-quality trade-off  is improved by adding quality to 
the TCT problem (Babu & Suresh, 1996; Monghasemi, Nikoo, Fasaee, & 
Adamowski, 2015; Khang & Myint, 1999; Kim, Kang, & Hwang, 2012; 
Tareghian & Taheri, 2006; Tavana, Abtahi, & Khalili-Damghani, 2014; Zhang 
& Xing, 2010; Mungle, Benyoucef, Son, & Tiwari, 2013).
 In TCT, time and cost required options are considered to be predictable. 
Both activity costs and durations, on the other hand, are unpredictable, 
(Yang, 2005; Kalhor, Khanzadi, Eshtehardian, & Afshar, 2011; Azaron, 
Perkgoz, & Sakawa, 2005; Zheng, Ng, & Kumaraswamy, 2005; Leu, Chen, & 
Yang, 2001; Ke, Ma, & Ni, 2009; Li & Wang, 2009; Yang, 2011; Xu, Zheng, 
Zeng, Wu, & Shen, 2012; Eshtehardian, Afshar, & Abbasnia, 2009; Said & 
Haouari, 2015; Chen & Tsai, 2011).
 TCT matter is solved by presuming an endless supply of  resources. 
When resources are limited in quantity, the problem is referred to as 
multi-mode resource restricted project scheduling. TCT with restricted 
resources to account for resource availability is solved (Liu & Wang, 2008; 
Hegazy, 1999b; Ghoddousi, Eshtehardian, Jooybanpour, & Javanmardi, 
2013; Cheng & Tran, 2016; Rostami, Moradinezhad, & Soufipour, 2014; 
Afruzi, Najafi, Roghanian, & Mazinani, 2014).
 TCT problem was solved by Metwally and Elazouni (2007) by reducing 
the negative cash flow, while (Ammar, 2011) was solved it by optimizing the 
principal. Furthermore, (Fathi & Afshar, 2010) used GA to optimize the 

NPV of  the profit, whereas Koo, Hong and Kim (2015) solved the 
Time-Cost situation trade-off  by introducing ecological impact.
 To summarize, meta-heuristic algorithms are computationally intensive, 
heuristic methods do not always show a proper solution, and proper 
techniques are difficult for building organizers to perform. Thus, a reliable 
constructive algorithm for the distinct Time-Cost Trading issue is till now 
missing. The best solution for the united TCT problem is found using the 
minimum cost slope approach. However, because discrete crashing choices 
limit the creation of  linear cost functions, the approach is not appropriate for 
the distinct TCT problem. To solve the distinct TCT problem, a simple, 
maximum converging, and fast network analysis technique stimulated by the 
lowest cost-slope procedure is suggested in this study.

3. Proposed model structure
PCA (Proposed Constructive Algorithm) finds the best schedule by crashing 
activities one by one. The crashing possibilities are not chosen grounded on 
the greatest advantage, because the greatest advantage might not have been 
the greatest option if  the staff  conditions are removed. When a project is 
completed forward of  schedule, however, the prize becomes a permanent 
payment. The crashing cost is contrasted to the entire of  the incentive and 
the indirect cost in this situation.
The technique for reducing the project duration with minimum cost can be 
abridged in the following phases:

Step-01: Enumerate the cost slope of  each activity.
Step-02: Determine all possible paths of  the network.
Step-03: Determine the critical path(s).
Step-04: If  there be a single critical path, find the activity with the minimum 

crashing slope in the critical path.
Step-05: Estimate the reducing(saving) time.
Step-06: If  there are multi critical paths, determine the crashing 

combinations.
Step-07: Find the lowest combination crashing curve.
Step-08: Go to step-06.
Step-09: If  the crashing is feasible, then crash the activity (or combination of  

activities).
Step-10: Is the path(s) should be rescheduled?
Step-11: If  yes, evaluate schedule and then go to step-04.
Step-12: If  no, then go to step-04.
Step-13: If  the crashing is not feasible, then select the untried crashing choice 

with the minimum crashing cost and then go to step-06.
Step-14: If  the crashing is fuzzy, then evaluate schedule.
Step-15: Test the feasibility of  crashing.
Step-16: If  yes, then go to the step-10.
Step-17: If  no, determine any other crashing opportunity.
Step-18: If  there is a crashing opportunity, then go to the step-14.
Step-19: If  there is no other crashing opportunity, search through the 

activities with float to find feasible combination.
Step-20: If  there be new combination found, then go to the step-10.
Step-21: If  there be no new combination found, then Time-Cost Trading-off  

is finished.

The search method identifies a large number of  crashing alternatives, which 
necessitates a large amount of  processing. The proposed strategy, on the 
other hand, is designed to be fast convergent. As a result, the crashing 
possibilities must be evaluated without regard to the timeline. If  a path which 
is not critical with insufficient total float becomes critical, crashing does not 
result in the predicted reduction in project length. On either hand, the 
accelerated activity may shorten non-critical pathways, resulting in the 
anticipated project duration reduction.

4. Numerical example with calculation
This algorithm examined on a project of  18-activity which was propagated 
by Burns, Liu and Feng (1996) and reformed by Hegazy (1999a). There are 2 
to 5 different duration and cost choices for each activity. 

The number of  possible different alternatives of  cost-duration here is: 

55 *42 *310*21 = 5904900000 

Even on a high-speed computer, a complete examination of  this maximum 
value takes a significant amount of  time. As a result, carrying out a thorough 
enumeration is nearly difficult. The analysis of  the project is applicable for 
the following 2 cases: 
i. Minimum overall project cost based on an overhead cost of  constant 
$210/day and a $1000/day incentive for earlier completions starting at 110 
days and liquidated damages of  $20000/day for after completions starting at 
110 days.
ii. Minimum overall project cost based on an overhead cost of  constant 
$210/day.
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1. Introduction
In the construction sector, construction management is a relatively new field. 
Its impact, on the other hand, has been enormous. It is now a widely used 
strategy for improving the efficiency of  building projects in everywhere. In 
the construction sector, construction management is a 
relatively new field. Its impact, on the other hand, has been 
enormous. Due to the entry of  new enterprises into the 
market, competition in the construction industry has been 
increasing. As a result, project management struggles to 
identify the most effective schedule based on a variety of  
factors such as time, money, and other operational 
resources. The ability to complete a project in minimum 
time and at a lower cost is an important factor to consider 
while designing a structure. Accelerating the project 

timetable, on the other hand, costs more because the activity length is 
reduced, necessitating the use of  extra resources. Decision makers can 
perform a TCT problem if  a project is running behind schedule. TCTP 
assists in familiarizing oneself  with the collection of  time–cost options that 
will ensure the best timetable under certain conditions.

2. Existing methods of  Time-Cost Trade-off
The time of  a project can be shortened by spending more money to expedite 
important processes. The expense of  a critical activity raises when the activity 
is crashed, shortening the project's duration. The indirect cost is reduced 
when the project time is reduced, Optimum project budget in Time-Cost 
Trade-off  situations is sought (Hegazy, 1999a)
 The significance of  the TCT matter was identified nearly alongside with 
the outline of  project investigation methods (Kelley Jr. & Walker, 1959; 
Kelley Jr, 1961; Fulkerson, 1961). Some heuristic methods have been created 
with the goal of  finding the best answer to TCT problems. The heuristic 
algorithm developed by Siemens (1971) was the first significant attempt to 
address the TCT problem, and further (Goyal, 1975; Siemens, & Gooding, 
1975) enhanced this algorithm. Heuristic methods for TCT with linear cost 
curves were further developed by Barber and Boardman (1988), Chiu and 
Chiu (2005). The above-mentioned methods afford the best result for 
continuously crashing jobs, but they cannot assurance convergence to the 
worldwide best for discrete or non-linear crashes. Berman (1964) devised a 
method for optimizing networks with continuous cost functions that are 
concave. Falk and Horowitz (1972) used the branch-and-bound algorithm to 
investigate concave continuous cost functions. Vanhoucke (2005) also 
suggested the BaB method for the TCT problem. TCT was also solved using 
network decomposition methods (Vanhoucke & Debels, 2007; Schwarze, 
1980; Demeulemeester, Herroelen, & Elmaghraby, 1996; Demeulemeester, 
De Reyck, Foubert, Herroelen, & Vanhoucke, 1998; Haz r, Haouari, & Erel, 
2010).
 Srivastava and Pathak (2014) used a neural network to solve the TCT 
problem. Lower boundaries for time-cost relationships are provided by 
integer programming, mixed integer programming and linear programming. 
IP, LP and mixed-integer are established (Sakellaropoulos & Chassiakos, 
2004; Moussourakis & Haksever, 2004; Bidhandi, 2006; Hazr, Haouari, & 
Erel, 2010; Liberatore & Pollack-Johnson, 2006; Liu, Burns, & Feng, 1995; Al 
Haj & El-Sayegh, 2015; Moussourakis & Haksever, 2007).
 TCT (De, Dunne, Ghosh, & Wells, 1997) is the search domain which 
grows much quicker than the project size, known as NP-Hard. As a result, 

the memory requirements and computational demands of  accurate 
algorithms skyrocket. For the solution of  TCT, GA is by far the most 
popular meta-heuristic algorithm (Lee, Roh, Park, & Ryu, 2010; Zhang & 
Xing, 2010; Li, Cao, & Love, 1999; Bettemir, 2009; Feng, Liu, & Burns, 1997; 
Hegazy, 1999a). Shuffled Frog Leaping and the Hybrid Genetic Algorithm 
successfully determine small projects in a sensible amount of  time (Sonmez 
& Bettemir, 2012; Elbeltagi, Hegazy, & Grierson, 2005). For large projects, 
however, an optimal or near-optimal solution necessitates nearly 1.5 million 
schedule evaluations (Bettemir, 2009). Furthermore, for the TCT problem, 
(Anagnostopoulos & Kotsikas, 2010) Simulated Annealing is  
(Anagnostopoulos & Kotsikas, 2010; Yang, 2007) implemented Particle 
Swarm Optimization, and (Zhang & Thomas, 2012; Zhang & Xing, 2010) 
employed Ant Colony Optimization, hybrid evolutionary algorithm  
(Rogalska, Bo ejko, & Hejducki, 2008; Geem, 2010) used Harmony Search. 
Using Building Information System software TCT was studied by Cha and 
Lee (2015).
 Time and money aren't the only factors to consider while designing a 
project. As a result, different variations of  the time-cost trade-off  dilemma 
are investigated. Time-cost-quality trade-off  is improved by adding quality to 
the TCT problem (Babu & Suresh, 1996; Monghasemi, Nikoo, Fasaee, & 
Adamowski, 2015; Khang & Myint, 1999; Kim, Kang, & Hwang, 2012; 
Tareghian & Taheri, 2006; Tavana, Abtahi, & Khalili-Damghani, 2014; Zhang 
& Xing, 2010; Mungle, Benyoucef, Son, & Tiwari, 2013).
 In TCT, time and cost required options are considered to be predictable. 
Both activity costs and durations, on the other hand, are unpredictable, 
(Yang, 2005; Kalhor, Khanzadi, Eshtehardian, & Afshar, 2011; Azaron, 
Perkgoz, & Sakawa, 2005; Zheng, Ng, & Kumaraswamy, 2005; Leu, Chen, & 
Yang, 2001; Ke, Ma, & Ni, 2009; Li & Wang, 2009; Yang, 2011; Xu, Zheng, 
Zeng, Wu, & Shen, 2012; Eshtehardian, Afshar, & Abbasnia, 2009; Said & 
Haouari, 2015; Chen & Tsai, 2011).
 TCT matter is solved by presuming an endless supply of  resources. 
When resources are limited in quantity, the problem is referred to as 
multi-mode resource restricted project scheduling. TCT with restricted 
resources to account for resource availability is solved (Liu & Wang, 2008; 
Hegazy, 1999b; Ghoddousi, Eshtehardian, Jooybanpour, & Javanmardi, 
2013; Cheng & Tran, 2016; Rostami, Moradinezhad, & Soufipour, 2014; 
Afruzi, Najafi, Roghanian, & Mazinani, 2014).
 TCT problem was solved by Metwally and Elazouni (2007) by reducing 
the negative cash flow, while (Ammar, 2011) was solved it by optimizing the 
principal. Furthermore, (Fathi & Afshar, 2010) used GA to optimize the 

NPV of  the profit, whereas Koo, Hong and Kim (2015) solved the 
Time-Cost situation trade-off  by introducing ecological impact.
 To summarize, meta-heuristic algorithms are computationally intensive, 
heuristic methods do not always show a proper solution, and proper 
techniques are difficult for building organizers to perform. Thus, a reliable 
constructive algorithm for the distinct Time-Cost Trading issue is till now 
missing. The best solution for the united TCT problem is found using the 
minimum cost slope approach. However, because discrete crashing choices 
limit the creation of  linear cost functions, the approach is not appropriate for 
the distinct TCT problem. To solve the distinct TCT problem, a simple, 
maximum converging, and fast network analysis technique stimulated by the 
lowest cost-slope procedure is suggested in this study.

3. Proposed model structure
PCA (Proposed Constructive Algorithm) finds the best schedule by crashing 
activities one by one. The crashing possibilities are not chosen grounded on 
the greatest advantage, because the greatest advantage might not have been 
the greatest option if  the staff  conditions are removed. When a project is 
completed forward of  schedule, however, the prize becomes a permanent 
payment. The crashing cost is contrasted to the entire of  the incentive and 
the indirect cost in this situation.
The technique for reducing the project duration with minimum cost can be 
abridged in the following phases:

Step-01: Enumerate the cost slope of  each activity.
Step-02: Determine all possible paths of  the network.
Step-03: Determine the critical path(s).
Step-04: If  there be a single critical path, find the activity with the minimum 

crashing slope in the critical path.
Step-05: Estimate the reducing(saving) time.
Step-06: If  there are multi critical paths, determine the crashing 

combinations.
Step-07: Find the lowest combination crashing curve.
Step-08: Go to step-06.
Step-09: If  the crashing is feasible, then crash the activity (or combination of  

activities).
Step-10: Is the path(s) should be rescheduled?
Step-11: If  yes, evaluate schedule and then go to step-04.
Step-12: If  no, then go to step-04.
Step-13: If  the crashing is not feasible, then select the untried crashing choice 

with the minimum crashing cost and then go to step-06.
Step-14: If  the crashing is fuzzy, then evaluate schedule.
Step-15: Test the feasibility of  crashing.
Step-16: If  yes, then go to the step-10.
Step-17: If  no, determine any other crashing opportunity.
Step-18: If  there is a crashing opportunity, then go to the step-14.
Step-19: If  there is no other crashing opportunity, search through the 

activities with float to find feasible combination.
Step-20: If  there be new combination found, then go to the step-10.
Step-21: If  there be no new combination found, then Time-Cost Trading-off  

is finished.

The search method identifies a large number of  crashing alternatives, which 
necessitates a large amount of  processing. The proposed strategy, on the 
other hand, is designed to be fast convergent. As a result, the crashing 
possibilities must be evaluated without regard to the timeline. If  a path which 
is not critical with insufficient total float becomes critical, crashing does not 
result in the predicted reduction in project length. On either hand, the 
accelerated activity may shorten non-critical pathways, resulting in the 
anticipated project duration reduction.

4. Numerical example with calculation
This algorithm examined on a project of  18-activity which was propagated 
by Burns, Liu and Feng (1996) and reformed by Hegazy (1999a). There are 2 
to 5 different duration and cost choices for each activity. 

The number of  possible different alternatives of  cost-duration here is: 

55 *42 *310*21 = 5904900000 

Even on a high-speed computer, a complete examination of  this maximum 
value takes a significant amount of  time. As a result, carrying out a thorough 
enumeration is nearly difficult. The analysis of  the project is applicable for 
the following 2 cases: 
i. Minimum overall project cost based on an overhead cost of  constant 
$210/day and a $1000/day incentive for earlier completions starting at 110 
days and liquidated damages of  $20000/day for after completions starting at 
110 days.
ii. Minimum overall project cost based on an overhead cost of  constant 
$210/day.
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1. Introduction
In the construction sector, construction management is a relatively new field. 
Its impact, on the other hand, has been enormous. It is now a widely used 
strategy for improving the efficiency of  building projects in everywhere. In 
the construction sector, construction management is a 
relatively new field. Its impact, on the other hand, has been 
enormous. Due to the entry of  new enterprises into the 
market, competition in the construction industry has been 
increasing. As a result, project management struggles to 
identify the most effective schedule based on a variety of  
factors such as time, money, and other operational 
resources. The ability to complete a project in minimum 
time and at a lower cost is an important factor to consider 
while designing a structure. Accelerating the project 

timetable, on the other hand, costs more because the activity length is 
reduced, necessitating the use of  extra resources. Decision makers can 
perform a TCT problem if  a project is running behind schedule. TCTP 
assists in familiarizing oneself  with the collection of  time–cost options that 
will ensure the best timetable under certain conditions.

2. Existing methods of  Time-Cost Trade-off
The time of  a project can be shortened by spending more money to expedite 
important processes. The expense of  a critical activity raises when the activity 
is crashed, shortening the project's duration. The indirect cost is reduced 
when the project time is reduced, Optimum project budget in Time-Cost 
Trade-off  situations is sought (Hegazy, 1999a)
 The significance of  the TCT matter was identified nearly alongside with 
the outline of  project investigation methods (Kelley Jr. & Walker, 1959; 
Kelley Jr, 1961; Fulkerson, 1961). Some heuristic methods have been created 
with the goal of  finding the best answer to TCT problems. The heuristic 
algorithm developed by Siemens (1971) was the first significant attempt to 
address the TCT problem, and further (Goyal, 1975; Siemens, & Gooding, 
1975) enhanced this algorithm. Heuristic methods for TCT with linear cost 
curves were further developed by Barber and Boardman (1988), Chiu and 
Chiu (2005). The above-mentioned methods afford the best result for 
continuously crashing jobs, but they cannot assurance convergence to the 
worldwide best for discrete or non-linear crashes. Berman (1964) devised a 
method for optimizing networks with continuous cost functions that are 
concave. Falk and Horowitz (1972) used the branch-and-bound algorithm to 
investigate concave continuous cost functions. Vanhoucke (2005) also 
suggested the BaB method for the TCT problem. TCT was also solved using 
network decomposition methods (Vanhoucke & Debels, 2007; Schwarze, 
1980; Demeulemeester, Herroelen, & Elmaghraby, 1996; Demeulemeester, 
De Reyck, Foubert, Herroelen, & Vanhoucke, 1998; Haz r, Haouari, & Erel, 
2010).
 Srivastava and Pathak (2014) used a neural network to solve the TCT 
problem. Lower boundaries for time-cost relationships are provided by 
integer programming, mixed integer programming and linear programming. 
IP, LP and mixed-integer are established (Sakellaropoulos & Chassiakos, 
2004; Moussourakis & Haksever, 2004; Bidhandi, 2006; Hazr, Haouari, & 
Erel, 2010; Liberatore & Pollack-Johnson, 2006; Liu, Burns, & Feng, 1995; Al 
Haj & El-Sayegh, 2015; Moussourakis & Haksever, 2007).
 TCT (De, Dunne, Ghosh, & Wells, 1997) is the search domain which 
grows much quicker than the project size, known as NP-Hard. As a result, 

the memory requirements and computational demands of  accurate 
algorithms skyrocket. For the solution of  TCT, GA is by far the most 
popular meta-heuristic algorithm (Lee, Roh, Park, & Ryu, 2010; Zhang & 
Xing, 2010; Li, Cao, & Love, 1999; Bettemir, 2009; Feng, Liu, & Burns, 1997; 
Hegazy, 1999a). Shuffled Frog Leaping and the Hybrid Genetic Algorithm 
successfully determine small projects in a sensible amount of  time (Sonmez 
& Bettemir, 2012; Elbeltagi, Hegazy, & Grierson, 2005). For large projects, 
however, an optimal or near-optimal solution necessitates nearly 1.5 million 
schedule evaluations (Bettemir, 2009). Furthermore, for the TCT problem, 
(Anagnostopoulos & Kotsikas, 2010) Simulated Annealing is  
(Anagnostopoulos & Kotsikas, 2010; Yang, 2007) implemented Particle 
Swarm Optimization, and (Zhang & Thomas, 2012; Zhang & Xing, 2010) 
employed Ant Colony Optimization, hybrid evolutionary algorithm  
(Rogalska, Bo ejko, & Hejducki, 2008; Geem, 2010) used Harmony Search. 
Using Building Information System software TCT was studied by Cha and 
Lee (2015).
 Time and money aren't the only factors to consider while designing a 
project. As a result, different variations of  the time-cost trade-off  dilemma 
are investigated. Time-cost-quality trade-off  is improved by adding quality to 
the TCT problem (Babu & Suresh, 1996; Monghasemi, Nikoo, Fasaee, & 
Adamowski, 2015; Khang & Myint, 1999; Kim, Kang, & Hwang, 2012; 
Tareghian & Taheri, 2006; Tavana, Abtahi, & Khalili-Damghani, 2014; Zhang 
& Xing, 2010; Mungle, Benyoucef, Son, & Tiwari, 2013).
 In TCT, time and cost required options are considered to be predictable. 
Both activity costs and durations, on the other hand, are unpredictable, 
(Yang, 2005; Kalhor, Khanzadi, Eshtehardian, & Afshar, 2011; Azaron, 
Perkgoz, & Sakawa, 2005; Zheng, Ng, & Kumaraswamy, 2005; Leu, Chen, & 
Yang, 2001; Ke, Ma, & Ni, 2009; Li & Wang, 2009; Yang, 2011; Xu, Zheng, 
Zeng, Wu, & Shen, 2012; Eshtehardian, Afshar, & Abbasnia, 2009; Said & 
Haouari, 2015; Chen & Tsai, 2011).
 TCT matter is solved by presuming an endless supply of  resources. 
When resources are limited in quantity, the problem is referred to as 
multi-mode resource restricted project scheduling. TCT with restricted 
resources to account for resource availability is solved (Liu & Wang, 2008; 
Hegazy, 1999b; Ghoddousi, Eshtehardian, Jooybanpour, & Javanmardi, 
2013; Cheng & Tran, 2016; Rostami, Moradinezhad, & Soufipour, 2014; 
Afruzi, Najafi, Roghanian, & Mazinani, 2014).
 TCT problem was solved by Metwally and Elazouni (2007) by reducing 
the negative cash flow, while (Ammar, 2011) was solved it by optimizing the 
principal. Furthermore, (Fathi & Afshar, 2010) used GA to optimize the 

NPV of  the profit, whereas Koo, Hong and Kim (2015) solved the 
Time-Cost situation trade-off  by introducing ecological impact.
 To summarize, meta-heuristic algorithms are computationally intensive, 
heuristic methods do not always show a proper solution, and proper 
techniques are difficult for building organizers to perform. Thus, a reliable 
constructive algorithm for the distinct Time-Cost Trading issue is till now 
missing. The best solution for the united TCT problem is found using the 
minimum cost slope approach. However, because discrete crashing choices 
limit the creation of  linear cost functions, the approach is not appropriate for 
the distinct TCT problem. To solve the distinct TCT problem, a simple, 
maximum converging, and fast network analysis technique stimulated by the 
lowest cost-slope procedure is suggested in this study.

3. Proposed model structure
PCA (Proposed Constructive Algorithm) finds the best schedule by crashing 
activities one by one. The crashing possibilities are not chosen grounded on 
the greatest advantage, because the greatest advantage might not have been 
the greatest option if  the staff  conditions are removed. When a project is 
completed forward of  schedule, however, the prize becomes a permanent 
payment. The crashing cost is contrasted to the entire of  the incentive and 
the indirect cost in this situation.
The technique for reducing the project duration with minimum cost can be 
abridged in the following phases:

Step-01: Enumerate the cost slope of  each activity.
Step-02: Determine all possible paths of  the network.
Step-03: Determine the critical path(s).
Step-04: If  there be a single critical path, find the activity with the minimum 

crashing slope in the critical path.
Step-05: Estimate the reducing(saving) time.
Step-06: If  there are multi critical paths, determine the crashing 

combinations.
Step-07: Find the lowest combination crashing curve.
Step-08: Go to step-06.
Step-09: If  the crashing is feasible, then crash the activity (or combination of  

activities).
Step-10: Is the path(s) should be rescheduled?
Step-11: If  yes, evaluate schedule and then go to step-04.
Step-12: If  no, then go to step-04.
Step-13: If  the crashing is not feasible, then select the untried crashing choice 

with the minimum crashing cost and then go to step-06.
Step-14: If  the crashing is fuzzy, then evaluate schedule.
Step-15: Test the feasibility of  crashing.
Step-16: If  yes, then go to the step-10.
Step-17: If  no, determine any other crashing opportunity.
Step-18: If  there is a crashing opportunity, then go to the step-14.
Step-19: If  there is no other crashing opportunity, search through the 

activities with float to find feasible combination.
Step-20: If  there be new combination found, then go to the step-10.
Step-21: If  there be no new combination found, then Time-Cost Trading-off  

is finished.

The search method identifies a large number of  crashing alternatives, which 
necessitates a large amount of  processing. The proposed strategy, on the 
other hand, is designed to be fast convergent. As a result, the crashing 
possibilities must be evaluated without regard to the timeline. If  a path which 
is not critical with insufficient total float becomes critical, crashing does not 
result in the predicted reduction in project length. On either hand, the 
accelerated activity may shorten non-critical pathways, resulting in the 
anticipated project duration reduction.

4. Numerical example with calculation
This algorithm examined on a project of  18-activity which was propagated 
by Burns, Liu and Feng (1996) and reformed by Hegazy (1999a). There are 2 
to 5 different duration and cost choices for each activity. 

The number of  possible different alternatives of  cost-duration here is: 

55 *42 *310*21 = 5904900000 

Even on a high-speed computer, a complete examination of  this maximum 
value takes a significant amount of  time. As a result, carrying out a thorough 
enumeration is nearly difficult. The analysis of  the project is applicable for 
the following 2 cases: 
i. Minimum overall project cost based on an overhead cost of  constant 
$210/day and a $1000/day incentive for earlier completions starting at 110 
days and liquidated damages of  $20000/day for after completions starting at 
110 days.
ii. Minimum overall project cost based on an overhead cost of  constant 
$210/day.
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Abstract
Time and cost are two remarkable elements prescriptive of  success in project management. 
The anticipated project length may go over the desired period in many projects. Therefore, it 
becomes vital to shorten the critical path in order to finish the project by the goal date. 
Time-cost trade-off  (TCT) in project network, the reduction in time with a minimum cost of  
project activities, has increased efficiency of  the project. To shorten a project duration activity 
crashing, which includes allocating additional resources to an activity with the objective of  
diminishing its duration, is the most commonly employed compression technique. The 
objective of  an optimum solution of  time-cost trade-off  is to provide maximum profit 
opportunity with a minimum time. There are many algorithms (heuristic, meta-heuristic and 
exact) established in this regard. In this paper a constructive algorithm is proposed and 
implemented with a fairy application example to acquire optimum solution or close-optimum 
solution of  TCT problems.

Keywords Critical path, Time-Cost Trade-off, Crash, Proposed constructive   
 algorithm, Cost-slope.
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1. Introduction
In the construction sector, construction management is a relatively new field. 
Its impact, on the other hand, has been enormous. It is now a widely used 
strategy for improving the efficiency of  building projects in everywhere. In 
the construction sector, construction management is a 
relatively new field. Its impact, on the other hand, has been 
enormous. Due to the entry of  new enterprises into the 
market, competition in the construction industry has been 
increasing. As a result, project management struggles to 
identify the most effective schedule based on a variety of  
factors such as time, money, and other operational 
resources. The ability to complete a project in minimum 
time and at a lower cost is an important factor to consider 
while designing a structure. Accelerating the project 

timetable, on the other hand, costs more because the activity length is 
reduced, necessitating the use of  extra resources. Decision makers can 
perform a TCT problem if  a project is running behind schedule. TCTP 
assists in familiarizing oneself  with the collection of  time–cost options that 
will ensure the best timetable under certain conditions.

2. Existing methods of  Time-Cost Trade-off
The time of  a project can be shortened by spending more money to expedite 
important processes. The expense of  a critical activity raises when the activity 
is crashed, shortening the project's duration. The indirect cost is reduced 
when the project time is reduced, Optimum project budget in Time-Cost 
Trade-off  situations is sought (Hegazy, 1999a)
 The significance of  the TCT matter was identified nearly alongside with 
the outline of  project investigation methods (Kelley Jr. & Walker, 1959; 
Kelley Jr, 1961; Fulkerson, 1961). Some heuristic methods have been created 
with the goal of  finding the best answer to TCT problems. The heuristic 
algorithm developed by Siemens (1971) was the first significant attempt to 
address the TCT problem, and further (Goyal, 1975; Siemens, & Gooding, 
1975) enhanced this algorithm. Heuristic methods for TCT with linear cost 
curves were further developed by Barber and Boardman (1988), Chiu and 
Chiu (2005). The above-mentioned methods afford the best result for 
continuously crashing jobs, but they cannot assurance convergence to the 
worldwide best for discrete or non-linear crashes. Berman (1964) devised a 
method for optimizing networks with continuous cost functions that are 
concave. Falk and Horowitz (1972) used the branch-and-bound algorithm to 
investigate concave continuous cost functions. Vanhoucke (2005) also 
suggested the BaB method for the TCT problem. TCT was also solved using 
network decomposition methods (Vanhoucke & Debels, 2007; Schwarze, 
1980; Demeulemeester, Herroelen, & Elmaghraby, 1996; Demeulemeester, 
De Reyck, Foubert, Herroelen, & Vanhoucke, 1998; Haz r, Haouari, & Erel, 
2010).
 Srivastava and Pathak (2014) used a neural network to solve the TCT 
problem. Lower boundaries for time-cost relationships are provided by 
integer programming, mixed integer programming and linear programming. 
IP, LP and mixed-integer are established (Sakellaropoulos & Chassiakos, 
2004; Moussourakis & Haksever, 2004; Bidhandi, 2006; Hazr, Haouari, & 
Erel, 2010; Liberatore & Pollack-Johnson, 2006; Liu, Burns, & Feng, 1995; Al 
Haj & El-Sayegh, 2015; Moussourakis & Haksever, 2007).
 TCT (De, Dunne, Ghosh, & Wells, 1997) is the search domain which 
grows much quicker than the project size, known as NP-Hard. As a result, 

the memory requirements and computational demands of  accurate 
algorithms skyrocket. For the solution of  TCT, GA is by far the most 
popular meta-heuristic algorithm (Lee, Roh, Park, & Ryu, 2010; Zhang & 
Xing, 2010; Li, Cao, & Love, 1999; Bettemir, 2009; Feng, Liu, & Burns, 1997; 
Hegazy, 1999a). Shuffled Frog Leaping and the Hybrid Genetic Algorithm 
successfully determine small projects in a sensible amount of  time (Sonmez 
& Bettemir, 2012; Elbeltagi, Hegazy, & Grierson, 2005). For large projects, 
however, an optimal or near-optimal solution necessitates nearly 1.5 million 
schedule evaluations (Bettemir, 2009). Furthermore, for the TCT problem, 
(Anagnostopoulos & Kotsikas, 2010) Simulated Annealing is  
(Anagnostopoulos & Kotsikas, 2010; Yang, 2007) implemented Particle 
Swarm Optimization, and (Zhang & Thomas, 2012; Zhang & Xing, 2010) 
employed Ant Colony Optimization, hybrid evolutionary algorithm  
(Rogalska, Bo ejko, & Hejducki, 2008; Geem, 2010) used Harmony Search. 
Using Building Information System software TCT was studied by Cha and 
Lee (2015).
 Time and money aren't the only factors to consider while designing a 
project. As a result, different variations of  the time-cost trade-off  dilemma 
are investigated. Time-cost-quality trade-off  is improved by adding quality to 
the TCT problem (Babu & Suresh, 1996; Monghasemi, Nikoo, Fasaee, & 
Adamowski, 2015; Khang & Myint, 1999; Kim, Kang, & Hwang, 2012; 
Tareghian & Taheri, 2006; Tavana, Abtahi, & Khalili-Damghani, 2014; Zhang 
& Xing, 2010; Mungle, Benyoucef, Son, & Tiwari, 2013).
 In TCT, time and cost required options are considered to be predictable. 
Both activity costs and durations, on the other hand, are unpredictable, 
(Yang, 2005; Kalhor, Khanzadi, Eshtehardian, & Afshar, 2011; Azaron, 
Perkgoz, & Sakawa, 2005; Zheng, Ng, & Kumaraswamy, 2005; Leu, Chen, & 
Yang, 2001; Ke, Ma, & Ni, 2009; Li & Wang, 2009; Yang, 2011; Xu, Zheng, 
Zeng, Wu, & Shen, 2012; Eshtehardian, Afshar, & Abbasnia, 2009; Said & 
Haouari, 2015; Chen & Tsai, 2011).
 TCT matter is solved by presuming an endless supply of  resources. 
When resources are limited in quantity, the problem is referred to as 
multi-mode resource restricted project scheduling. TCT with restricted 
resources to account for resource availability is solved (Liu & Wang, 2008; 
Hegazy, 1999b; Ghoddousi, Eshtehardian, Jooybanpour, & Javanmardi, 
2013; Cheng & Tran, 2016; Rostami, Moradinezhad, & Soufipour, 2014; 
Afruzi, Najafi, Roghanian, & Mazinani, 2014).
 TCT problem was solved by Metwally and Elazouni (2007) by reducing 
the negative cash flow, while (Ammar, 2011) was solved it by optimizing the 
principal. Furthermore, (Fathi & Afshar, 2010) used GA to optimize the 

NPV of  the profit, whereas Koo, Hong and Kim (2015) solved the 
Time-Cost situation trade-off  by introducing ecological impact.
 To summarize, meta-heuristic algorithms are computationally intensive, 
heuristic methods do not always show a proper solution, and proper 
techniques are difficult for building organizers to perform. Thus, a reliable 
constructive algorithm for the distinct Time-Cost Trading issue is till now 
missing. The best solution for the united TCT problem is found using the 
minimum cost slope approach. However, because discrete crashing choices 
limit the creation of  linear cost functions, the approach is not appropriate for 
the distinct TCT problem. To solve the distinct TCT problem, a simple, 
maximum converging, and fast network analysis technique stimulated by the 
lowest cost-slope procedure is suggested in this study.

3. Proposed model structure
PCA (Proposed Constructive Algorithm) finds the best schedule by crashing 
activities one by one. The crashing possibilities are not chosen grounded on 
the greatest advantage, because the greatest advantage might not have been 
the greatest option if  the staff  conditions are removed. When a project is 
completed forward of  schedule, however, the prize becomes a permanent 
payment. The crashing cost is contrasted to the entire of  the incentive and 
the indirect cost in this situation.
The technique for reducing the project duration with minimum cost can be 
abridged in the following phases:

Step-01: Enumerate the cost slope of  each activity.
Step-02: Determine all possible paths of  the network.
Step-03: Determine the critical path(s).
Step-04: If  there be a single critical path, find the activity with the minimum 

crashing slope in the critical path.
Step-05: Estimate the reducing(saving) time.
Step-06: If  there are multi critical paths, determine the crashing 

combinations.
Step-07: Find the lowest combination crashing curve.
Step-08: Go to step-06.
Step-09: If  the crashing is feasible, then crash the activity (or combination of  

activities).
Step-10: Is the path(s) should be rescheduled?
Step-11: If  yes, evaluate schedule and then go to step-04.
Step-12: If  no, then go to step-04.
Step-13: If  the crashing is not feasible, then select the untried crashing choice 

with the minimum crashing cost and then go to step-06.
Step-14: If  the crashing is fuzzy, then evaluate schedule.
Step-15: Test the feasibility of  crashing.
Step-16: If  yes, then go to the step-10.
Step-17: If  no, determine any other crashing opportunity.
Step-18: If  there is a crashing opportunity, then go to the step-14.
Step-19: If  there is no other crashing opportunity, search through the 

activities with float to find feasible combination.
Step-20: If  there be new combination found, then go to the step-10.
Step-21: If  there be no new combination found, then Time-Cost Trading-off  

is finished.

The search method identifies a large number of  crashing alternatives, which 
necessitates a large amount of  processing. The proposed strategy, on the 
other hand, is designed to be fast convergent. As a result, the crashing 
possibilities must be evaluated without regard to the timeline. If  a path which 
is not critical with insufficient total float becomes critical, crashing does not 
result in the predicted reduction in project length. On either hand, the 
accelerated activity may shorten non-critical pathways, resulting in the 
anticipated project duration reduction.

4. Numerical example with calculation
This algorithm examined on a project of  18-activity which was propagated 
by Burns, Liu and Feng (1996) and reformed by Hegazy (1999a). There are 2 
to 5 different duration and cost choices for each activity. 

The number of  possible different alternatives of  cost-duration here is: 

55 *42 *310*21 = 5904900000 

Even on a high-speed computer, a complete examination of  this maximum 
value takes a significant amount of  time. As a result, carrying out a thorough 
enumeration is nearly difficult. The analysis of  the project is applicable for 
the following 2 cases: 
i. Minimum overall project cost based on an overhead cost of  constant 
$210/day and a $1000/day incentive for earlier completions starting at 110 
days and liquidated damages of  $20000/day for after completions starting at 
110 days.
ii. Minimum overall project cost based on an overhead cost of  constant 
$210/day.

 
 

     Normal           Crash-01         Crash-02         Crash-03           Crash-04
  Dur  Dur  Dur  Dur  Dur
  (Day) Cost ($) (Day) Cost ($) (Day) Cost ($) (Day) Cost ($) (Day) Cost ($)

1 - 24 1200 19 2100 21 3200 23 1450 23 1450
2 - 25 1000 22 2000 23 1900 22 2800 23 2200
3 - 33 3200 26 12000 22 4400 - - - -
4 - 20 300000 16 50000 16 70000 - - - -
5 1 30 10000 26 20000 28 20000 - - - -
6 1 24 18000 20 102000 18 34000 - - - -
7 5 18 22000 12 28000 15 58000 - - - -
8 6 24 120 19 424 21 160 23 125 23 135
9 6 25 100 22 220 23 160 22 280 23 220
10 2, 6 33 320 26 1200 22 720 - - - -
11 7, 8 20 300 16 500 16 400 - - - -
12 5, 9, 10 30 1000 26 1000 28 1400 -  28 -
13 3 24 1800 20 10200 18 2800 - - - -
14 4,10 18 2200 12 2800 15 5400 - - - -
15 12 16 3500 - 7500 12 - - - - -
16 13, 14 30 1000 26 2000 28 2000 28 3000 28 1500
17 11, 14, 15 24 1800 20 10200 18 5000 - - - -
18 16, 17 18 2200 12 2800 15 5800 - - - -

Table 1
Cost Slope Procedure of  Each Activity

       Normal           Crash-01         Crash-02         Crash-03           Crash-04
  Dur.   Exp- Avg Exp- Avg  Exp- Avg Exp- Avg
  (Day) Cost ($) ected Cost ected Cost ected Cost ected Cost
1 - 24 1200 5 300 3 400 1 250 1 250
2 - 25 1000 3 500 2 300 2 600 3 600
3 - 33 3200 7 800 11 500 - - - -
4 - 20 300000 4 5000 4 10000 - - - -
5 1 30 10000 4 5000 2 2500 - - - -
6 1 24 18000 4 14000 6 8000 - - - -
7 5 18 22000 6 2000 3 6000 - - - -
8 6 24 120 5 88 3 8 1 5 1 15
9 6 25 100 3 50 2 30 2 60 3 60
10 2, 6 33 320 7 80 11 50 - - - -
11 7, 8 20 300 4 50 4 100 - - - -
12 5, 9, 10 30 1000 4 500 2 250 2 - - 250

Activity Predecessor

Activity Predecessor
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all case issues. Compared to meta-heuristic techniques, PCA requires 
substantially less computational and memory resources. If  an unlimited 
schedule evaluation is undertaken, however, meta-heuristic algorithms can 
yield better outcomes.
 According to the two case issues of  the 18-Activity project, PCA 
converged to a global optimum. When the algorithm's computing effort and 
memory requirement are considered, the obtained local optima in both 
circumstances are still sufficient. The deviation from the ideal solution is 
0.046 percent. The simulated annealing meta-heuristic algorithms and the 
genetic algorithm, on the other hand, diverged 2.61 percent and 2.50 percent 
after 50,000 trials (Elbeltagi, Hegazy, & Grierson, 2005), respectively. To 
attain the same local minima, the Simulated Annealing and Genetic 
Algorithm require around 200,000 schedule evaluations. To attain the same 
local minima, the Genetic Algorithm and Simulated Annealing require 
around 200,000 schedule evaluations.
 Local minima removal is crucial in addition to convergence. 
Meta-heuristic algorithms assign survival probabilities based on individual 
fitness. The acquired cost savings in the total project cost is a measure of  
suitability for TCT difficulties. When the crashing expenses are between 
$50,000 and $20,000, the chances of  survival may not be distinguishable 
between those who are well-fit and those who are not. In this instance, an 
incorrectly chosen crashing option with a modest crashing cost may go 
undetected. PCA, on the other hand, clearly identifies the ultimate of  
crashing costs and can be used to eliminate local minimums.
 To reduce the processing demand of  metaheuristic algorithms, PCA can 
be used to exclude infeasible areas of  the search region. From the case study, 
disclose NAA's computational requirement grows in a linear fashion. The 
heuristic algorithm's property makes it a good choice for the large-scale 
project optimization. The number of  crucial routes increases as the crashing 
method progresses, like the number of  crashing possibilities.
 Because of  the deletion and neglection of  crashing combinations, 
convergence of  the PCA into global minima is not assured. For large 
projects, if  crashing choices were produced without reducing the search area, 
over billions of  crashing alternatives would be formed. As a result, in terms 
of  computing power and memory, this arrangement is unworkable. On either 
hand, PCA can be combined with a network deconstruction technique to 
find viable crashing possibilities while ignoring the possibility of  failure. If  
this is accomplished, PCA will be capable to attain worldwide optimal for all 
schemes, regardless of  size or difficulty.

Tables 01 through 03 show the crash sequences provided by PCA. The 
crashing number column displays the succession of  crashes; the ID column 
displays the ID; the third column displays the project duration determined 
using the present development manners of  the choices; The cost of  the 
enabled crashing choice is displayed in the crashing cost column. The sum of  
the money saved by avoiding penalties, reducing indirect expenses, or earning 
awards is represented in the acquired benefit column. The minimum 
operation costs of  the activity(s) as according existing structure techniques 
are represented in the 4th column. The sum of  penalties and overhead costs 
is shown in the 6th column.; and total cost column signifies the sum of  
indirect and direct costs.
 In Table-02, the activity is depicted as 12* in the 11th crashing to 
illustrate dual crashing. In 12 crashing, PCA converges to a worldwide best 
for the 1st case problem of  the above project.
 Table-03 depicts the crashing process of  the 18-Activity Project's second 
case problem. In 18 crashing tries, the global optimum is found. The 1st and 
2nd crashing choices of  the 12th activity are carried out independently in this 
example, despite the fact that the 1st option's crashing slope is $250 per day 
and the above-mentioned crashing choice is viable due to the $20,000 daily 
penalty.
 For the two case situations, global optima may be found with relatively 
minimal computational effort. In both situations, no trial schedule evaluation 
is conducted, demonstrating that the heuristic method is substantially faster 
than the metaheuristic algorithms in terms of  convergence.

5. Result and discussion
PCA is being evaluated on project networks with 18 activities. For small and 
medium-sized networks, the proposed algorithm achieves global optimum in 

6. Conclusion 
The discrete TCT problem is handled in this study using a network analysis 
method based on the least cost-slope method. The suggested approach is 
designed for Activity-on-Node networks, which make it easier to define 
activity precedence connections. PCA uses a step-by-step crashing approach 
to find the global optimum. Crashing choices are found by searching through 
the search domain's viable portion. The presence of  distinct crashing 
alternatives necessitates the inclusion of  non-critical operations in the 
exploration domain. Despite the presence of  a vast search area, PCA filters 
out infeasible choices and chooses the crashing choice with the lowermost 
cost-slope.
 The proposed constructive algorithm is put to the test by its capacity to 
locate the global optimum and the speed with which it converges. This 
algorithm converges to near-optimum or optimum solutions substantially 
faster than expected, according to the results of  the tests. PCA has a far lower 
computational load than meta-heuristic techniques. Furthermore, the 
method is simpler to construct than branch-and-bound algorithms or, 
integer-programming and it produces better results than heuristic algorithms. 
As a consequence of  the investigation, the proposed constructive algorithm 
is an appropriate optimization strategy for the isolated Time-Cost 
Trading-off  problem.
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       Normal           Crash-01         Crash-02         Crash-03           Crash-04
  Dur.   Exp- Avg Exp- Avg  Exp- Avg Exp- Avg
  (Day) Cost ($) ected Cost ected Cost ected Cost ected Cost
13 3 24 1800 4 1400 6 800 - - - -
14 4,10 18 2200 6 200 3 600 - - - -
15 12 16 3500 - 1000 4 - - - - -
16 13, 14 30 1000 4 500 2 250 2 1000 2 250
17 11, 14, 15 24 1800 4 1400 6 800 - - - -
18 16, 17 18 2200 6 200 3 600 - - - -

Table 2
Crashing Procedure of  the 1st Case Problem

Crashing  Crash Acquired Direct Project Indirect Total
Activity Cost Benefit Cost Duration Cost Cost
- - - 99740 169 35490 135230
10 80 1600 99820 161 33810 133630
9 50 400 99870 159 33390 133260
9 30 200 99900 158 33180 133080
10 50 400 99950 156 32760 132710
9 60 400 100010 154 32340 132350
9 60 600 100070 151 31710 131780
18 200 600 100270 148 31080 131350
1 300 600 100570 145 30450 131020
1 400 1000 100970 140 29400 130370
18 600 1200 101570 134 28140 129710
12* 750 1200 102320 128 26880 129200
12 250 400 102570 126 26460 129030

Table 3
Crashing Procedure of  the 2nd Case Problem
Crashing  Crash Acquired Direct Project Indirect Total
Activity Cost Benefit Cost Duration Cost Cost
- - - 99740 169 1214590 1314330
10 80 161600 99820 161 1053810 1153630
9 50 40400 99870 159 1027700 1113260
9 30 20200 99900 158 993180 1093080
10 50 40400 99950 156 952760 1052710
9 60 40400 100010 154 912340 1012350
9 60 60600 100070 151 851710 952780
18 200 60600 100270 148 791080 891350
1 300 60600 100570 145 730450 831020
1 400 101000 100970 140 629400 730370

Activity Predecessor
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all case issues. Compared to meta-heuristic techniques, PCA requires 
substantially less computational and memory resources. If  an unlimited 
schedule evaluation is undertaken, however, meta-heuristic algorithms can 
yield better outcomes.
 According to the two case issues of  the 18-Activity project, PCA 
converged to a global optimum. When the algorithm's computing effort and 
memory requirement are considered, the obtained local optima in both 
circumstances are still sufficient. The deviation from the ideal solution is 
0.046 percent. The simulated annealing meta-heuristic algorithms and the 
genetic algorithm, on the other hand, diverged 2.61 percent and 2.50 percent 
after 50,000 trials (Elbeltagi, Hegazy, & Grierson, 2005), respectively. To 
attain the same local minima, the Simulated Annealing and Genetic 
Algorithm require around 200,000 schedule evaluations. To attain the same 
local minima, the Genetic Algorithm and Simulated Annealing require 
around 200,000 schedule evaluations.
 Local minima removal is crucial in addition to convergence. 
Meta-heuristic algorithms assign survival probabilities based on individual 
fitness. The acquired cost savings in the total project cost is a measure of  
suitability for TCT difficulties. When the crashing expenses are between 
$50,000 and $20,000, the chances of  survival may not be distinguishable 
between those who are well-fit and those who are not. In this instance, an 
incorrectly chosen crashing option with a modest crashing cost may go 
undetected. PCA, on the other hand, clearly identifies the ultimate of  
crashing costs and can be used to eliminate local minimums.
 To reduce the processing demand of  metaheuristic algorithms, PCA can 
be used to exclude infeasible areas of  the search region. From the case study, 
disclose NAA's computational requirement grows in a linear fashion. The 
heuristic algorithm's property makes it a good choice for the large-scale 
project optimization. The number of  crucial routes increases as the crashing 
method progresses, like the number of  crashing possibilities.
 Because of  the deletion and neglection of  crashing combinations, 
convergence of  the PCA into global minima is not assured. For large 
projects, if  crashing choices were produced without reducing the search area, 
over billions of  crashing alternatives would be formed. As a result, in terms 
of  computing power and memory, this arrangement is unworkable. On either 
hand, PCA can be combined with a network deconstruction technique to 
find viable crashing possibilities while ignoring the possibility of  failure. If  
this is accomplished, PCA will be capable to attain worldwide optimal for all 
schemes, regardless of  size or difficulty.

Tables 01 through 03 show the crash sequences provided by PCA. The 
crashing number column displays the succession of  crashes; the ID column 
displays the ID; the third column displays the project duration determined 
using the present development manners of  the choices; The cost of  the 
enabled crashing choice is displayed in the crashing cost column. The sum of  
the money saved by avoiding penalties, reducing indirect expenses, or earning 
awards is represented in the acquired benefit column. The minimum 
operation costs of  the activity(s) as according existing structure techniques 
are represented in the 4th column. The sum of  penalties and overhead costs 
is shown in the 6th column.; and total cost column signifies the sum of  
indirect and direct costs.
 In Table-02, the activity is depicted as 12* in the 11th crashing to 
illustrate dual crashing. In 12 crashing, PCA converges to a worldwide best 
for the 1st case problem of  the above project.
 Table-03 depicts the crashing process of  the 18-Activity Project's second 
case problem. In 18 crashing tries, the global optimum is found. The 1st and 
2nd crashing choices of  the 12th activity are carried out independently in this 
example, despite the fact that the 1st option's crashing slope is $250 per day 
and the above-mentioned crashing choice is viable due to the $20,000 daily 
penalty.
 For the two case situations, global optima may be found with relatively 
minimal computational effort. In both situations, no trial schedule evaluation 
is conducted, demonstrating that the heuristic method is substantially faster 
than the metaheuristic algorithms in terms of  convergence.

5. Result and discussion
PCA is being evaluated on project networks with 18 activities. For small and 
medium-sized networks, the proposed algorithm achieves global optimum in 

6. Conclusion 
The discrete TCT problem is handled in this study using a network analysis 
method based on the least cost-slope method. The suggested approach is 
designed for Activity-on-Node networks, which make it easier to define 
activity precedence connections. PCA uses a step-by-step crashing approach 
to find the global optimum. Crashing choices are found by searching through 
the search domain's viable portion. The presence of  distinct crashing 
alternatives necessitates the inclusion of  non-critical operations in the 
exploration domain. Despite the presence of  a vast search area, PCA filters 
out infeasible choices and chooses the crashing choice with the lowermost 
cost-slope.
 The proposed constructive algorithm is put to the test by its capacity to 
locate the global optimum and the speed with which it converges. This 
algorithm converges to near-optimum or optimum solutions substantially 
faster than expected, according to the results of  the tests. PCA has a far lower 
computational load than meta-heuristic techniques. Furthermore, the 
method is simpler to construct than branch-and-bound algorithms or, 
integer-programming and it produces better results than heuristic algorithms. 
As a consequence of  the investigation, the proposed constructive algorithm 
is an appropriate optimization strategy for the isolated Time-Cost 
Trading-off  problem.
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Crashing  Crash Acquired Direct Project Indirect Total
Activity Cost Benefit Cost Duration Cost Cost
18 600 121200 101570 134 508140 609710
17 1400 121200 102970 128 386880 489850
17 800 80800 103770 124 306040 409810
1 250 20200 104020 123 285830 389850
1 250 20200 104270 122 265620 369890
12 500 40400 104770 120 225200 329970
12 250 80800 105020 116 144360 249380
12 250 105270 40400 114 103940 209210
15 1000 106270 80800 110 23100 129370
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all case issues. Compared to meta-heuristic techniques, PCA requires 
substantially less computational and memory resources. If  an unlimited 
schedule evaluation is undertaken, however, meta-heuristic algorithms can 
yield better outcomes.
 According to the two case issues of  the 18-Activity project, PCA 
converged to a global optimum. When the algorithm's computing effort and 
memory requirement are considered, the obtained local optima in both 
circumstances are still sufficient. The deviation from the ideal solution is 
0.046 percent. The simulated annealing meta-heuristic algorithms and the 
genetic algorithm, on the other hand, diverged 2.61 percent and 2.50 percent 
after 50,000 trials (Elbeltagi, Hegazy, & Grierson, 2005), respectively. To 
attain the same local minima, the Simulated Annealing and Genetic 
Algorithm require around 200,000 schedule evaluations. To attain the same 
local minima, the Genetic Algorithm and Simulated Annealing require 
around 200,000 schedule evaluations.
 Local minima removal is crucial in addition to convergence. 
Meta-heuristic algorithms assign survival probabilities based on individual 
fitness. The acquired cost savings in the total project cost is a measure of  
suitability for TCT difficulties. When the crashing expenses are between 
$50,000 and $20,000, the chances of  survival may not be distinguishable 
between those who are well-fit and those who are not. In this instance, an 
incorrectly chosen crashing option with a modest crashing cost may go 
undetected. PCA, on the other hand, clearly identifies the ultimate of  
crashing costs and can be used to eliminate local minimums.
 To reduce the processing demand of  metaheuristic algorithms, PCA can 
be used to exclude infeasible areas of  the search region. From the case study, 
disclose NAA's computational requirement grows in a linear fashion. The 
heuristic algorithm's property makes it a good choice for the large-scale 
project optimization. The number of  crucial routes increases as the crashing 
method progresses, like the number of  crashing possibilities.
 Because of  the deletion and neglection of  crashing combinations, 
convergence of  the PCA into global minima is not assured. For large 
projects, if  crashing choices were produced without reducing the search area, 
over billions of  crashing alternatives would be formed. As a result, in terms 
of  computing power and memory, this arrangement is unworkable. On either 
hand, PCA can be combined with a network deconstruction technique to 
find viable crashing possibilities while ignoring the possibility of  failure. If  
this is accomplished, PCA will be capable to attain worldwide optimal for all 
schemes, regardless of  size or difficulty.

Tables 01 through 03 show the crash sequences provided by PCA. The 
crashing number column displays the succession of  crashes; the ID column 
displays the ID; the third column displays the project duration determined 
using the present development manners of  the choices; The cost of  the 
enabled crashing choice is displayed in the crashing cost column. The sum of  
the money saved by avoiding penalties, reducing indirect expenses, or earning 
awards is represented in the acquired benefit column. The minimum 
operation costs of  the activity(s) as according existing structure techniques 
are represented in the 4th column. The sum of  penalties and overhead costs 
is shown in the 6th column.; and total cost column signifies the sum of  
indirect and direct costs.
 In Table-02, the activity is depicted as 12* in the 11th crashing to 
illustrate dual crashing. In 12 crashing, PCA converges to a worldwide best 
for the 1st case problem of  the above project.
 Table-03 depicts the crashing process of  the 18-Activity Project's second 
case problem. In 18 crashing tries, the global optimum is found. The 1st and 
2nd crashing choices of  the 12th activity are carried out independently in this 
example, despite the fact that the 1st option's crashing slope is $250 per day 
and the above-mentioned crashing choice is viable due to the $20,000 daily 
penalty.
 For the two case situations, global optima may be found with relatively 
minimal computational effort. In both situations, no trial schedule evaluation 
is conducted, demonstrating that the heuristic method is substantially faster 
than the metaheuristic algorithms in terms of  convergence.

5. Result and discussion
PCA is being evaluated on project networks with 18 activities. For small and 
medium-sized networks, the proposed algorithm achieves global optimum in 

6. Conclusion 
The discrete TCT problem is handled in this study using a network analysis 
method based on the least cost-slope method. The suggested approach is 
designed for Activity-on-Node networks, which make it easier to define 
activity precedence connections. PCA uses a step-by-step crashing approach 
to find the global optimum. Crashing choices are found by searching through 
the search domain's viable portion. The presence of  distinct crashing 
alternatives necessitates the inclusion of  non-critical operations in the 
exploration domain. Despite the presence of  a vast search area, PCA filters 
out infeasible choices and chooses the crashing choice with the lowermost 
cost-slope.
 The proposed constructive algorithm is put to the test by its capacity to 
locate the global optimum and the speed with which it converges. This 
algorithm converges to near-optimum or optimum solutions substantially 
faster than expected, according to the results of  the tests. PCA has a far lower 
computational load than meta-heuristic techniques. Furthermore, the 
method is simpler to construct than branch-and-bound algorithms or, 
integer-programming and it produces better results than heuristic algorithms. 
As a consequence of  the investigation, the proposed constructive algorithm 
is an appropriate optimization strategy for the isolated Time-Cost 
Trading-off  problem.
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all case issues. Compared to meta-heuristic techniques, PCA requires 
substantially less computational and memory resources. If  an unlimited 
schedule evaluation is undertaken, however, meta-heuristic algorithms can 
yield better outcomes.
 According to the two case issues of  the 18-Activity project, PCA 
converged to a global optimum. When the algorithm's computing effort and 
memory requirement are considered, the obtained local optima in both 
circumstances are still sufficient. The deviation from the ideal solution is 
0.046 percent. The simulated annealing meta-heuristic algorithms and the 
genetic algorithm, on the other hand, diverged 2.61 percent and 2.50 percent 
after 50,000 trials (Elbeltagi, Hegazy, & Grierson, 2005), respectively. To 
attain the same local minima, the Simulated Annealing and Genetic 
Algorithm require around 200,000 schedule evaluations. To attain the same 
local minima, the Genetic Algorithm and Simulated Annealing require 
around 200,000 schedule evaluations.
 Local minima removal is crucial in addition to convergence. 
Meta-heuristic algorithms assign survival probabilities based on individual 
fitness. The acquired cost savings in the total project cost is a measure of  
suitability for TCT difficulties. When the crashing expenses are between 
$50,000 and $20,000, the chances of  survival may not be distinguishable 
between those who are well-fit and those who are not. In this instance, an 
incorrectly chosen crashing option with a modest crashing cost may go 
undetected. PCA, on the other hand, clearly identifies the ultimate of  
crashing costs and can be used to eliminate local minimums.
 To reduce the processing demand of  metaheuristic algorithms, PCA can 
be used to exclude infeasible areas of  the search region. From the case study, 
disclose NAA's computational requirement grows in a linear fashion. The 
heuristic algorithm's property makes it a good choice for the large-scale 
project optimization. The number of  crucial routes increases as the crashing 
method progresses, like the number of  crashing possibilities.
 Because of  the deletion and neglection of  crashing combinations, 
convergence of  the PCA into global minima is not assured. For large 
projects, if  crashing choices were produced without reducing the search area, 
over billions of  crashing alternatives would be formed. As a result, in terms 
of  computing power and memory, this arrangement is unworkable. On either 
hand, PCA can be combined with a network deconstruction technique to 
find viable crashing possibilities while ignoring the possibility of  failure. If  
this is accomplished, PCA will be capable to attain worldwide optimal for all 
schemes, regardless of  size or difficulty.

Tables 01 through 03 show the crash sequences provided by PCA. The 
crashing number column displays the succession of  crashes; the ID column 
displays the ID; the third column displays the project duration determined 
using the present development manners of  the choices; The cost of  the 
enabled crashing choice is displayed in the crashing cost column. The sum of  
the money saved by avoiding penalties, reducing indirect expenses, or earning 
awards is represented in the acquired benefit column. The minimum 
operation costs of  the activity(s) as according existing structure techniques 
are represented in the 4th column. The sum of  penalties and overhead costs 
is shown in the 6th column.; and total cost column signifies the sum of  
indirect and direct costs.
 In Table-02, the activity is depicted as 12* in the 11th crashing to 
illustrate dual crashing. In 12 crashing, PCA converges to a worldwide best 
for the 1st case problem of  the above project.
 Table-03 depicts the crashing process of  the 18-Activity Project's second 
case problem. In 18 crashing tries, the global optimum is found. The 1st and 
2nd crashing choices of  the 12th activity are carried out independently in this 
example, despite the fact that the 1st option's crashing slope is $250 per day 
and the above-mentioned crashing choice is viable due to the $20,000 daily 
penalty.
 For the two case situations, global optima may be found with relatively 
minimal computational effort. In both situations, no trial schedule evaluation 
is conducted, demonstrating that the heuristic method is substantially faster 
than the metaheuristic algorithms in terms of  convergence.

5. Result and discussion
PCA is being evaluated on project networks with 18 activities. For small and 
medium-sized networks, the proposed algorithm achieves global optimum in 

6. Conclusion 
The discrete TCT problem is handled in this study using a network analysis 
method based on the least cost-slope method. The suggested approach is 
designed for Activity-on-Node networks, which make it easier to define 
activity precedence connections. PCA uses a step-by-step crashing approach 
to find the global optimum. Crashing choices are found by searching through 
the search domain's viable portion. The presence of  distinct crashing 
alternatives necessitates the inclusion of  non-critical operations in the 
exploration domain. Despite the presence of  a vast search area, PCA filters 
out infeasible choices and chooses the crashing choice with the lowermost 
cost-slope.
 The proposed constructive algorithm is put to the test by its capacity to 
locate the global optimum and the speed with which it converges. This 
algorithm converges to near-optimum or optimum solutions substantially 
faster than expected, according to the results of  the tests. PCA has a far lower 
computational load than meta-heuristic techniques. Furthermore, the 
method is simpler to construct than branch-and-bound algorithms or, 
integer-programming and it produces better results than heuristic algorithms. 
As a consequence of  the investigation, the proposed constructive algorithm 
is an appropriate optimization strategy for the isolated Time-Cost 
Trading-off  problem.
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all case issues. Compared to meta-heuristic techniques, PCA requires 
substantially less computational and memory resources. If  an unlimited 
schedule evaluation is undertaken, however, meta-heuristic algorithms can 
yield better outcomes.
 According to the two case issues of  the 18-Activity project, PCA 
converged to a global optimum. When the algorithm's computing effort and 
memory requirement are considered, the obtained local optima in both 
circumstances are still sufficient. The deviation from the ideal solution is 
0.046 percent. The simulated annealing meta-heuristic algorithms and the 
genetic algorithm, on the other hand, diverged 2.61 percent and 2.50 percent 
after 50,000 trials (Elbeltagi, Hegazy, & Grierson, 2005), respectively. To 
attain the same local minima, the Simulated Annealing and Genetic 
Algorithm require around 200,000 schedule evaluations. To attain the same 
local minima, the Genetic Algorithm and Simulated Annealing require 
around 200,000 schedule evaluations.
 Local minima removal is crucial in addition to convergence. 
Meta-heuristic algorithms assign survival probabilities based on individual 
fitness. The acquired cost savings in the total project cost is a measure of  
suitability for TCT difficulties. When the crashing expenses are between 
$50,000 and $20,000, the chances of  survival may not be distinguishable 
between those who are well-fit and those who are not. In this instance, an 
incorrectly chosen crashing option with a modest crashing cost may go 
undetected. PCA, on the other hand, clearly identifies the ultimate of  
crashing costs and can be used to eliminate local minimums.
 To reduce the processing demand of  metaheuristic algorithms, PCA can 
be used to exclude infeasible areas of  the search region. From the case study, 
disclose NAA's computational requirement grows in a linear fashion. The 
heuristic algorithm's property makes it a good choice for the large-scale 
project optimization. The number of  crucial routes increases as the crashing 
method progresses, like the number of  crashing possibilities.
 Because of  the deletion and neglection of  crashing combinations, 
convergence of  the PCA into global minima is not assured. For large 
projects, if  crashing choices were produced without reducing the search area, 
over billions of  crashing alternatives would be formed. As a result, in terms 
of  computing power and memory, this arrangement is unworkable. On either 
hand, PCA can be combined with a network deconstruction technique to 
find viable crashing possibilities while ignoring the possibility of  failure. If  
this is accomplished, PCA will be capable to attain worldwide optimal for all 
schemes, regardless of  size or difficulty.

Tables 01 through 03 show the crash sequences provided by PCA. The 
crashing number column displays the succession of  crashes; the ID column 
displays the ID; the third column displays the project duration determined 
using the present development manners of  the choices; The cost of  the 
enabled crashing choice is displayed in the crashing cost column. The sum of  
the money saved by avoiding penalties, reducing indirect expenses, or earning 
awards is represented in the acquired benefit column. The minimum 
operation costs of  the activity(s) as according existing structure techniques 
are represented in the 4th column. The sum of  penalties and overhead costs 
is shown in the 6th column.; and total cost column signifies the sum of  
indirect and direct costs.
 In Table-02, the activity is depicted as 12* in the 11th crashing to 
illustrate dual crashing. In 12 crashing, PCA converges to a worldwide best 
for the 1st case problem of  the above project.
 Table-03 depicts the crashing process of  the 18-Activity Project's second 
case problem. In 18 crashing tries, the global optimum is found. The 1st and 
2nd crashing choices of  the 12th activity are carried out independently in this 
example, despite the fact that the 1st option's crashing slope is $250 per day 
and the above-mentioned crashing choice is viable due to the $20,000 daily 
penalty.
 For the two case situations, global optima may be found with relatively 
minimal computational effort. In both situations, no trial schedule evaluation 
is conducted, demonstrating that the heuristic method is substantially faster 
than the metaheuristic algorithms in terms of  convergence.

5. Result and discussion
PCA is being evaluated on project networks with 18 activities. For small and 
medium-sized networks, the proposed algorithm achieves global optimum in 

6. Conclusion 
The discrete TCT problem is handled in this study using a network analysis 
method based on the least cost-slope method. The suggested approach is 
designed for Activity-on-Node networks, which make it easier to define 
activity precedence connections. PCA uses a step-by-step crashing approach 
to find the global optimum. Crashing choices are found by searching through 
the search domain's viable portion. The presence of  distinct crashing 
alternatives necessitates the inclusion of  non-critical operations in the 
exploration domain. Despite the presence of  a vast search area, PCA filters 
out infeasible choices and chooses the crashing choice with the lowermost 
cost-slope.
 The proposed constructive algorithm is put to the test by its capacity to 
locate the global optimum and the speed with which it converges. This 
algorithm converges to near-optimum or optimum solutions substantially 
faster than expected, according to the results of  the tests. PCA has a far lower 
computational load than meta-heuristic techniques. Furthermore, the 
method is simpler to construct than branch-and-bound algorithms or, 
integer-programming and it produces better results than heuristic algorithms. 
As a consequence of  the investigation, the proposed constructive algorithm 
is an appropriate optimization strategy for the isolated Time-Cost 
Trading-off  problem.
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all case issues. Compared to meta-heuristic techniques, PCA requires 
substantially less computational and memory resources. If  an unlimited 
schedule evaluation is undertaken, however, meta-heuristic algorithms can 
yield better outcomes.
 According to the two case issues of  the 18-Activity project, PCA 
converged to a global optimum. When the algorithm's computing effort and 
memory requirement are considered, the obtained local optima in both 
circumstances are still sufficient. The deviation from the ideal solution is 
0.046 percent. The simulated annealing meta-heuristic algorithms and the 
genetic algorithm, on the other hand, diverged 2.61 percent and 2.50 percent 
after 50,000 trials (Elbeltagi, Hegazy, & Grierson, 2005), respectively. To 
attain the same local minima, the Simulated Annealing and Genetic 
Algorithm require around 200,000 schedule evaluations. To attain the same 
local minima, the Genetic Algorithm and Simulated Annealing require 
around 200,000 schedule evaluations.
 Local minima removal is crucial in addition to convergence. 
Meta-heuristic algorithms assign survival probabilities based on individual 
fitness. The acquired cost savings in the total project cost is a measure of  
suitability for TCT difficulties. When the crashing expenses are between 
$50,000 and $20,000, the chances of  survival may not be distinguishable 
between those who are well-fit and those who are not. In this instance, an 
incorrectly chosen crashing option with a modest crashing cost may go 
undetected. PCA, on the other hand, clearly identifies the ultimate of  
crashing costs and can be used to eliminate local minimums.
 To reduce the processing demand of  metaheuristic algorithms, PCA can 
be used to exclude infeasible areas of  the search region. From the case study, 
disclose NAA's computational requirement grows in a linear fashion. The 
heuristic algorithm's property makes it a good choice for the large-scale 
project optimization. The number of  crucial routes increases as the crashing 
method progresses, like the number of  crashing possibilities.
 Because of  the deletion and neglection of  crashing combinations, 
convergence of  the PCA into global minima is not assured. For large 
projects, if  crashing choices were produced without reducing the search area, 
over billions of  crashing alternatives would be formed. As a result, in terms 
of  computing power and memory, this arrangement is unworkable. On either 
hand, PCA can be combined with a network deconstruction technique to 
find viable crashing possibilities while ignoring the possibility of  failure. If  
this is accomplished, PCA will be capable to attain worldwide optimal for all 
schemes, regardless of  size or difficulty.

Tables 01 through 03 show the crash sequences provided by PCA. The 
crashing number column displays the succession of  crashes; the ID column 
displays the ID; the third column displays the project duration determined 
using the present development manners of  the choices; The cost of  the 
enabled crashing choice is displayed in the crashing cost column. The sum of  
the money saved by avoiding penalties, reducing indirect expenses, or earning 
awards is represented in the acquired benefit column. The minimum 
operation costs of  the activity(s) as according existing structure techniques 
are represented in the 4th column. The sum of  penalties and overhead costs 
is shown in the 6th column.; and total cost column signifies the sum of  
indirect and direct costs.
 In Table-02, the activity is depicted as 12* in the 11th crashing to 
illustrate dual crashing. In 12 crashing, PCA converges to a worldwide best 
for the 1st case problem of  the above project.
 Table-03 depicts the crashing process of  the 18-Activity Project's second 
case problem. In 18 crashing tries, the global optimum is found. The 1st and 
2nd crashing choices of  the 12th activity are carried out independently in this 
example, despite the fact that the 1st option's crashing slope is $250 per day 
and the above-mentioned crashing choice is viable due to the $20,000 daily 
penalty.
 For the two case situations, global optima may be found with relatively 
minimal computational effort. In both situations, no trial schedule evaluation 
is conducted, demonstrating that the heuristic method is substantially faster 
than the metaheuristic algorithms in terms of  convergence.

5. Result and discussion
PCA is being evaluated on project networks with 18 activities. For small and 
medium-sized networks, the proposed algorithm achieves global optimum in 

6. Conclusion 
The discrete TCT problem is handled in this study using a network analysis 
method based on the least cost-slope method. The suggested approach is 
designed for Activity-on-Node networks, which make it easier to define 
activity precedence connections. PCA uses a step-by-step crashing approach 
to find the global optimum. Crashing choices are found by searching through 
the search domain's viable portion. The presence of  distinct crashing 
alternatives necessitates the inclusion of  non-critical operations in the 
exploration domain. Despite the presence of  a vast search area, PCA filters 
out infeasible choices and chooses the crashing choice with the lowermost 
cost-slope.
 The proposed constructive algorithm is put to the test by its capacity to 
locate the global optimum and the speed with which it converges. This 
algorithm converges to near-optimum or optimum solutions substantially 
faster than expected, according to the results of  the tests. PCA has a far lower 
computational load than meta-heuristic techniques. Furthermore, the 
method is simpler to construct than branch-and-bound algorithms or, 
integer-programming and it produces better results than heuristic algorithms. 
As a consequence of  the investigation, the proposed constructive algorithm 
is an appropriate optimization strategy for the isolated Time-Cost 
Trading-off  problem.
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all case issues. Compared to meta-heuristic techniques, PCA requires 
substantially less computational and memory resources. If  an unlimited 
schedule evaluation is undertaken, however, meta-heuristic algorithms can 
yield better outcomes.
 According to the two case issues of  the 18-Activity project, PCA 
converged to a global optimum. When the algorithm's computing effort and 
memory requirement are considered, the obtained local optima in both 
circumstances are still sufficient. The deviation from the ideal solution is 
0.046 percent. The simulated annealing meta-heuristic algorithms and the 
genetic algorithm, on the other hand, diverged 2.61 percent and 2.50 percent 
after 50,000 trials (Elbeltagi, Hegazy, & Grierson, 2005), respectively. To 
attain the same local minima, the Simulated Annealing and Genetic 
Algorithm require around 200,000 schedule evaluations. To attain the same 
local minima, the Genetic Algorithm and Simulated Annealing require 
around 200,000 schedule evaluations.
 Local minima removal is crucial in addition to convergence. 
Meta-heuristic algorithms assign survival probabilities based on individual 
fitness. The acquired cost savings in the total project cost is a measure of  
suitability for TCT difficulties. When the crashing expenses are between 
$50,000 and $20,000, the chances of  survival may not be distinguishable 
between those who are well-fit and those who are not. In this instance, an 
incorrectly chosen crashing option with a modest crashing cost may go 
undetected. PCA, on the other hand, clearly identifies the ultimate of  
crashing costs and can be used to eliminate local minimums.
 To reduce the processing demand of  metaheuristic algorithms, PCA can 
be used to exclude infeasible areas of  the search region. From the case study, 
disclose NAA's computational requirement grows in a linear fashion. The 
heuristic algorithm's property makes it a good choice for the large-scale 
project optimization. The number of  crucial routes increases as the crashing 
method progresses, like the number of  crashing possibilities.
 Because of  the deletion and neglection of  crashing combinations, 
convergence of  the PCA into global minima is not assured. For large 
projects, if  crashing choices were produced without reducing the search area, 
over billions of  crashing alternatives would be formed. As a result, in terms 
of  computing power and memory, this arrangement is unworkable. On either 
hand, PCA can be combined with a network deconstruction technique to 
find viable crashing possibilities while ignoring the possibility of  failure. If  
this is accomplished, PCA will be capable to attain worldwide optimal for all 
schemes, regardless of  size or difficulty.

Tables 01 through 03 show the crash sequences provided by PCA. The 
crashing number column displays the succession of  crashes; the ID column 
displays the ID; the third column displays the project duration determined 
using the present development manners of  the choices; The cost of  the 
enabled crashing choice is displayed in the crashing cost column. The sum of  
the money saved by avoiding penalties, reducing indirect expenses, or earning 
awards is represented in the acquired benefit column. The minimum 
operation costs of  the activity(s) as according existing structure techniques 
are represented in the 4th column. The sum of  penalties and overhead costs 
is shown in the 6th column.; and total cost column signifies the sum of  
indirect and direct costs.
 In Table-02, the activity is depicted as 12* in the 11th crashing to 
illustrate dual crashing. In 12 crashing, PCA converges to a worldwide best 
for the 1st case problem of  the above project.
 Table-03 depicts the crashing process of  the 18-Activity Project's second 
case problem. In 18 crashing tries, the global optimum is found. The 1st and 
2nd crashing choices of  the 12th activity are carried out independently in this 
example, despite the fact that the 1st option's crashing slope is $250 per day 
and the above-mentioned crashing choice is viable due to the $20,000 daily 
penalty.
 For the two case situations, global optima may be found with relatively 
minimal computational effort. In both situations, no trial schedule evaluation 
is conducted, demonstrating that the heuristic method is substantially faster 
than the metaheuristic algorithms in terms of  convergence.

5. Result and discussion
PCA is being evaluated on project networks with 18 activities. For small and 
medium-sized networks, the proposed algorithm achieves global optimum in 

6. Conclusion 
The discrete TCT problem is handled in this study using a network analysis 
method based on the least cost-slope method. The suggested approach is 
designed for Activity-on-Node networks, which make it easier to define 
activity precedence connections. PCA uses a step-by-step crashing approach 
to find the global optimum. Crashing choices are found by searching through 
the search domain's viable portion. The presence of  distinct crashing 
alternatives necessitates the inclusion of  non-critical operations in the 
exploration domain. Despite the presence of  a vast search area, PCA filters 
out infeasible choices and chooses the crashing choice with the lowermost 
cost-slope.
 The proposed constructive algorithm is put to the test by its capacity to 
locate the global optimum and the speed with which it converges. This 
algorithm converges to near-optimum or optimum solutions substantially 
faster than expected, according to the results of  the tests. PCA has a far lower 
computational load than meta-heuristic techniques. Furthermore, the 
method is simpler to construct than branch-and-bound algorithms or, 
integer-programming and it produces better results than heuristic algorithms. 
As a consequence of  the investigation, the proposed constructive algorithm 
is an appropriate optimization strategy for the isolated Time-Cost 
Trading-off  problem.
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all case issues. Compared to meta-heuristic techniques, PCA requires 
substantially less computational and memory resources. If  an unlimited 
schedule evaluation is undertaken, however, meta-heuristic algorithms can 
yield better outcomes.
 According to the two case issues of  the 18-Activity project, PCA 
converged to a global optimum. When the algorithm's computing effort and 
memory requirement are considered, the obtained local optima in both 
circumstances are still sufficient. The deviation from the ideal solution is 
0.046 percent. The simulated annealing meta-heuristic algorithms and the 
genetic algorithm, on the other hand, diverged 2.61 percent and 2.50 percent 
after 50,000 trials (Elbeltagi, Hegazy, & Grierson, 2005), respectively. To 
attain the same local minima, the Simulated Annealing and Genetic 
Algorithm require around 200,000 schedule evaluations. To attain the same 
local minima, the Genetic Algorithm and Simulated Annealing require 
around 200,000 schedule evaluations.
 Local minima removal is crucial in addition to convergence. 
Meta-heuristic algorithms assign survival probabilities based on individual 
fitness. The acquired cost savings in the total project cost is a measure of  
suitability for TCT difficulties. When the crashing expenses are between 
$50,000 and $20,000, the chances of  survival may not be distinguishable 
between those who are well-fit and those who are not. In this instance, an 
incorrectly chosen crashing option with a modest crashing cost may go 
undetected. PCA, on the other hand, clearly identifies the ultimate of  
crashing costs and can be used to eliminate local minimums.
 To reduce the processing demand of  metaheuristic algorithms, PCA can 
be used to exclude infeasible areas of  the search region. From the case study, 
disclose NAA's computational requirement grows in a linear fashion. The 
heuristic algorithm's property makes it a good choice for the large-scale 
project optimization. The number of  crucial routes increases as the crashing 
method progresses, like the number of  crashing possibilities.
 Because of  the deletion and neglection of  crashing combinations, 
convergence of  the PCA into global minima is not assured. For large 
projects, if  crashing choices were produced without reducing the search area, 
over billions of  crashing alternatives would be formed. As a result, in terms 
of  computing power and memory, this arrangement is unworkable. On either 
hand, PCA can be combined with a network deconstruction technique to 
find viable crashing possibilities while ignoring the possibility of  failure. If  
this is accomplished, PCA will be capable to attain worldwide optimal for all 
schemes, regardless of  size or difficulty.

Tables 01 through 03 show the crash sequences provided by PCA. The 
crashing number column displays the succession of  crashes; the ID column 
displays the ID; the third column displays the project duration determined 
using the present development manners of  the choices; The cost of  the 
enabled crashing choice is displayed in the crashing cost column. The sum of  
the money saved by avoiding penalties, reducing indirect expenses, or earning 
awards is represented in the acquired benefit column. The minimum 
operation costs of  the activity(s) as according existing structure techniques 
are represented in the 4th column. The sum of  penalties and overhead costs 
is shown in the 6th column.; and total cost column signifies the sum of  
indirect and direct costs.
 In Table-02, the activity is depicted as 12* in the 11th crashing to 
illustrate dual crashing. In 12 crashing, PCA converges to a worldwide best 
for the 1st case problem of  the above project.
 Table-03 depicts the crashing process of  the 18-Activity Project's second 
case problem. In 18 crashing tries, the global optimum is found. The 1st and 
2nd crashing choices of  the 12th activity are carried out independently in this 
example, despite the fact that the 1st option's crashing slope is $250 per day 
and the above-mentioned crashing choice is viable due to the $20,000 daily 
penalty.
 For the two case situations, global optima may be found with relatively 
minimal computational effort. In both situations, no trial schedule evaluation 
is conducted, demonstrating that the heuristic method is substantially faster 
than the metaheuristic algorithms in terms of  convergence.

5. Result and discussion
PCA is being evaluated on project networks with 18 activities. For small and 
medium-sized networks, the proposed algorithm achieves global optimum in 

6. Conclusion 
The discrete TCT problem is handled in this study using a network analysis 
method based on the least cost-slope method. The suggested approach is 
designed for Activity-on-Node networks, which make it easier to define 
activity precedence connections. PCA uses a step-by-step crashing approach 
to find the global optimum. Crashing choices are found by searching through 
the search domain's viable portion. The presence of  distinct crashing 
alternatives necessitates the inclusion of  non-critical operations in the 
exploration domain. Despite the presence of  a vast search area, PCA filters 
out infeasible choices and chooses the crashing choice with the lowermost 
cost-slope.
 The proposed constructive algorithm is put to the test by its capacity to 
locate the global optimum and the speed with which it converges. This 
algorithm converges to near-optimum or optimum solutions substantially 
faster than expected, according to the results of  the tests. PCA has a far lower 
computational load than meta-heuristic techniques. Furthermore, the 
method is simpler to construct than branch-and-bound algorithms or, 
integer-programming and it produces better results than heuristic algorithms. 
As a consequence of  the investigation, the proposed constructive algorithm 
is an appropriate optimization strategy for the isolated Time-Cost 
Trading-off  problem.
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