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Abstract

A social insect-like Ant lives in a colony. Their collective behavior of food recruitment is a
universal character. The mathematical model of the food recruitment of the ant colonies
meets different challenges in resolving the nonlinearity due to choosing various food
exploration contests between the ants and different environmental parameters. This study
possesses several leading parameters to overcome the complexity of the model. Besides, the
ants are exploring food sources in diverse trails with the intensity of a chemical substance of
pheromone concentration also develops nonlinearity. For generality, this study evaluates two
food sources of the ant colony's collective responses concerning environmental conditions
without varying the ant's behaviors. The investigation of the ant's food quest in this work
concentrates on the dynamical analysis of their food exploration from two different resources
described by two ordinary nonlinear differentials equations (ODE). The mean-field model of
ODE connected to their dynamical analysis demonstrates that food recruitment varies
according to individual variability, supportive communication, and environmental restrictions
establishing are connected to the stable or unstable system of the ODE.

Keywords Ant colony; Dynamical analysis; Equilibrium point; Jacobian matrix;
Mean-field model.
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1. Introduction

Mathematical modeling is the widely used method for the analysis and future
prediction of physical phenomena in science and engineering
(Afshari & Hajimiri, 2005; Hafez, Roy, Talukder, & Hossain
Ali, 2016; Uddin, Hafez, & Igbal, 2022; Igbal, Hafez, &
Abdul Karim, 2020). Moreover, modeling is a robust method
in many other branches of real-world problems. The
dynamical analysis (Igbal, Hafez, Chu, & Park, 2022; Sheikh
et al., 2020) initiates the physical model's investigation and

forecasting to formulate the portrayed system's mathematical Ifjuﬁfggf %ZZ
model. Subsequently, it is well defined that dynamical analysis pp- 121-138
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understanding the general physical phenomena (Igbal, Hafez, & Uddin,
2022; Igbal, 2021; Ali, Yilmazer, Yokus, & Bulut, 2020) concerning their
previous state corresponded with the governing evaluation rules. Moreover,
engineering, chemical, economic, biological, and even social problems can be
predicted by understanding their stability and instability investigation by
applying dynamical analysis (Marquié, Bilbault, & Remoissenet, 1995).

The dynamical model is classified into two types: a time-dependent
system and the time-independent system. This study focuses on the
time-independent(nonautonomous) dynamical analysis of the ant colony's
food exploration from the two food sources. This work accentuates how
collective decision-making leading to two different resources of food
exploration strategies may arise for the ant colony, especially Lasius niger
(Black Garden ant) (Detrain & Prieur, 2014). Black garden Ant is found all
over Hurope, North America, and Asia. Without a brain, a genetically
preprogrammed Ant colony employs complex, collective behavior to explore
food by accessing minimal information (Pino et al., 1985; Dussutour &
Nicolis, 2013). Ants communicate with each other using pheromones,
sounds, and touch. The pheromone (secreted or excreted chemical factor
that triggers a social response in members of the same species) approaches
to exploring food. Most of the ants live on the ground. They use the soil
surface and leave their pheromone trails which other ants follow. A forager
ant quests for trails of food marks to explore food and leave its pheromone
on trails on the way to head back with food to the colony; then, other ants
reinforce the trail and head back with food to the colony. When the food
source is exhausted, no new trails are marked by returning ants, and the scent
slowly dissipates. This behavior helps ants deal with changes in their
environment (Perna et al., 2012; Baird & Seeley, 1983; Dussutour, Beeckman,
Nicolis, & Meyer, 2009). For instance, when an obstacle blocks an established
path to a food source, the foragers leave the path to explore new routes. 1f
an ant is successful, it leaves a new trail marking the shortest route on its
return. More ants follow successful trails, reinforcing better routes and
gradually identifying the best path.

Previous work (Baird & Seeley, 1983; Nicolis & Deneubourg, 1999) was
focused on amplifying the communications between essential places
according to the diverse food sources in various animal societies. For
instance, insects and bees are particular kinds of animal society that were
studied in many more research works. One of the most rigorous
investigations on the food requirements of ants and their process was carried
out by Seeley, Camazine, & Sneyd (1991) and Wilson (1962). Their points of
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view were largely experimental analyses. This work mainly focuses on the
well-established mathematical model of ant colony's food explorations
dynamical analysis.

The assembling of this study is organized after the introduction's outset;
section 2 describes the mathematical model of the ant colony's food
exploration connectively, section 3 illustrates the mathematical analysis,
section 4 portrays the results and discussions, and lastly, the conclusion
concludes this study.

2. Mathematical model

Figure 2 describes the communal choice of two food sources for the ants
from the food source A and B. Generally, the ant colonies compete and
confront each other to gather foods from diverse food sources.

Figure 1
Lasius niger (Black Garden ant) (Ant species, 2022)
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Figure 2

Schematic representation of ant's food choice
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In figure 2, @ is the choice between two independent food sources (A and
B ). There are various facts about the circumstances to confine their trails
for the multiple food sources. This article highlights the nature of the traffic
between the two trails directing to the two food sources and ignores
individual and environmental variability. It is ignored direct contact between
the individuals and considers individuals' reactions to their pheromone
concentration present in the given trail. The leading variables are pheromone
concentrations X1 and X2 rather than the number of individuals present at
a given time on the trails T7 (Left side for food source A) and T, (Left side
for food source B). The following model equations can capture the
pheromone concentration X1 and X2 between two food sources.

dx, _ (k+x1)Y _
at - PN G Y ki)Y PSRN
dxz _ (k+x2)Y _
2 = PGy X2 @

In the equations Eq. (1) and Eq. (2), the first positive term represents the
attractiveness of the trail T; or T, over the others, and the second negative
term represents the disappearance of the pheromone on trial T} or T, .
Table I summarize the description of the parameters, which are used in Eq.
(1), Eq. (2), and the entire article.

Table 1

Description of the model parameters.

Name of the Parameters Description
X1 Pheromone concentration of in trail T}

Pheromone concentration of in trail TZ
Time
The flux of individuals leaving the nest
Quantity of the pheromone on the trail T
Quantity of the pheromone on the trail T,
Concentration threshold

Evaporation rate of pheromone

<~—Ix=3FRH=F

Measures the sensitivity of the food choice

3. Mathematical analysis
By Scaling the equations Eq. (1) and Eq. (2), one can do by letting

t =1 x1 =51k, X2 = B2k and & = kI Than dy; = kdE,, dt = ~dr
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Make use of these in Eq. (1) and Eq. (2) to develop:

e dul = PkTay ((1+““)::3+i)?)k?  ThEs,
d“1 - ¢ e (1+”(;:(11)+" )Y N El' )
Fk% = ¢kTq, (1 +Ei1):45—?31k:};)Y)kY — TkE,,
z. )Y
duz = 942 (1+H(3::z+32)}' — 52,0

Consequently, to calculate the equilibrium points (fixed points), one can
obtain by letting the righthand side of Eq. (3) and Eq. (4) be equal to zero for
the steady-state solutions:

1 _ (14E,)Y
T ¢q1(1+s,}r+(1+52)}’

'i--z — (1+23)Y -
o =4 2{1+-1}r+(1+52}r E2=0. ©)

After generalization the Eq. (5) and Eq. (0),

(142" _
¢q (14+E )V +(1+E,)r ~ ~ 1
(1+E;)Y -

P oz yrrargy o2

G (1+E))Y _
q2(1+E2)Y
For instance, one can get from Eq. (7) for 4 = {7 applying the sensitivity
condition, Y = 1 develop:

(A+E81) _

(1+22) Ez=|
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Consequently,

)
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and ¥ = create
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Subsequently, by choosing the ¥ = 2,4y = gz = g then, from Eq. (5) and
Eq. (6), one can obtain: { (1451 +(1+42,)

— Y =E; +E
(1+E)Y +(1+E,)Y 1T =2
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= ¢II'.?' =Z; + 25. (10)
Next, by using 2y = E5 in Eq. (9) develop:
- ¢q
g ==, (11)
—_— 1
= ¢q =3+ =

z
=2 - qZ; +1= 0,
n. = PatJo?q?-4 (12)
; ,

=2
Where qf)q <-2and ¢q >2.

As a result, the steady-state solutions for ¥ = 2,and §1 = g2 = { are

2 2= @h $0 o o ($9FTE par TR
{:‘-1:2'-2)—(T-T). and (£,,2;) = > . ° ]

Figures 3 to Figure 6 illustrate the phase state profiles of Eq. (3) and Eq. (4)
for the values ¢p(1) = 0.9,g; = 1,g; = 2 and ¥ = 1. As a result, the fixed
points (Z,(1), E,(1)) = (0.353, 1.093), (2.546, —3.293) and the Jacobin
matrix @, are calculated from the Eq.(32) and Eq.(3b),

0.9 0.9+ 0,92 0.9 + 0L.92;
e = 245 +5; (242, +Eg]‘2 (2+ 2, +Ez]’2
1 1.8+ 182, L8 1.8+ L1825 1 -
{24+5; +2;)¢2 24E2;48; (242;+8;)°

At Ei(r) = (0.353,1.093),2, (1) = (2.546,—3.293) the state classifications are
in Table II.

Table 2
Phase state classification for §(t) =0.9,q, =1, 9, =2 and ¥ = 1.

Fixed points associated Fixed points

with Eigenvalues (0.353,1.093) (2.546,-3.293)

Eigenvalues (¥, V3] -1.00000000004361, -1.00000000073890,
-0.636283742956387 1.75100333873890

Classification Stable Unstable
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Figure 3
Phase state profile for the two food sources ant colony for the valne of the parameters (1) = 0.9,q4 = 1,

s =2 andy = 1.

Figure 4
Phase and Vector plot for the two food sources ant colony for the value of the parameters (T} = 0.9,
f=1q:=2andy=1.
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Figure 5
Time series for the two food sources ant colony for the value of the parameters (T} = 0.9,g9, = 1,
G:=2andy=1
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Figure 6

Time series for the two food sources ant colony for the value of the parameters l;b(t) = 0.9, gy = 1,
g:=2 andy = 1.

Similarly, Figure 5 to Figure 9 illustrate the phase state profiles of Eq. (3) and
Eq. (4) for the values ¢p(7) = 0.9,g;, = 1,g> = 1 and ¥y = 1, where the
quantity of the pheromone is changed from gz = 2 to gz = 1. Consequently,
the only fixed point (Z, (1), Ez(1)) = (0.45,0.45), corresponding Jacobian
matrix (85 ) and eigenvalues (Table I1I) are calculated from the Eq.(3a) and
Eq.(3b).

8,
0.9 0.9 + 0.9, 1 0.9 + 095,
_ 24+ E + 2, {24‘314‘32}2 (2"‘51""32)2
- 0.9 + 09y 0.9 0.9 + 0.9%,
(2 + & + ) 2+ 5 + 5 (2+E + )P
Table 3
Phase state classification for ${r) =0.9,q; = 1,9, =1 awd y = L.
Fixed points associated Fixed points
with Eigenvalues (0.45,0.45)
Eigenvalues (v, V3] -0.6896551724,-1

Classification Stable
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Figure 7
Phase state illustrations for the two food sonrces ant colony for the value of the parameters (T} = 0.9,
qu=1lg;=2 andy =1

Figure 8
Phase and Vector plot for the 1wo food sources ant colony for the value of the parameters b (t) =009,
g1=Llg;=2andy=1
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Figure 9
Normalized vector for the two food sources ant colony for the value of the paranseters s (t) =09,
q1=1g;=2 andy = 1.
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Figure 10 )
Time series analysis for the two food sonrces ant colony for the value of the parameters ¢ () =039,
qgi=1lg;=2 andy = 1.
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Figure 11 -

Time series analysis for the two food sources ant colony for the value of the parameters §(T) = 0.9,
g1 =1g;=2 andy = 1.

Likewise, Figure 10 to Figure 13 illustrate the phase state profiles of Eq. for
the values (1) = 0.9,q; = 1,g; =1 and ¥ = 2, where the quantity of the
choice sensitivity is changed from ¥ = 1toy = 2.  Consequently, the
equilibrium points (Z,(t), ,(1)) = {( 0.450, 0.450), (0.450 + 0.8930285550()}
Jacobian matrix {#3) and corresponding eigenvalues(Table IV) are calculated
from the Eq.(32) and Eq.(3b).

1H(1 + 5} oAl + 02 + 25) . ool #5002 + 25
o = 0+ EF+ 01+ E)F (1 +5F+ {1+ 0¥ 1 + 5+ (1 + E3FF
' 001 + 02 4 2E) 18(1 + E;} a1+ E;F(2 + 2E;)

THIAEFE+ (1 + SRR L+ 5,0+ 01 + 5,0 (i1 +5,F+ (1 + 5,00
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Table 4

Phase state classification for (1) = 0.9,y = 1,q: = 1 awdy = 2.

Fixed points associated Fixed points

with Eigenvalues (0.450,0.450)

Eigenvalues [1"1, lr‘zll -0.3793103448, -1

Classification Stable

Figure 12
Phase plot for the two food sources ant colony for the value of the parameters {f}{‘[] =094, =1,
gz =1 awdy = 2.

15

Figure 13
Phase and Vector plot for the 1wo food sources ant colony for the value of the parameters (1) = 0.9,
g=1g:=1 awdy = 2.
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Figure 14
Time profile for the two food sources ant colony for the valne of the parameters §{T) = 0.9, q, = 1,

qZ = 1 r.l'.'.’ril'}" = 2.
65 T

B

Figure 15
Time series plot for the two food sources ant colony for the value of the parameters () = 0.9, g, = 1,
g = 1 omd ¥ = 2.

4. Results and discussions

The objective of this study is to analyze the phase-portrait (Igbal, 2021)
compared to the stability and instability of the model equations: Eq. (1) and
Eq. (2) of the ant's food exploration from the two different Source-A and
Source-B. As a result, the equations: Eq. (3) and Eq. (4) are reduced by
applying dimensionless parameters from Eq. (1) and Eq. (2). The following
cases investigate the model equations Eq. (3) and Eq. (4).
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Case-1:

Applying the arbitrary value of the parameters ¢(7) = 0.9, g, = 1, q; = 2,
and ¥y =1 in Eq. (3) and Eq. (4). Consequently, the two fixed points
(Z4, 25) = {(0.353,1.093), (2.546, —3.293)} associate with the Jacobian
matrix &4 and their corresponding eigenvalues (Igbal, Hafez, & Uddin, 2022)
classify the phase state of the model Eq. (3), Eq. (4). The state classification
is illustrated in Table II accompanied by Figure 3 to Figure 6. It is observed
that, at point (£y, 5 ) = (0,353, 1.093), the eigenvalue (v, v, ) = (=1.0000
0000004361, — 0.636283742956387) tepresent both the ¥y and V3 are
real and negative-signed, developing a stable node at the point (0.353, 1.093).
In contrast, compared with another fixed point (2.546, —3.293) has, the
eigenvalues ¥; = —1.00000000073890, and v, = 1.75100333873890
real but opposite in sign, which confirms that the Eq. (3) and Eq. (4) atre
developing an unstable saddle node. Figure 3 and Figure 4 display the phase
portrait and the vector plot of food exploration ants from the two diverse
sources(A and B). Connectively, Figures 5 and 6 illustrate their corresponding
time series of the food explorations.

Case-2:
Likewise, by choosing only the equal concentration of pheromone
Gy = qz = 1, compared to Case-1. The only equilibrium point is derived
from the Eq. (8), which is (84, E;) = (0.45,0.45) associated with the Jacobian
matrix @3 and their resultant eigenvalues classify the phase state of the
model Eq. (3), Eq. (4). Table 111 depicts the phase state stability at the point
£y, E2) = (0.45,045). At (0.45,0.45) both the eigenvalues
vy = —0.6896551724, and vy- — 1 are real and negative-signed, which is
developing a stable node at the point (&, E;) = (0.45,0.45)  which is
clear from Figure 7. The corresponding vector plot in Figure 8 and Figure 9
illustrates the flow of the discovery from the various food sources (A and B).
Figure 10 and Figure 11 demonstrate their subsequent time series of the food
explorations.

Case-3:

Finally, remaining the arbitrary parameter value ¢(1) =09, q, = g, =1
unchanged compared to Case-2. Only the sensitivity measure of the food
choice parameter (¥) is changed from ¥ = 1 to ¥ = 2. The nonlinearity is
observed in Eq. (3) and Eq. (4). Consequently, the equilibrium points atre
calculated using Eq. (9) to Eq. (12). It is observed that one root is

(8,,8,) = (‘i’:l :‘i’z&) = (0.45,0.45), which is the only real root for the
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values of p(7) = 0.9, g; = g, = 1. Itis analogous that other roots are
obtained from the Eq. (12), where the condition for real roots must satisfy
the ¢pg < —2 and ¢pg = 2.  However, the arbitrary choosing value
¢(t) =09, g, = g, = 1 does not meet the condition ¢ghg = 2 hence
the complex roots ((.450 + 0.89302855501) are obtained. Consequently,
the phase plot, along with the connected vector plot, are displayed in Figure
12 and Figure 13 for the real equilibrium point (24, ;) = (0.45,0.45). The
state point  (0.45,0.45) is a stable node, since its eigenvalues (Table-IV)
(vy,v:) = (—0.3793103448, —1) are in the same negative-signed. The
related time series of Figure 14 and Figure 15 also illustrate the stability of
the fixed point (0.45, 0.45).

5. Conclusion

This study works on the food recruitment (Dussutour, Beekman, Nicolis, &
Meyer, 2009) of ant colonies for the two trials, 17, and T5. Where the
arbitrary number of parameter values are considered to analyze the model
equations Eq.(1) and Eq.(2), the analysis is based on both sources (A and B).
The food sources are identical by assessing the rate of concentration
(g1 and g3) of each trail's phenomenon and the sensibility (¥) of choosing
the trails. It is noted that, at the equilibrium points (£,, £;). Coordinate in
negative-signed indicates the pheromone concentration is decreasing rapidly.
Table II demonstrates that one pair of real-equilibrium points, where the
point (£, 5;) = (2.546, —3.293) has negative-signed and point (E,,Z,) =

(0.353,1.093) is positive-signed, define ants exploring foods from the
trails going (2,546, —3.293) point to a stable point (0,353, 1.093) . The flow
is illustrated in Figure 3 and Figure 4. As a result, point (0.353, 1.093) is
saddle-node unstable, and point  (2.546,—3.293)  is a stable node. In
comparison, when the coordinates of the equilibrium points (E; = Z; = 0.45)
coordinates) are equal. It demonstrates the pheromone concentration of
both trails T3, and T, is identical; consequently, ants choose two foods
trails equally to form one equilibrium point. Itis portrayed in Figure 7, Figure
8, Figure 9, Figure 12 and Figure 13. Two food sources (A and B) have
identical or dissimilar qualities. In the case of equal sources, it is observed
that there is equivalent exploitation for the small amount of pheromone
deposition (Nicolis & Deneubourg, 1999) on the trail of the two food
sources. The system switches to a chosen advantage of one or another food
source if a small amount changes the threshold (for instance, (i),}-" ) (Nicolis
& Deneubourg, 1999) value for the species Lasius niger. In the same tone,
using a state diagram, we can represent other techniques for food
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recruitment from more than two food sources. This research can be
beneficial for biological developments or artificial systems and control the
conduct of the population in the agriculture field.
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