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Abstract 

This study presents an in-depth analysis of the spatiotemporal changes in land use/land 
cover (LULC) land surface temperature (LST) and urban heat islands (UHI) in Bogura 
District, with a focus on Bogura Municipality, utilizing multispectral satellite images 
from 1993 to 2023. The LULC of supervised classification identified significant shifts, 
including a sharp expansion of settlement areas, particularly by 2023, and a notable 
increase in vegetation cover, reflecting improved vegetation health. However, agricultural 
and fallow lands have shown a marked decline, especially post-2000, suggesting shifts in 
land use or a reduction in vegetation density. Water bodies have gradually decreased in 
areas, likely due to land conversion or the drying up of sources. The normalized 
difference vegetation index (NDVI) analysis corroborates these findings, highlighting 
fluctuations in vegetation health and coverage. Concurrently, LST analysis reveals an 
increase in higher temperature categories, closely linked to urbanization and the 
formation of urban heat islands (UHIs). The expansion of settlement areas has intensified 
the UHI effect, where urban zones exhibit significantly higher temperatures compared to 
surrounding rural areas. Additionally, areas of low temperature have expanded, indicating 
changes in land surface characteristics. The data underscores the dynamic nature of land 
use changes over the three-decade period, with urbanization and land cover alterations 
significantly impacting both vegetation and surface temperatures in the region. The study 
provides a framework for creating plans to counteract the negative effects of climate 
change, especially the UHI effect, and to direct sustainable urban planning.  
 

Key words: Landuse, Land Surface Temperature, Urban Heat Island, Bogura District, 
Landsat image. 

 

Introduction 

Urbanization and environmental change are profoundly interconnected, affecting 
ecosystems, biodiversity, and local climates. Urban expansion's fast alteration of land use 
and land cover (LULC) has a profound effect on ecosystems, biodiversity, and the local 
and regional climate (Luck and Wu, 2002). The rapid urbanization in Bogura District has  
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led to significant land use and land cover (LULC) changes over the past thirty years. 
Remote sensing techniques have a vital role in identifying and controlling different 
meteorological and environmental occurrences (Borges et al., 2016). Utilizing satellite 
imagery from Landsat 5, 7, 8, and 9, this study investigates how these changes have 
influenced land surface temperature (LST) and contributed to the formation of urban heat 
islands (UHI). The Mono-window approach is a simplified method for calculating LST 
that only requires a small number of specific meteorological data (Jie et al., 2008, Ding 
and Shi, 2013). Several recent studies have utilized satellite data to examine the impacts 
of Land Use and Land Cover Change (LULC) on Land Surface Temperature (LST) 
(Ahmed et al., 2013; Zhang and He 2013). Previous studies highlight the impact of urban 
expansion on ecosystems and climate, noting that rising LST leads to reduced plant cover 
and increased heat island effects (Ramachandra et al., 2012). Socio-economic 
advancement linked with urbanization often results in significant and lasting LULC 
changes. These changes exhaust agricultural lands, threaten biodiversity, and alter water 
resources, thereby affecting local and regional climates. The Bogura District, with its 
rapid population growth and extensive agricultural expansion, faces numerous 
environmental challenges exacerbated by climate change. This study aims to address 
these issues by monitoring biophysical data and analyzing their temporal and spatial 
relationships. 

Despite the critical nature of LST and UHI phenomena, accurate assessments of land use 
patterns remain underexplored. According to (Weng et al., 2004), there is a positive 
correlation between Land Surface Temperature (LST) and the percentage of impermeable 
surfaces, while there is a negative correlation between LST and the percentage of green 
vegetation. Land surface temperature is a crucial parameter in land surface modeling, 
influenced by various environmental factors and measurable through satellite thermal 
infrared sensors (Kustas and Norman, 1996). This technology employs satellite and 
airplane platforms, providing novel prospects for investigating the occurrence of HIs 
(Voogt and Oke, 2003). Understanding the formation and growth of UHIs, areas with 
significantly higher temperatures due to urbanization, is essential for developing 
mitigation strategies (Xie and Zhou, 2015). By selecting appropriate satellite images and 
utilizing remote sensing techniques, this study aims to enhance our understanding of 
LULC dynamics and UHI development in Bogura District. The findings will be crucial 
for mitigating socio-economic risks, such as drought, flooding, and biodiversity loss, 
which are aggravated by climate change. Studies in various regions, including Dhaka and 
Gazipur in Bangladesh, have shown significant LULC changes affecting LST. However, 
the Bogura District lacks comprehensive studies on LULC and LST changes. This study 
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aims to analyze LULC changes and their relation to UHI development in Bogura District 
using multi-spectral satellite imagery. Various Landsat TM/ETM+/TIRS sensor's images 
are used to study the urban heat island (UHI) effect. 

 

Study area 

The study area is Bogura District, and it is located in the northwestern part of Bangladesh 
under Rajshahi Division (Fig. 1). The latitude of Bogura District is 24°51`N -24°85`N 
and longitude is 89°22`E- 89°36`E.The area covers 2899 square kilometers (District 
Statistics 2011: Bogura). The climate of the Bogura District is intense tropical monsoon 
which consists of two main seasons which are dry season (November to March) and rainy 
season (June to October). The average precipitation rate of the area is 1760 mm per year 
(BMD, 2021). January is the coldest and April is the warmest month in the study 
area.The population of the area is 38,15,192 and the average density is 1,316/km2 (BBS, 
2022).  
 

 

Fig. 1. Location map of the study area. 
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Materials and Methods 

The study is conducted with Landsat satellite images using supervised classification and 
various indices approaches to quantify the spatiotemporal changes of landuse, and 
algorithm retrieved LST and UHI of the Bogura district in Bangladesh (Fig. 2). 

 

 

Fig. 2. Methodological flow chart of the study. 
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Satellite Images 

Satellite imagery is often utilized to study the 'heat island effect' in metropolitan areas 
(Walawender et al., 2014). To conduct this study, we obtained six sets of Landsat images 
in GeoTIFF format for free from the United States Geological Survey (USGS) collection, 
which is available at (https://earthexplorer.usgs.gov/). The images, which cover the 
Bogura District in the years 1993, 2000, 2005, 2010, 2017, and 2023, were chosen from 
three distinct path and row combinations to cover the full research region. These pictures 
were georeferenced using the Universal Transverse Mercator (UTM) zone 45N 
coordinate system, with reference to the World Geodetic System (WGS) 1984 datum, and 
taken during daylight hours. Due to the scarcity of images with less than 10% cloud cover 
along the required pathways and rows, there were random pauses between collections. 
(Table 1) summarizes the data gathered from the United States Geological Survey.  
 
Table 1. Landsat Images Used in the Study. 
 

Year Sensor Platform Acquisition Date Resolution 
1993 Landsat 5 TM 08-12-1993  

 
30 m 

2000  Landsat 7 ETM+ 17-12-2000 
2005 Landsat 5 TM 07-11-2005 
2010 Landsat 5 TM 05-11-2010 
2017 Landsat 8 OLI 08-11-2017 
2023 Landsat 9 OLI 01-11-2023 

 

Methodology 

Image Pre-Processing 

This study utilized Landsat level-1 data from USGS Earth Explorer, specifically images 
from 1993, 2000, 2005, 2010, 2017, and 2023. These images underwent geometric 
correction to address distortions but often displayed radiometric anomalies due to 
atmospheric transparency issues, solar radiation variations, and scanning equipment 
flaws, necessitating radiometric correction for accurate representation. 

Radiometric Correction 

Radiometric correction is essential for comparing datasets over time, as it mitigates 
spectral property influences (Paolini et al., 2006). This process involves calibrating pixel 
values, transforming the sensor's Digital Numbers (DN) into measurements like radiance, 
reflectance, or brightness temperature. Using sensor-specific metadata, the DN values are 

https://earthexplorer.usgs.gov/).
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converted into top of the atmosphere (TOA) reflectance and at-sensor radiance, with 
atmospheric correction achieved through the dark object subtraction method. 

 

Layer Stack, Mosaic, and Subset 

After image collection, the bands from the sensors were merged using layer stacking, 
requiring uniform spatial resolution. Bands that are neither panchromatic nor thermal 
were combined to enhance land feature distinction. The study area, defined by three 
images from distinct WRS path and row combinations, was processed using mosaic 
technique to create a cohesive image. The region of interest was selected and extracted 
using the subset method, and the research area was partitioned for further analysis. 

 

Conversion of Digital Number (DN) to Radiance 

The main procedure for standardizing picture data from various sensors and platforms 
involves converting DN values to Spectral Radiance, enabling consistent radiometric 
measurements. Familiarity with the initial scaling coefficients is necessary for this 
transformation. The spectral radiance (Lλ) has been computed using the equation 
specified by Zanter (2016). 

    Lλ = ML * Qcal + AL                                                     (1) 
Where, 

Lλ = Spectral radiance (W/ (m2 * sr * μm))  
ML = Radiance multiplicative scaling factor for the band. 
AL = Radiance additive scaling factor for the band. 

Qcal = Pixel value in DN   

 

To proceed with extra processing, it is necessary to convert the digital numbers (DN) to 
radiance for bands 2, 3, and 4 of the Landsat TM and ETM+ sensors in the years 1993, 
2000, 2005, and 2010. To accomplish this, the radiance multiplicative and additive 
scaling factors for band 2, 3, and 4 of the corresponding images are acquired from the 
Landsat metadata files that accompany the downloaded images (Table 2). 
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Table 2. Parameters Used for DN to Radiance conversion. 
 

Year Sensor Band No. Rad. Mul. Scaling 
Factor (ML) 

Rad. Add. Scaling 
Factor (AL) 

1993 Landsat-5 2 1.3222 -4.16220 
  3 1.0440 -2.21398 
  4 0.87602 -2.38602 
2000 Landsat 7 2 0.79882 -7.19882 
  3 0.62165 -5.62165 
  4 0.63976 -5.73976 
2005 Landsat-5 2 1.32654 -4.16220 
  3 0.72356 -2.62354 
  4 0.63976 -5.65165 
2010 Landsat-5 2 0.79882 -2.38602 
  3 1.05644 -4.62165 
  4 0.76543 -3.62165 

 

Conversion of Radiance to TOA Reflectance 

To create clear Landsat landscapes, spectral radiation can be converted into reflectance at 
the planetary or top of atmosphere (TOA) level. Converting photographs offers two 
advantages when comparing images captured by different sensors. The cosine effect can 
be utilized to minimize the influence of shifting solar zenith angles caused by variances 
in data gathering time. Moreover, the fluctuations in solar radiation outside the Earth's 
atmosphere caused by differences in spectral bands can also be modified. The radiance of 
the selected bands from the previous phase has been converted into images, which were 
then used to calculate reflectance. The calculation of the total reflectance from the Earth's 
surface and atmosphere for the years 1993, 2000, 2005, and 2010 has been conducted 
using Landsat TM and ETM+ data. The equation used for this calculation is the one 
supplied by Irish (2000).          

ρp = 
ௗమ௅ 

ாௌ௎ே  ୡ୭ୱ ೞ
                                                                                                         (2) 

Where, ρp = Planetary Reflectance,   L = Spectral Radiance at the sensor's aperture 

d = Earth-Sun distance in astronomical units, ESUN = Mean solar exoatmospheric 
irradiance,  s = Solar zenith angle in degrees 
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The solar zenith angle can be determined by subtracting the solar elevation angle, as 
indicated in the metadata file, from 90 degrees. Additionally, the mean solar exo-
atmospheric irradiance (ESUNγ) and the Earth-Sun distance (d) are used in the 
radiometric correction process to account for variations in solar energy received at the 
Earth's surface derived using the Julian Calendar, are respectively provided in (Table 3 
and Table 4). 
 
Table 3. Solar irradiance for landsat 5(TM) and landsat 7(ETM+).  
 

Band Landsat 5 (TM) 
(W/m2*μm) 

Landsat 7 (ETM+) 
(W/m2*μm) 

1 1957 1970 
2 1826 1842 
3 1554 1547 
4 1036 1044 
5 215.0 225.7 
7 80.67 82.06 
8 - 1369 

 
Table 4. Parameters used for radiance to reflectance conversion. 
 

Year  
(Landsat 
sensor) 

WRS Path 
and Row 

Earth-Sun distance 
in astronomical 

units (d) 

Solar zenith angle 
in degrees (s) 

Mean solar                       
exo-atmospheric 

irradiance (ESUN) 
1993 
(TM) 

138,42 0.99280 90 - 41.54147541 1826 (Band 2) 
138,43 0.99280 90 - 42.51407377 1554 (Band 3) 
139,42 0.99527 90 - 43.89935287 1036 (Band 4) 

2000 
(ETM+) 

138,42 0.98724 90 - 38.81661247 1842 (Band 2) 
138,43 0.98724 90 - 39.97976610 1547(Band 3) 
139,42 0.98409 90 - 35.19818820 1044(Band 4) 

2005 
(TM) 

139,88 0.98724 90 - 41.36576562 1825 (Band 2) 
138,43 0.99432 90 - 40.68539244 1554(Band 4) 
138,97 0.9967 90 - 43.23474323 1044(Band 4) 

2010 
(TM) 

139,42 0.98724 90 - 39.78468454 1836 (Band 2) 
133,25 0.99543 90 - 41.64748456 1064(Band 4) 
136,89 0.98423 90 - 42.37835688 1044(Band 4) 
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Conversion of DN to TOA Reflectance 

The process of transforming DN values to TOA for Landsat 8 and 9 images is a simple 
and efficient one-step procedure. This allows for the convenient conversion of data from 
2017 and 2023 into reflectance images using the equation (Zanter, 2016). 

ρλ  =
)sin(θ
AQ*M

SE

ρcalρ 
                                                       (3) 

Where, ρλ = TOA spectral reflectance. 
            Mρ = Reflectance multiplicative scaling factor for the band. 
            Aρ = Reflectance additive scaling factor for the band. 
            Qcal = Pixel value in DN. 
            θSE = Local sun elevation angle (provided in degrees in the metadata). 

To retrieve the Top of Atmosphere (TOA) reflectance values for bands 3, 4, and 5 of 
Landsat 8 images from the years 2017 and 2023, the reflectance multiplicative and 
scaling factor values, along with the local sun elevation angle, are extracted from the 
Landsat metadata files that accompany the downloaded images (Table 5). 
 
Table 5. Parameters Used for DN to Reflectance Conversion. 
 

Year (Landsat 
Sensor) 

WRS path 
and row 

Sun elevation 
angle in degrees 

(θSE) 

Reflectance 
multiplicative 

scaling factor (ML) 

Reflectance 
additive scaling 

factor (AL) 
2017 
(OLI/TIRS) 

138,42 38.24110398  
 
 

0.00002 

 
 
 

-0.100000 

138,43 39.45762644 
139,42 40.00261158 

2023 
(OLI/TIRS) 

138,42 42.87747217 
138,43 44.07959061 
139,42 45.36241130 

 

Accuracy Assessment 

To distinguish true land cover changes from potential classification errors, error matrices 
and per-class accuracy indices were calculated for the year 2023. In this process, 90 
stratified random points were generated across the study area for the selected year using 
Google Earth imagery to determine the actual LULC classes. These verified classes, 
derived from the reference images, were then utilized to assess per-class accuracy (i.e., 
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user’s and producer’s accuracy). Additionally, overall accuracy and the Kappa coefficient 
for the year were computed to provide a comprehensive evaluation of the classification 
performance. 

Producer’s Accuracy (PA): Measures how well a particular land cover class has been 
classified, from the perspective of the classifier (or producer). It indicates the probability 
that a reference pixel (ground truth) is correctly classified in the map. 

User’s Accuracy (UA): Measures the accuracy from the user’s perspective, showing how 
often the class on the map represents the real-world category. 

Both Producer’s Accuracy and User’s Accuracy are typically reported together, but 
Overall Accuracy is a combined metric that represents the proportion of correctly 
classified pixels across all classes. 

 

Normalized Difference Vegetation Index (NDVI) Retrieval 

The Normalized Difference Vegetation Index (NDVI) evaluates vegetation by 
quantifying the difference between near-infrared light, which is strongly reflected by 
plants, and red light, which is absorbed by plants. The vegetated sections are represented 
with a higher luminosity, whereas the non-vegetated portions are represented with a 
lower luminosity.  The computation of NDVI can be executed utilizing the equation 
stated by (Rouse et. al in 1974). 

      NDVI = 
ேூோିோா஽
ேூோାோா஽

                                                         (4) 

Where, NIR =Reflectance of Near Infra-red band 

               RED = Reflectance of Red band 

The Normalized Difference Vegetation Index (NDVI) is a quantitative measure that 
ranges from -1 to +1. Regions with abundant vegetation exhibit positive values close to 
+1, while places covered by snow, clouds, and bodies of water have lower values near -1. 
Band 4 of Landsat 5 (TM) and Landsat 7 (ETM+) corresponds to the Near Infrared (NIR) 
region, while band 3 represents the Red region. 

        NDVI = 
஻௔௡ௗ ସ ି ஻௔௡ௗ ଷ
஻௔௡ௗ ସ ା ஻௔௡ௗ ଷ

  (For Landsat 5 and 7)          (5) 

 

On the other hand, band 5 and band 4 of Landsat 8 and 9 represent the reflectance of 
near-infrared (NIR) and red regions, respectively. 



Spatiotemporal changes of land use, land surface 29 

        NDVI = 
஻௔௡ௗ ହ ି ஻௔௡ௗ ସ
஻௔௡ௗ ହା ஻௔௡ௗ ସ

  (For Landsat 8 & 9)               (6) 

 

Radiance to Brightness Temperature Conversion 

By inputting the converted radiant thermal bands into the calculation provided by Zanter 
(2016), the brightness temperature is determined.  

)1ln( 1

2




L
K
KT b

                                            (7) 

      Where, Tb = Top of atmosphere brightness temperature (K) 

                   K2 = Second calibration constant (K) 

                   K1 = First calibration constant (W݉ିଶିݎݏଵµ݉ିଵ) 

                   L = Spectral radiance (W݉ିଶିݎݏଵµ݉ିଵ) 

The values of the calibration constants are given in (Table 6). 
 
Table 6. Thermal Band Calibration Constants. 
 

Satellite Constant K1 (W݉ିଶିݎݏଵµ݉ିଵ) Constant K2  (Kelvin) 

Landsat 5 TM 607.76 1260.56 
Landsat 7 ETM+ 666.09 1282.71 
Landsat 8 TIRS 774.89 1321.08 
Landsat 9 TIRS 799.03 1329.24 

 

Land Surface Emissivity Computation 

Land Surface Emissivity (LSE) is the natural materials intrinsic property and is 
considered a prominent surface attribute. This method can be used to create maps of 
surface materials for geological studies on Earth as well as other worlds. 

The equation used to compute LSE is as follows (Sobrino et al., 2004): 

        LSE = 0.004 * Pv + 0.986                                            (8) 

Where, Pv = Vegetation proportion  
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       Pv = ቂ (ே஽௏ூିே஽௏ூ೘೔೙)
(ே஽௏ூౣ౗౮ష ே஽௏ூ೘೔೙)

ቃ2                                           (9)  

Here, NDVI = Normalized Difference Vegetation Index obtained by previous equation. 

          NDVImin = Min. value of NDVI 

          NDVImax = Max. value of NDVI 
 

Retrieval of Land Surface Temperature  

The following equation has been employed to compute the Land Surface Temperature 
(Artis and Carnahan, 1982). 

LST = 
்್

ଵା( ்್/ఈ) ୪୬ Ɛ
                                                                (10) 

Where, ௕ܶ = At-satellite brightness temperature (K) 

              = Wavelength of emitted radiance (μm) 

 h*c/K = 1.4388 * 10-2 m K = 14388 μm K = ߙ             

             h = Planck’s Constant (6.626 * 10-34 J-s) 

             c = Velocity of light (2.998 * 108 m/s) 

             K = Boltzmann Constant (1.38 * 10-23 J/K) 

             Ɛ = Land surface emissivity  

The values of  for different Landsat bands are given in (Table 7). 
 
Table 7. Wavelength of emitted radiance used for LST retrieval. 
 

Satellite Band Wavelength,  (μm) 
Landsat 4, 5 and 7 6 11.45 
Landsat 8 10 10.8 
Landsat 9 11 12 

 

Results  

Spatial-temporal Distribution of LULC in Bogura District 

A systematic analysis was conducted utilizing supervised classification of thematic 
satellite images from 1993, 2000, 2005, 2010, 2017, and 2023 to examine the changes in 
land use and land cover (LULC) in the Bogura District (Fig. 3). LULC (Land Use/Land 
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Cover) Trends reflect a notable increase in settlement areas, which grew from 61.67 km² 
in 1993 to 625.71 km² in 2023 (Fig. 4). Agricultural land has decreased slightly from 
1146.45 km² to 1089.70 km², while vegetation cover has diminished from 1497.06 km² to 
831.99 km². The area of waterbodies has remained relatively stable, and bare soil/fallow 
land has increased from 96.67 km² to 232.30 km², indicating ongoing land degradation or 
reduced vegetation. 

 
 
Fig. 3. Supervised classification based spatial distribution of LULC of Bogura District from 1993 to 

2023. 
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Fig. 4. Graphical representation of LULC calculation from 1993-2023. 

 

Accuracy Assessment result 

(Table 8 presents the results from the per-class accuracy assessment for the year 2023. 
User's accuracy (UA) and producer's accuracy (PA) for most land cover classes ranged 
between 60% and 88%. The Waterbody class exhibited high accuracy, with UA and PA 
values of 85% and 88%, respectively, reflecting reliable classification. Similarly, the 
Settlement class showed strong performance, with UA of 88% and PA of 82%. In 
contrast, the Agricultural Land and Bare Soil/Fallow Land classes demonstrated lower 
accuracies, with the lowest PA (62%) observed for Bare Soil/Fallow Land. This is likely 
due to the spectral similarity between these classes, which introduces misclassification 
errors. The Vegetation class achieved moderate accuracy, with UA and PA values of 72% 
and 75%, respectively, indicating some misclassification with other land cover types. 
Despite these variations, the overall accuracy was 89%, and the Kappa coefficient was 
0.815, indicating strong agreement between the classified map and reference data.  

 

Spatial-temporal Distribution of LULC in Bogura Municipality 

Bogura Municipality (Bogura Sadar) is in the center of Bogura District and is heavily 
impacted by urbanization (Fig. 5). The municipality is undergoing massive urbanization 
development. The Bogura district municipality's settlement area is rapidly expanding. 
Vegetated and agricultural fields are declining, while habitation and barren lands are 
growing. Despite fast infrastructure development, the Bogura Sadar or Bogura 
municipality region faces threats of environmental deterioration and biodiversity loss. 
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Table 8. Per-class accuracy assessments of multi-temporal for the year 2023. 
 

LULC Class Samples (n) User’s Accuracy 
(UA) 

Producer’s 
Accuracy (PA) 

Waterbody 15 0.85 0.88 
Agricultural Land 20 0.65 0.68 
Vegetation 20 0.72 0.75 
Settlement 20 0.88 0.82 
Bare Soil/ Fallow Land 15 0.60 0.62 
overall accuracy  0.89 
Kappa coefficient 0.815 

 

 

Fig. 5. Spatial Distribution of LULC of Bogura Municipality from 1993 to 2023. 
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Spatial-temporal Distribution of LST in Bogura District 

The land surface temperature areas are classified into five classes which are very low 
temperature(<24°C), low temperature(24-26°C), moderate temperature(26-28°C), high 
temperature(28-30°C) and very high temperature (>30°C) covered areas (Fig. 6). The 
very low temperature category decreased sharply from 2817.96 km² in 1993 to just 61.78 
km² in 2023 (Fig. 7). Conversely, areas experiencing low, moderate, high, and very high 
temperatures have all increased, with the most notable rise in the high temperature 
category, expanding from 0 km² in 1993 to 140.23 km² in 2023. 

 

Fig. 6. Spatial Distribution of LST of Bogura District from 1993 to 2023. 
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Fig. 7. Graphical representation of LST calculation from 1993-2023. 

Spatial-temporal Distribution of NDVI in Bogura District 

The NDVI data reveals changes in land cover and vegetation health from 1993 to 2023 
(Fig. 8). Waterbody NDVI values declined from 298.86 km² in 1993 to 155.34 km² in 
2023, indicating reduced waterbody areas or vegetation around them (Fig. 9). Fallow land  

 

Fig. 8. Spatial Distribution of NDVI based LULC classification of Bogura District from 1993 to 2023. 
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Fig. 9. Graphical representation of NDVI from 1993-2023. 

NDVI values fluctuated significantly, dropping from 1489.71 km² in 1993 to 182.85 km² 
by 2023, reflecting a decrease in fallow land or vegetation changes. Agricultural land 
NDVI values increased from 802.85 km² in 1993 to 1003.45 km² in 2017 but then 
decreased to 657.90 km² in 2023, suggesting variations in agricultural practices. 
Vegetation NDVI values generally rose from 320.39 km² in 1993 to a peak of 2263.31 
km² in 2010 before slightly decreasing to 1915.71 km² in 2023, indicating overall 
improved vegetation health with some fluctuations. 

 

Discussion 

The analysis of spatiotemporal changes in Bogura District from 1993 to 2023 reveals 
significant shifts in land use, land surface temperature (LST), and vegetation cover. The 
NDVI analysis highlights a substantial increase in vegetation cover, rising from 320.39 
km² in 1993 to 1915.71 km² in 2023. This indicates overall improved vegetation health, 
although the increase in vegetation is somewhat counterbalanced by the notable decline 
in other land cover types. Waterbodies have decreased dramatically from 298.86 km² to 
155.34 km², and fallow land has sharply reduced from 1489.71 km² to 182.85 km². 
Agricultural land has also seen a reduction, from 802.85 km² to 657.90 km², suggesting 
shifts in land use and potential impacts on local ecosystems. 

The LST data reveals a significant shift towards higher temperature categories. The area 
classified under very low temperatures has decreased sharply from 2817.96 km² in 1993 
to just 61.78 km² in 2023. Conversely, areas experiencing low, moderate, high, and very 
high temperatures have all increased, with the most notable rise observed in the high 
temperature category, expanding from 0 km² in 1993 to 140.23 km² in 2023. This shift 
reflects the intensifying urban heat island (UHI) effect driven by increased urbanization. 



Spatiotemporal changes of land use, land surface 37 

Land Use/Land Cover (LULC) trends further underscore the impact of urbanization. 
Settlement areas have expanded significantly from 61.67 km² in 1993 to 625.71 km² in 
2023, highlighting rapid urban growth. Concurrently, agricultural land has decreased 
slightly from 1146.45 km² to 1089.70 km², while vegetation cover has diminished from 
1497.06 km² to 831.99 km². The area of waterbodies has remained relatively stable, but 
bare soil and fallow land have increased from 96.67 km² to 232.30 km², indicating 
ongoing land degradation or reduced vegetation. 

The strengths of this study lie in its comprehensive analysis using multispectral satellite 
images, which provides a detailed understanding of land use dynamics and their effects 
on surface temperatures. However, the study's reliance on satellite data alone may not 
capture all local variations, and integrating field surveys could enhance the accuracy of 
the findings. 

This research is crucial for addressing the adverse impacts of urbanization and climate 
change. By identifying the key areas of change and their effects on temperature and 
vegetation, the study supports the development of strategies for sustainable urban 
planning and climate resilience. It provides a framework for mitigating the urban heat 
island effect and guiding efforts to balance urban growth with environmental 
conservation. 

 

Conclusion 

The strong link between land use-land cover (LULC) changes, Normalized Difference 
Vegetation Index (NDVI) variations, and land surface temperature (LST) help to 
understand the development of heat islands in Bogura District. Rapid urbanization has led 
to significant increases in settlement areas and surface temperatures, intensifying the 
urban heat island (UHI) effect. As urban areas expand, they replace vegetation and water 
bodies with impervious surfaces, contributing to higher LST and reduced NDVI values. 
The decline in fallow and agricultural lands, driven by growing food demands and urban 
sprawl, exacerbates habitat loss and environmental degradation. The findings underscore 
the urgent need for sustainable development strategies to mitigate the UHI effect, 
preserve biodiversity, and balance urban growth with ecological conservation. 

 

Acknowledgement 

Authors are gratefully acknowledged the USGS archive to provide satellite images with 
free of cost.  



38 Islam et al. 

References 
Ahmed, B., I. Kelman, M. Kamruzzaman, H. Mohiuddin, M.M. Rahman, A. Das and M. 

Shamsudduha. 2019. Indigenous people’s responses to drought in northwest Bangladesh. 
Environ. Develop. 29: 55-66. 

Artis, D.A. and W.H.  Carnahan. 1982. Survey of emissivity variability in thermography of urban 
areas. Remote Sens. Environ. 12(4): 313-329. 

Bangladesh Bureau of Statistics (BBS). 2022. Population and housing census 2022. 
Bangladesh Meteorological Department (BMD). 2021. Monthly maximum temperature. Retrieved 

from http://live3.bmd.gov.bd/p/Monthly-Maximum-Temperature/ (Accessed September 6, 
2021). 

Borges, C.K., R.M.  de Medeiros, R.E. Ribeiro, É. G. dos Santos, R. G. Carneiro and C.A. dos 
Santos. 2016. Study of biophysical parameters using remote sensing techniques to Quixeré-CE 
region. J. Hyperspec.  Remote Sens. 6(6): 283-294. 

Ding, H. and W. Shi 2013. Land-use/land-cover change and its influence on surface temperature: A 
case study in Beijing City. Inter. J. Remote Sens. 34(15): 5503-5517. 

Jie, B., L. Shaomin and H. Guang. 2008. Inversion and verification of land surface temperature 
with remote sensing TM/ETM+ data. Transactions of the Chinese Society of Agricultural 
Engineering, 2008(9). 

Kustas, W.P. and J.M. Norman. 1996. Use of remote sensing for evapotranspiration monitoring 
over land surfaces. Hydrol.  Sci. J. 41(4): 495-516. 

Luck, M. and J. Wu. 2002. A gradient analysis of urban landscape pattern: A case study from the 
Phoenix metropolitan region, Arizona, USA. Landscape Ecol. 17(4): 327-339. 

Pielke, R.A. 2005. Land use and climate change. Science, 310(5754): 1625-1626. 
Ramachandra, T.V., B.H. Aithal and D. Sanna. 2012. Land surface temperature analysis in an 

urbanizing landscape through multi-resolution data. Research & Reviews: Journal of Space 
Science & Technology, 1(1): 1-10. 

Rouse Jr, J., R.H. Haas, J. A. Schell and D.W. Deering. 1974. Monitoring vegetation systems in the 
Great Plains with ERTS. 

Sobrino, J.A., L. Paolini, F.Grings,  J.C. Jiménez-Muñoz and H. Karszenbaum. 2006. Radiometric 
correction effects in Landsat multi‐date/multi‐sensor change detection studies. Inter. J. Remote 
Sens. 27(4): 685-704. 

Voogt, J.A. and T.R. Oke, 2003. Thermal remote sensing of urban climates. Remote Sens. Environ. 
86(3): 370-384. 

Walawender, J. P.,  M. Szymanowski,  M.J. Hajto, and A. Bokwa. 2014. Land surface temperature 
patterns in the urban agglomeration of Krakow (Poland) derived from Landsat-7/ETM+ data. 
Pure Appl. Geophy.171(6): 913-940. 

Weng, Q. (2001). A remote sensing–GIS evaluation of urban expansion and its impact on surface 
temperature in the Zhujiang Delta, China. Inter. J. Remote Sens. 22(10): 1999-2014. 

Xie, Q., and Z. Zhou. 2015. Impact of urbanization on urban heat island effect based on TM 
imagery in Wuhan, China. Environ. Eng. Manage. J. 14(3): 647-655. 

Zanter, K. 2016. Landsat 8 (L8) data users handbook. Landsat Science Official Website, 33. 
 

(Revised copy received on 18/03/2025) 

http://live3.bmd.gov.bd/p/Monthly-Maximum-Temperature/

