EFFECT OF VICHETE 5G AND RIFIT 500 EC ON THE OCCURRENCE AND PHYTOSOCIOLOGICAL ATTRIBUTES OF WEEDS IN RICE FIELD

M. AZIZAR RAHAMAN¹ AND M.A. RAHMAN Wildlife Center, 3rd Floor, Ban Bhaban, Mohakhali, Dhaka

Abstract

Two herbicides namely Vichete 5G (12.5, 25.0, 50.0 kg/ha) and Rifit 500 EC (0.5, 1.0 L/ ha) were applied in BRRI Dhan 28 in the field to follow their effects on the occurrence and phytosociological attributes of weeds. A total of 29 weed species belonging to 22 genera covering 10 families was found to occur. 28 weed species under 21 genera and 9 families, 16 weed species under 14 genera and 6 families and 26 weed species under 21 genera and 10 families were assessed during 1st, 2nd and 3rd weedings respectively. 12 Species (Eragrostis unioloides, Marsilea quadrifolia, Cyperus tenuispica, Murdania nudiflora, Fimbristylis miliacea, Rotala densiflora, Cyperus iria, Setaria pumilla, Fimbristylis diphylla, Leptochloe chinensis, Monochoria hastata and Oryza rufipogon) were recorded in first weeding but not found in second weeding. Cyperus rotundus, Panicum paludosum, Cyperus difformis, Marsilea quadrifolia and Echinocholoa crussgalli were found to be present at control only. They were controlled by the use of both herbicides. However, the number of weed species was found to reduce in the 2nd weeding in comparison to 1st one in all the treatments. Between the two weedicides, 50.0 kg/ha of Vichete 5G was relatively better than other doses of Vichete 5G and Rifit 500 EC and more effective to control weed species in 1st and 2nd weedings. In first weeding phytosociological attributes were highest in Schoenoplectus erectus and lowest in Rotala densiflora . In second weeding phytosociological attributes were highest in Eleocharis congesta and lowest in Panicum paludosum and Lindernia hyssopiodes while phytosociological attributes were highest in Fimbristylis miliacea and lowest in Marsilea quadrifolia of third weeding.

Key words: Vichete 5G, Rifit 500 EC, Weeds, BRRI Dhan 28, Phytosociological attributes

Introduction

Weeds cause problems in rice growing areas in the world, weed grasses and broad leaf weed reduces yield and quality of rice (Smith 1970). Losses due to weeds in Aus rice, range from 58% to complete failure of the crops (Mian and Ahasan 1969 and BRRI 1981). The total loss due to weed competition in Aus rice of Bangladesh is 1716 thousands ton of rough rice per year. Crop loss due to weed competition was most severe from 10 to 20 days after emergence. The main problems confronting farmer is that seeds

¹Corresponding author: E-mail: alam027456@gmail.com

of these weeds are set before harvesting of the crop from the field. Amarjit *et al.* (1994) observed that poor weed control is one of the major factors for yield reduction of rice depending on the type of weed flora and their intensity.

The traditional methods of weed control in rice field in Bangladesh are land tillage and hand weeding which are time consuming and expensive as well (Chowdhury *et al.* 1995). In the paddy field due to narrow spacing and hooding, hand weeding and mechanical hoeing is difficult and herbicides offer more practical, effective and economic means of controlling weeds (Nadeem 1998). Therefore, there is a great urge for the use of herbicides to control weeds in paddy field. Information regarding Vichete 5G and Rifit 500 EC is scanty in Bangladesh. So, a field experiment was designed to assess their efficiency on the occurrence and phytosociological attributes of weeds in BRRI Dhan 28 rice field.

Materials and Methods

A field experiment was done following a Complete Randomized Design using six treatments each with three replications (Block). 40 days old seedlings of BRRI Dhan 28 paddy were transplanted from seedbed to the prepared field. Two healthy seedlings were transplanted per hill. Row to row and hill to hill distance were 20 cm \times 20 cm. Plot size was 4m \times 4m and in each plot there were 400 hills. The recommended basal dose of fertilizers (Urea-160 kg/ha, T.S.P.-110 kg/ ha, M.P.-110 kg/ha and Zinc Sulphate-30 kg/ ha) used by BRRI (2008) was applied to the experimental fields. Herbicides namely Vichete 5G and Rifit 500 EC were applied after 3 days of transplantation as per treatment at the rate of T₀-control, T₁-12.5 kg/ha, T₂-25.0 kg/ha and T₃-50.0 kg/ha of Vichete 5G; and T₄-0.5 L/ ha and T₅-1.0 L/ha of Rifit 500 EC. Irrigation, weeding and other cultural practices were practiced when required.

Weedings were done after 30, 60 and 105 days after transplantation. The weeds were collected and the number of each weed species was recorded. The phytosociological attributes namely Density, Relative Density, Frequency, Relative Frequency, Abundance, Relative Abundance and Importance Value percent (IV %) were assessed from weeds of samples and computed according to Krebs (1978).

Results and Discussion

The occurrence and quantitative estimation of weeds of different treatments at first (W_1) , second (W_2) and third (W_3) weedings have been assessed (Tables 1- 6). In first weeding

a total of 28 weed species under 21 genera and 9 families was collected from six different treatments in BRRI Dhan 28 field of the present investigation (Table 1).

Occurrence of weed species: It is revealed from Table 1 that total number of weed species were 614, 456, 345, 188, 163 and 160 in T₁, T₀, T₂, T₅, T₄ and T₃ respectively under Cyperaceae. The highest number of weed species of Cyperaceae was found in T_{1} . In Poaceae, the highest number of weed species was collected in T_1 (348) followed by T_4 (229), T_3 (160), T_5 (159), T_0 (135) and T_2 (76). In Pontederiaceae, the highest number of weed species was found in T_2 (34) followed by T_1 (33), T_5 (17), T_4 (16), T_3 (14) and T_0 (12). The highest number of weed species was observed in T_1 (09) followed by T_5 (04) under Scrophulariaceae . In T_0 and T_2 the number of weed species was same (03). In Marsileaceae, the maximum number of weed species was found in T_4 (05) followed by $T_3(04)$, $T_2(03)$ and $T_5(01)$. The highest number of weed species was observed in T_0 (150) followed by T_1 (31) and T_2 (03) under Rubiaceae, where the number of weed species was equal (01) in T₃ and T₅. In Onagraceae, the maximum number of weed species was obtained in T_1 (18). In T_2 and T_5 the number of weed species was similar (14) but in control the number of weed species was 09. The highest number of weed species was observed in T_1 (12) under Commelinaceae. In T_2 , T_4 and T_5 the number of weed species was equal (03) and was almost equal to control (02). In Lythraceae, the number of weed species was observed only in T_1 (01) but not found in any other treatment. However spp. of Scrophulariaceae and Onagraceae in T₃ and T₄ Marsileaceae in T_0 and T_1 , Rubiaceae in T_4 and Commelinaceae in T_5 were not found.

Quantitative estimation of weed species showed that application of Vichete 5G and Rifit 500 EC caused a drastic reduction in their abundance. The reduction decreased from 767 to 487 and 339; and 767 to 416 and 387 due to 25.0 and 50.0 kg/ha of Vichete 5G and 0.5 and 1.0 L/ha of Rifit 500 EC respectively (Table 1). However, application of 12.5 kg/ha of Vichete 5G stimulated their growth from 767 to 1060. Similarly the lowest dose of Rifit 500 EC (0.5 L/ha) also promoted the growth of weeds in comparison to higher dose (1.0 L/ha) markedly from 387 to 416 (Table 1). It is also apparent from Table 1 that *Cyperus rotundus, Fimbristylis diphylla, Cyperus difformis, Fimbristylis dichotoma, Paspalum scrobiculatum, Setaria pumilla, Leptochloe chinensis, Oryza rufipogon, Lindernia hyssopiodes, Lindernia antipoda, Marsilea quadrifolia and Rotala densiflora* were nil or almost nil or trace due to treatment of Vichete 5G and Rifit 500 EC or due to dormancy or unfavorable conditions of seed germination.

				Nur	nber of w	eed spec	ies		
			Treatments						
Species Serial	Name of species	Name of family		Vichete 5G (kg/ha)				Rifit 500 EC (L/ha)	
Number			T ₀ (0.0)	T ₁ (12.5)	T ₂ (25.0)	T ₃ (50.0)	T ₄ (0.5)	T ₅ (1.0)	
01	Schoenoplectus erectus Roxb.	Cyperaceae	243	546	330	148	145	177	
02	<i>Cyperus tenuispica</i> Steudel.		03	00	03	03	04	01	
03	Eleocharis congesta D. Don.		187	61	00	03	00	00	
04	<i>Fimbristylis miliacea</i> L. Vahl.		00	01	03	00	04	02	
05	Kyllinga memuralis J. R.and G. Farster.		18	06	00	00	00	00	
06	Cyperus iria L.		03	00	04	04	08	06	
07	Cyperus rotundus L.		02	00	00	00	00	00	
08	<i>Fimbristylis diphylla</i> Vahl.		00	00	00	00	02	00	
09	Cyperus difformis L.		00	00	04	00	00	01	
10	<i>Fimbristylis dichotoma</i> (L.) Vahl.		00	00	01	02	00	01	
	Sub-total		456	614	345	160	163	188	
11	<i>Ischaemum rugosum</i> Salisb.	Poaceae	102	320	66	122	182	133	
12	<i>Eragrostis unioloides</i> (Retz.) Nees.		08	03	03	17	12	09	
13	Echinocholoa crussgalli (L.) Beauv.		09	00	00	12	02	09	
14	<i>Leersia hexandra</i> Swartz.		00 00	06	04	07	08	06 01	
15 16	Panicum paludosum Roxb. Paspalum		15	15 01	08 00	00 00	24 00	00	
10	scrobiculatum Lamk. Setaria pumilla (Poir)		01	00	00	00	00	00	
18	Roem and Schult. Leptochloe chinensis		00	01	01	00	01	00	
19	L. Nees. Oryza rufipogon Griff.		00	02	00	00	00	01	
.,	Sub-total		135	348	82	160	229	159	
20	Monochoria vaginalis (Burnt. f.) kirk.	Pontederiacae	135 12	348 33	82 33	14	12	159	
21	Monochoria hastata Solms.		00	00	01	00	04	00	
	Sub-total		12	33	34	14	16	17	
22	<i>Lindernia hyssopiodes</i> L. Hains.	Scrophulariceae	00	00	00	00	00	04	

Table 1. Effect of Vichete 5G and Rifit 500 EC on occurrence of weeds in BRRI Dhan28 grown in Boro season during first weeding.

Effect of vichete 5G and rifit 500 EC

Contd.

			Number of weed species							
		Treatments								
Species	Name of species	Name of		Vichet	e 5G (kg/	'ha)	Rifit :	Rifit 500		
Serial		family					EC (I	./ha)		
Number			T ₀	T_1	T_2	T ₃	T_4	T_5		
			(0.0)	(12.5)	(25.0)	(50.0)	(0.5)	(1.0)		
23	Lindernia antipoda		03	09	03	00	00	00		
	(L.) Alston.									
	Sub-total		03	09	03	00	00	04		
24	Marsilea quadrifolia L.	Marsileaceae	00	00	03	04	05	01		
25	<i>Hedyotis corymbosa</i> (L.) Link.	Rubiaceae	150	31	03	01	00	01		
26	<i>Ludwigia adscendens</i> L. Hara.	Onagraceae	09	18	14	00	00	14		
27	<i>Murdania nudiflora</i> (L.) Brenan.	Commelinace ae	02	12	03	00	03	03		
28	Rotala densiflora (Roth) koehne.	Lythraceae	00	01	00	00	00	00		
	Total		767	1066	487	339	416	387		

Phytosociological attributes of weed species

Total number of individual species : The highest total number (1589) of individual species was found in *Schoenoplectus erectus*. The total number (05) of individual species was similar in *Monochoria hastata* and *Cyperus difformis*. The lowest total number (01) of individual species was found in *Rotala densiflora* (Table 2).

Density: The density of species ranged from 264.83 (*Schoenoplectus erectus*) to 0.17 (*Rotala densiflora*). The density of other species was in intermediate range in the first weeding (Table 2).

Frequency of occurrence (F%) : The frequency of occurrence was observed 100% in 4 species; 83.33% in 5 species; 66.67% in 5 species; 50% in 4 species; and 33.33% in 6 species. The lowest frequency of occurrence (16.67%) was in case of 4 species. (Table 2).

Abundance: The highest abundance (264.83) was found in all the treatments and it was Schoenoplectus erectus. In Fimbristylis miliacea, Monochoria hastata and Cyperus difformis the abundance (2.5) was found similar. The lowest abundance (1.00) was obtained in Rotala densiflora and Leptochloe chinensis (Table 2).

Relative Density (RD %): In *Schoenoplectus erectus* the relative density was found to be the highest (45.89%) in all the treatments. It appeared that the lowest RD (0.03 %) was in *Rotala densiflora* and all other species fall into intermediate range (Table 2).

Relative Frequency (RF %): The highest relative frequency (0.06 %) was obtained in 4 species. The RF was found to be 0.05% in 5 species; 0.04% in 5 species; 0.03% in 3 species and 0.02% in 6 species. The lowest RF (0.01%) was found in 4 species (Table 2).

Relative Abundance (RA %) : In *Schoenoplectus erectus* relative abundance was found highest (39.46%) and in *Fimbristylis miliacea*, *Monochoria hastata* and *Cyperus difformis* the RA (0.37 %) was same. The lowest RA (0.15%) was found in *Rotala densiflora* and *Leptochloe chinensis* (Table 2).

Importance Value (IV%): It is apparent from Table 2 that among the 28 weed species the maximum IV (28.47%) was observed in *Schoenoplectus erectus* and the lowest IV (0.06%) was found in *Rotala densiflora*.

Table 2. Effect of Vichete 5G and Rifit 500 EC on ph	nytosociological attributes of weeds
in first weeding.	

Species		No. of	Density		Abundance		Relative	Relative	Importance
Serial	no. of	treatments		of					Value (IV%)
No.	individual			occurrence		(RD%)	(RF%)	(RA%)	
	species	species occurred		(F%)					
01	1589	06	264.83	100	264.83	45.89	0.06	39.46	28.47
01	1389	00	2.33	83.33	2.80	0.40	0.00	0.42	0.29
02	251	03	41.83	50.00	2.80 83.67	0.40 7.25	0.03	12.47	6.57
03	10	03	1.67	50.00 66.67	2.50	0.29	0.03	0.37	0.23
04	24	04	4.00	33.33	12.00	0.29	0.04	1.79	0.23
05	24 25	02	4.00	83.33	5.00	0.09	0.02	0.75	0.83
00	02	01	0.33	16.67	2.00	0.06	0.05	0.75	0.12
08	02	01	0.33	16.67	2.00	0.06	0.01	0.30	0.12
00	02	02	0.83	33.33	2.50	0.00	0.01	0.30	0.12
10	03	02	0.67	50.00	1.33	0.14	0.02	0.20	0.10
11	925	06	154.17	100	154.17	26.71	0.06	22.97	16.58
12	52	06	8.67	100	8.67	1.50	0.06	1.29	0.92
13	32	04	5.33	66.67	8.00	0.92	0.00	1.19	0.51
14	31	05	5.17	83.33	6.20	0.90	0.05	0.92	0.62
15	48	04	8.0	66.67	12.00	1.39	0.04	1.79	1.07
16	16	02	2.67	33.33	8.00	0.46	0.02	1.19	0.56
17	03	02	0.50	33.33	1.50	0.09	0.02	0.22	0.11
18	03	03	0.50	50.00	1.00	0.09	0.03	0.15	0.09
19	03	02	0.50	33.33	1.50	0.09	0.02	0.22	0.11
20	121	06	20.17	100	20.17	3.49	0.06	3.00	2.18
21	05	02	0.83	33.33	2.50	0.14	0.02	0.37	0.18
22	04	01	0.67	16.67	4.00	0.12	0.01	0.60	0.24
23	15	03	2.50	50.00	5.00	0.43	0.03	0.75	0.40
24	13	04	2.17	66.67	3.25	0.38	0.04	0.48	0.30
25	186	05	31.0	83.33	37.20	5.37	0.05	5.54	3.65
26	55	04	9.17	66.67	13.75	1.59	0.04	2.05	1.23
27	23	05	3.83	83.33	4.60	0.66	0.05	0.69	1.40
28	01	01	0.17	16.67	1.00	0.03	0.01	0.15	0.06
Total	3463								

Note: Species serial number of Table 1 and Table 2 indicate same name of species.

A total of 16 weed species under 14 genera and 6 families was collected in second weeding (W_2) from all the treatments (Table 3).

Occurrence of weed species: It is apparent from Table 3 that total number of weed species were 4736, 323, 154, 117, 93 and 45 in T_0 , T_1 , T_4 , T_5 , T_2 and T_3 respectively under Cyperaceae. The highest number of weed species of Cyperaceae was found in T_0 . In Poaceae, the highest number of weed species was obtained in control (376) and the lowest value (21) was recorded in 50.0 kg/ha of Vichete 5G. The other treatments were in intermediate range. In Pontederiaceae, the highest number of weed species for Weed species was found in control (264) and the lowest number was in 50.0 kg/ha of Vichete 5G. The maximum

	-		Noushou of source down a sing							
			Number of weed species							
			Treatments Vichete 5G (kg/ ha) Rifit 50							
Species	Name of species	Name of		Vichet	Rifit 500					
Serial		family					EC (L/ha)			
Number			T ₀	T ₁	T ₂	T ₃	T_4	T ₅		
			(0.0)	(12.5)	(25.0)	(50.0)	(0.5)	(1.0)		
01	Schoenoplectus	Cyperaceae	260	129	48	28	66	61		
	erectus Roxb.									
03	Eleocharis congesta		2975	136	01	04	63	31		
	D. Don.									
05	Kyllinga memuralis J.		01	00	01	00	01	01		
~ -	R.and G. Farster.									
07	Cyperus rotundus L.		00	00	00	00	08	00		
09	Cyperus difformis L.		1407	00	00	00	00	00		
10	Fimbristylis dichotoma	ı	93	58	43	13	16	24		
	(L.) Vahl.									
	Sub-total	-	4736	323	93	45	154	117		
11	Ischaemum rugosum	Poaceae	276	70	00	21	58	06		
10	Salisb.		60		2.1	0.0	10			
13	Echinocholoa		69	01	34	00	18	27		
	<i>crussgalli</i> (L.) Beauv.									
14	Leersia hexandra		21	00	16	00	00	00		
	Swartz.					0.0	0.0	0.0		
15	Panicum paludosum		01	00	00	00	00	00		
16	Roxb.		00	10	0.0	00	00	00		
16	Paspalum		09	10	00	00	00	00		
	scrobiculatum Lamk		254	01	50	01	-	22		
20	Sub-total.	D (1)	376	81	50	21	76	33		
20	Monochoria vaginalis	Pontederiacae	264	44	15	12	125	85		
22	(Burnt.f.)kirk. <i>Lindernia</i>	C h l	00	00	01	00	00	00		
22		Scrophulariceae	00	00	01	00	00	00		
23	hyssopiodes L. Hains.			32	06	00	69	18		
25	Lindernia antipoda			52	00	00	69	18		
	(L.) Alston. Sub-total			32	07	00	69	18		
25	Hedyotis corymbosa	Rubiaceae	00	32 00	00	17	09	00		
23	(L.) Link.	Rublaceae	00	00	00	17	00	00		
26		Onagraceae	54	12	00	03	25	10		
20	<i>Ludwigia adscendens</i> L. Hara.	Unagraceae	54	12	00	05	23	10		
	Total		5280	448	150	86	324	178		
	1 Utdl		5400	077	150	00	544	1/0		

Table 3. Effect of Vichete 5G and Rifit 500 EC on occurrence of weeds in BRRI Dhan28 grown in Boro season during second weeding.

number of weed species was observed in T_0 (114) followed by T_4 (69), T_1 (32), T_5 (18) and T_2 (07) under Scrophulariaceae. In T_3 , no weed species was found. In Rubiaceae, the number of weed species was observed only in T_3 (17) but not found in any other treatments. In Onagraceae, the maximum number of weed species was obtained in control (54) and that of the lowest (03) in treatment receiving 50.0 kg/ha of Vichete 5G and treatment of 25.0 kg/ ha of Vichete 5G showed no weed species at all.

Quantitative estimation of weed species showed that application of Vichete 5G and Rifit 500 EC caused a drastic reduction in their abundance. The reduction decreased from 5280 to 150 and 86; and 5280 to 324 and 178 due to use of 25.0 and 50.0 kg/ha of Vichete 5G ; and 0.5 and 1.0 L/ha of Rifit 500 EC respectively (Table 3). However application of lowest dose of Vichete 5G (12.5 kg/ha) and Rifit 500 EC (0.5 L/ha) promoted the growth of weeds better than other higher doses of Vichete 5G and Rifit 500 EC.

Data presented in Table 3 indicates that the number of weeds decreased markedly with the increase of rate of Vichete 5G and Rifit 500 EC during second weeding. The trend of weeds generation showed little difference when compared with that of first weeding. The effect of treatments is very similar to all the species of four families counted. It is interesting to note that *Kyllinga memuralis, Cyperus rotundus, Cyperus difformis, Leersia hexandra, Panicum paludosum, Paspalum scrobiculatum, Lindernia hyssopiodes* and *Hedyotis corymbosa* were either nil or very few due to treatments of Vichete 5G and Rifit 500 EC.

Phytosociological attributes of weed species

Total number of individual species: The highest number (3210) of individual species was observed in *Eleocharis congesta*. The lowest total number (01) individual species was in *Lindernia hyssopiodes* and *Panicum paludosum* (Table 4).

Density: In *Eleocharis congesta* the density was found highest (535) and the lowest density (0.17) was found in 2 species namely *Lindernia hyssopiodes* and *Panicum paludosum.* The rest of the species was in intermediate range (Table 4).

Frequency of occurrence (F %) : The frequency of occurrence was observed to be 100% in 6 species. The frequency of occurrence was 83.33% in 2 species, 66.67% in 1 species and 33.33% in 3 species. The lowest frequency of occurrence (16.67%) was found in 4 species. (Table 4).

Abundance: The highest abundance (703.50) was found in *Cyperus difformis* only and the lowest abundance (1.0) was found in 3 species. (Table 4).

Relative Density (RD%): The relative density was found to be highest (45.58%) in *Eleocharis congesta* and the lowest relative density (0.01%) was recorded in 2 species. (Table 4).

Relative Frequency (RF%): The relative frequency was highest (0.10%) in 6 species. The relative frequency was 0.08% in 2 species, 0.07% in 1 species and 0.03% in 3 species. The lowest relative frequency (0.02%) was recorded in 4 species. (Table 4).

Relative Abundance (RA%): In *Cyperus difformis,* the relative abundance was found to be maximum (41.62%) and that of the lowest (0.06%) was found in *Lindernia hyssopiodes, Panicum paludosum* and *Kyllinga memuralis* (Table 4).

Importance Value (IV%): From Table 4 it is apparent that among the 16 weed species the maximum IV (25.78%) was in *Eleocharis congesta*. The lowest IV (0.03%) was found in *Panicum paludosum* and *Lindernia hyssopiodes*.

Table 4. Effect of Vichete 5G and Rifit 500 EC on phytosociological attributes of weeds in second weeding.

Species	Total	No. of	Density	Frequency	Abundance	Relative	Relative	Relative	Importanc
Serial	no. of	treatments		of		Density	Frequency	Abundance	e Value
Numberi	ndividua	l in which		occurrence		(RD%)	(RF%)	(RA%)	(IV%)
	species	species		(F%)					
		occurred							
01	592	06	98.67	100	98.67	8.41	0.10	5.84	4.78
03	3210	06	535.00	100	535.00	45.58	0.10	31.65	25.78
05	04	04	0.67	66.67	1.00	0.06	0.07	0.06	0.06
07	08	01	1.33	16.67	8.00	0.11	0.02	0.47	0.20
09	1407	02	234.50	33.33	703.5	19.98	0.03	41.62	20.54
10	247	06	41.17	100	41.17	3.51	0.10	2.44	2.02
11	431	06	71.83	100	71.83	6.12	0.10	4.25	3.49
13	149	06	24.80	100	24.83	2.12	0.10	1.47	0.90
14	37	02	6.17	33.33	18.50	0.53	0.03	1.09	0.55
15	01	01	0.17	16.67	1.00	0.01	0.02	0.06	0.03
16	19	02	3.17	33.33	9.50	0.27	0.03	0.56	0.29
20	545	06	90.83	100	90.83	7.74	0.10	5.37	4.40
22	01	01	0.17	16.67	1.00	0.01	0.02	0.06	0.03
23	239	05	39.83	83.33	47.80	3.39	0.08	2.83	2.10
25	17	01	2.83	16.67	17.00	0.24	0.02	1.00	0.42
26	104	05	17.33	83.33	20.80	1.48	0.08	1.23	0.93
Total	7011								

Note: Species serial number of Tables 3 and 4 indicate same name of species.

A total of 26 weed species under 21 genera and 10 families was collected in third weeding from all the treatments. (Table 5).

Occurrence of weed species: From Table 5 it is evident that total number of weed species was 1670, 791, 697, 600, 337 and 181 in T_4 , T_0 , T_5 , T_1 , T_3 and T_2 respectively under Cyperaceae . Moreover, the maximum number of weed species of Cyperaceae was found in treatment receiving 0.5 L/ha of Rifit 500 EC. In Poaceae, the highest number of

			Number of weed species Treatments							
Species Serial	Name of species	Name of family			ete 5G (k	g/ha)	EC(L	Rifit 500 EC(L/ha)		
Number			T ₀ (0.0)	T ₁ (12.5)	T ₂ (25.0)	T ₃ (50.0)	T ₄ (0.5)	T ₅ (1.0)		
01 02	Schoenoplectus erectus Roxb. Cyperus	Cyperaceae	217 03	465 00	82 11	44 03	57 11	88 00		
03	tenuispica Steudel. Eleocharis		09	33	04	20	31	02		
04	congesta D. Don. Fimbristylis miliacea L.		519	88	81	239	960	451		
05	Vahl. Kyllinga memuralis J. R.and G.		00	00	00	00	19	25		
06 07	Farster. Cyperus iria L. Cyperus		21 00	11 00	02 00	24 00	553 05	118 01		
08	rotundus L. Fimbristylis diphylla Vahl.		12	00	00	00	05	09		
09	Cyperus difformis L. Sub-total		10 791	03 600	01 181	07 337	29 1670	03 697		
11	Ischaemum rugosum Salisb.	Poaceae	294	68	45	48	88	461		
12	Eragrostis unioloides (Retz.) Nees.		52	07	05	44	43	88		
13	Echinocholoa crussgalli (L.) Beauv.		03	00	00	00	00	00		
14	Leersia hexandra Swartz.		21	00	00	00	30	30		
15	Panicum paludosum Roxb.		85	114	114	154	750	68		
16	Paspalum scrobiculatum Lamk.		03	00	00	00	03	00		

Table 5. Effect of Vichete 5G and Rifit 500 EC on occurrence of weeds in BRRI Dhan28 grown in Boro season during third weeding.

Effect of vichete 5G and rifit 500 EC

Contd.

			Number of weed species Treatments						
Species Serial	Name of species	f species Name of family						Rifit 500 EC(L/ha)	
Number			T ₀ (0.0)	T ₁ (12.5)	T ₂ (25.0)	T ₃ (50.0)	T_4 (0.5)	T ₅ (1.0)	
17	Setaria pumilla (Poir) Roem and Schult.		00	00	00	02	00	00	
18	Leptochloe chinensis L. Nees.		01	00	00	01	14	01	
	Sub-total		459	189	164	249	928	648	
20	<i>Monochoria</i> <i>vaginalis</i> (Burnt. f.) kirk.	Pontederiacae	04	07	03	04	04	05	
22	Lindernia hyssopiodes L. Hains.	Scrophulariceae	00	00	02	00	00	00	
23	<i>Lindernia</i> <i>antipoda</i> (L.) Alston.		01	00	00	00	03	00	
	Sub-total		01	00	02	00	03	00	
24	Marsilea quadrifolia L.	Marsileaceae	01	00	00	00	00	00	
25	Hedyotis corymbosa (L.) Link.	Rubiaceae	00	00	02	00	00	00	
26	Ludwigia adscendens L. Hara.	Onagraceae	03	00	02	05	25	03	
27	Murdania nudiflora (L.) Brenan.	Commelinaceae	14	00	38	33	198	158	
28	Rotala densiflora (Roth) koehne.	Lythraceae	331	11	299	209	780	420	
29	Eriocaulon compressum	Eriocaulaceae	00	00	00	00	00	02	
	Total		1600	914	688	833	3604	1928	

weed species was estimated in treatment receiving 0.5 L/ha of Rifit 500 EC and other treatments were in intermediate range. In Pontederiaceae the highest number of weed species was observed in T_1 (07) followed by T_5 (05). In T_0 , T_3 and T_4 the number of weed species was same (04) but in T_2 the number of weed species was found to be 03. In Scrophulariaceae, the highest number of weed species was recorded in T_4 (03) followed by T_2 (02) and T_0 (01). No weed species was recorded in T_1 , T_3 and T_5 . In Marsileaceae, the number of weed species was observed only in T_0 (01) but not found in any other treatment. In Rubiaceae, the number of weed species was observed only in T_2 (02) but not

found in any other treatment. In Onagraceae, the highest number of weed species was observed in T_4 (25) followed by T_3 (05). In T_0 and T_5 the number of weed species was same (03) but in T_2 the number of weed species was recorded to be 02. In T_1 , no weed species was occurred. In Commelinaceae, the highest number of weed species was obtained in T_4 (198) followed by T_5 (158), T2 (38), T_3 (33) and T_0 (14). In T_1 , no weed species was occurred. In Lythraceae, the highest number of weed species was obtained in T_4 (780) followed by T_5 (420), T_0 (331), T_2 (299), T_3 (209) and T_1 (11). In Eriocaulaceae, *Eriocaulon compressum* was observed only in T_5 (02) but not found in any other treatment. *Eriocaulon compressum* was absent in 1st and 2nd weedings but appeared in 3rd weeding .This might be due to dormancy or unfavorable conditions of seed germination.

Quantitative estimation of weed species showed that application of Vichete 5G caused a reduction in their abundance. The reduction was from 1600 to 688 and 833 but application of Rifit 500 EC caused promotion in weed abundance. It might be concluded that Rifit 500 EC was not effective till third weeding. It is apparent from Table 5 that *Kyllinga memuralis, Cyperus rotundus, Fimbristylis diphylla, Echinocholoa crussgalli, Paspalum scrobiculatum, Setaria pumilla, Lindernia hyssopiodes, Lindernia antipoda, Marsilea quadrifolia, Hedyotis corymbosa and Eriocaulon compressum belonging to 6 families were either nil or few due to treatment of Vichete 5G and Rifit 500 EC.*

Phytosociological attributes of weed species

Total number of individual species: The highest number (2338) of individual species was observed in *Fimbristylis miliacea*. The total number (02) of individual species obtained was same in 4 species. The lowest number (01) of individual species was found in *Marsilea quadrifolia* (Table 6).

Density: In *Fimbristylis miliacea*, the density was found to be highest (389.67). In 4 species, the density (0.33) was same. The lowest density (0.17) was found in *Marsilea quadrifolia* (Table 6).

Frequency of occurrence (F%) : The frequency of occurrence was observed 100% in 12 species; 83.33% was in 1 species; 66.67% was in 2 species and 50% was in 2 species. The lowest frequency of occurrence (16.67%) was observed in rest of the 6 species (Table 6).

Abundance: The highest abundance (389.67) was found in *Fimbristylis miliacea*. In case of 5 species, the abundance (02) was same. The lowest abundance (01) was found in *Marsilea quadrifolia* (Table 6).

Relative Density (RD%): In *Fimbristylis miliacea*, the highest relative density (24.71%) was recorded. In 4 species, RD (0.02%) was found to be same. The lowest RD (0.01%) was observed in *Marsilea quadrifolia* (Table 6).

Relative Frequency (RF%): The relative frequency was found to be highest (0.06%) in 12 species; 0.05% was in 1 species; 0.04% was in 2 species; 0.03% was in 2 species and 0.02% was in 2 species. The lowest RF (0.01%) was recorded in 6 species (Table 6).

Relative Abundance (RA %): In *Fimbristylis miliacea* the relative abundance was found to be highest (23.87%). In 5 species, the RF (0.12%) was observed same. The lowest RF (0.06%) was in *Marsilea quadrifolia* (Table 6).

Importance Value (IV%): Among the 26 weed species the maximum IV (16.21%) was observed in *Fimbristylis miliacea*. In 4 species, IV (0.05%) was similar. The lowest IV (0.03%) was found in *Marsilea quadrifolia* (Table 6).

Table 6. Effect of Vichete 5G and Rifit 500 EC on phytosociological attributes of weeds in third weeding.

Species	Total	No. of	Density	Frequency	Abundanc	e Relative	Relative	Relative 1	mportance
Serial	no. of	treatments	•	of		Density	Frequency	Abundance	Value
Number	individua	l in which		occurrence		(RD%)	(RF%)	(RA%)	(IV%)
	species.	species		(F%)					
		occurred							
01	953	06	158.83	100	158.83	10.07	0.06	9.73	6.62
02	28	04	4.67	66.67	7.00	0.30	0.04	0.43	0.26
03	99	06	16.50	100	16.50	1.05	0.06	1.01	0.71
04	2338	06	389.67	100	389.67	24.71	0.06	23.87	16.21
05	44	02	7.33	33.33	22.00	0.47	0.02	1.35	0.60
06	729	06	121.50	100	121.50	7.71	0.06	7.44	5.07
07	06	02	1.00	33.33	3.00	0.06	0.02	0.18	0.09
08	26	03	4.33	50.00	8.67	0.27	0.03	0.53	0.28
09	53	06	8.83	100	8.83	0.56	0.06	0.54	0.39
11	1004	06	167.33	100	167.33	10.61	0.06	10.25	6.97
12	239	06	39.83	100	39.83	2.53	0.06	2.44	1.68
13	03	01	0.50	16.67	3.00	0.03	0.01	0.18	0.07
14	81	03	13.50	50.00	27.00	0.86	0.03	1.65	0.85
15	1285	06	24.17	100	214.17	13.58	0.06	13.12	8.92
16	06	02	1.00	100	3.00	0.06	0.06	0.18	0.10
17	02	01	0.33	16.67	2.00	0.02	0.01	0.12	0.05
18	17	04	2.83	66.67	4.25	0.18	0.04	0.26	0.16
20	24	06	4.00	100	4.00	0.25	0.06	0.25	0.19
22	02	01	0.33	16.67	2.00	0.02	0.01	0.12	0.05
23	04	02	0.67	33.33	2.00	0.04	0.02	0.12	0.06
24	01	01	0.17	16.67	1.00	0.01	0.01	0.06	0.03
25	02	01	0.33	16.67	2.00	0.02	0.01	0.12	0.05
26	38	05	6.33	83.33	7.50	0.40	0.05	0.46	0.30
27	441	06	73.50	100	73.50	4.66	0.06	4.50	3.07
28	2050	06	341.67	100	341.67	21.67	0.06	20.43	14.22
29	02	01	0.33	16.67	2.00	0.02	0.01	0.12	0.05
Total	9461								

Note: Species serial number of Table 5 and Table 6 indicate same name of species.

Among 28 weed species of first weeding, 16 species were recorded at T_0 and T_4 , 17 species were at T_1 , 18 species were at T_2 and T_5 and 13 species were at T_3 . The lowest number of weed species (13) was found at T_3 where 50.0 kg/ha of Vichete 5G was applied. In quantitative analysis of weeds species of first weeding, *Schoenoplectus erectus* was found to occur in all the treatments where the number of individual weed species was highest (1589) and density, frequency of occurrence, abundance, relative density, relative frequency, relative abundance and importance value were also found to be highest. The number of individual weed species was found to be lowest (01) in *Rotala densiflora* where the density, frequency of occurrence, abundance, relative density, relative frequency, relative abundance and importance value were lowest.

Among 16 weed species of second weeding, 13 species were recorded at T_0 , 10 species were at T_1 and T_4 , 9 species were at T_2 and T_5 , and 7 species were at T_3 . The highest number of weed species (13) was found at T_0 where no herbicide was used. The lowest number of weed species (07) was found at T_3 where 50.0 kg/ha of Vichete 5G was applied. In quantitative analysis of weed species of second weeding, *Eleocharis congesta* was found to occur in all the treatments where the number of individual weed species was highest (3210) and density, frequency of occurrence, abundance, relative density, relative frequency, relative abundance and importance value were also found to be highest. The number of individual weed species was lowest (01) in *Panicum paludosum* and *Lindernia hyssopiodes* where density, frequency of occurrence, abundance and importance value were also lowest.

Among 26 species of third weeding, 20 species were recorded at T_0 and T_4 , 10 species were at T_1 , 15 species were at T_2 , 16 species were at T_3 and 18 species were at T_5 . The maximum number of weed species (20) was found at T_0 and T_4 where no herbicide was used and 0.5 L/ha of Rifit 500 EC was applied respectively. The lowest number of weed species (10) was found at T_1 where 12.5 kg/ha of Vichete 5G was applied. In quantitative analysis of weeds species of third weeding, *Fimbristylis miliacea* was found to occur in all the treatments where the number of individual weed species was highest (2338) and density, frequency of occurrence, abundance, relative density, relative frequency, relative abundance and importance value were found highest. The number of individual weed species was found lowest (01) in *Marsilea quadrifolia* where density, frequency of occurrence, abundance, relative frequency, relative abundance and importance value were found highest. The number of individual weed species was found lowest (01) in *Marsilea quadrifolia* where density, frequency of occurrence, abundance is frequency, relative abundance and importance value were found highest.

The results of the present investigation agreed favorably well with the works of other workers. Mamun *et al.* (1986) observed that the principal weed in the direct seeded Aus rice field was *Cyperus rotandus* which constituted 68.22% of the weed vegetation but in the present investigation *Cyperus rotandus* was found rare in wet land of paddy in all the treatments of different weedings. The presence species of *Lindernia, Cyperus, Fimbristylis, Ludwigia and Rotala* in the different weedings of this investigation

corroborates with the findings of Rahman *et al.* (1996) who also observed the presence of these weed species in Aman, Boro and Aus paddy. The density of *Echinochloa crusgalli* was found low. In contrast, Radanachaless and Mercado (1980) observed considerable density of *Echinochloa crusgalli* in rice field in multiple cropping pattern. Ahmed and Moody (1982) also reported that *Leptochloa chinensis*, *Monochoria vaginalis* and *Echinochloa* spp. were dominant weed in the upland rice but these species were not found dominant in the present investigation.

Overbeck (1962 and 1964) who noted that all the principle of herbicides now in use appears to act primarily on some phase or another of the growth process. Crafts (1961) also noted that successful herbicidal chemicals are stable or their toxic reaction products in the plant are stable. He also observed that herbicide deranges the physiology of a plant over a period long enough to kill it.

From the above discussion, it may be concluded that the mode of action of two herbicides in controlling weeds in BRRI Dhan 28 field are different. The effects differ with concentrations and nature of herbicides. Between two herbicides, 50.0 kg/ha of Vichete 5G was relatively better and effective to control weeds species in BRRI Dhan 28 rice field.

References

- Ahmed, N. U. and K. Moody. 1982. Weeds in cropping systems as affected by landscape position and weeding regime. I. Well-drained upland. *Philippine Agri.* 65: 35-44.
- Amarjit, B.B., A. Ganal, K.N. Singh and R. Kotru. 1994. Weed control in transplanted rice (Oryza sativa). Indian J. Agron. 39: 16-24.
- BRRI, 1981. Annual report of Bangladesh Rice Res. Inst. for 1978-79. pp. 21-22.
- BRRI, 2008. Adhunik Dhaner Chash (Modern rice cultivation).6th ed., Bangladesh Rice Res. Inst. (BRRI), Joydebpur, Gazipur, Bangladesh.7:9-10.
- Chowdhury, M.A.H., N.M. Talukder, A.K. Chowdhury and M.Z. Hossam. 1995. Effect of Ronstar on weed management, yield and nutrient uptake by rice. **22** (1): 93-97.
- Crafts, A.S. 1961. The Chemistry and Mode of Action of Herbicides. Inter Science Pub., New York. p. 269.
- Krebs, C.J. 1978. *Ecology: The Experimental Analysis of Distribution and Abundance*.2nd ed., Harper and Row, New York. p.678.
- Mamun, A.A., S. Ahmed and A. U. Sarker. 1986. Critical period of crop weed competition in direct seeded aus rice. *Bangladesh J. Agri. Sci.* **13**(1): 61-66.
- Mian, A.L. and M.A. Ahasan. 1969. A comparative study on the performance of IR8 and Dharial varieties of rice grown by different methods of planting under different combinations of nitrogen, phosphorus and potassium. *Pakistan J. Sci.* 21 (1-2): 30-35.
- Nadeem, M.A. 1998. Effect of post- emergence application of herbicides on weed control and yield of wheat. M.Sc. Agronomy Thesis. Agronomy Department, Gomal Univ, D.I. Khan, Pakistan. pp. 2-3.
- Overbeek, J.V. 1962. Physiological responses of plants to herbicides. Weeds. 10: 170-174.
- Overbeek, J.V. 1964. Survey of mechanism of herbicide action. In the Physiology and Biochemistry of herbicides. Academic Press, London and New York. pp.387-400.

Radanachaless, T. and B.L. Mercado. 1980. Weed population in rice-tomato and rice mungbean multiple cropping patterns. *Philippine Agri.* **63:** 1-8.

Rahman, M.A., A.B.Z. Hossain and M.K. Pasha. 1996. Study of weeds of paddy field at Chittagong University campus in different seasons. *Bangladesh J. Bot.* 25 (1): 117-120.

Smith, R.J.Jr. 1970. Weed control methods, losses and costs due to weeds and benefits of weed control in rice. FAO Internal. Conf. on weed control. Davis, Calif. pp. 24-27.

(Revised copy received on 7/11/2017)