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ABSTRACT 
 

Traceability methods in livestock sector through the tracking of animal species, 
breed or even individuals, has become of utmost importance as a “vehicle” for 
ensuring consumers‟ food safety. The advent of new technology at DNA level has 
facilitated the convenience and the accuracy of the implementation of traceability 
methods. The scope of this review is to highlight the most up to date progress on 
DNA based approaches concerning the traceability procedures for small ruminant 
species and/or their products, giving emphasis on short tandem repeats 
(microsatellites) and single nucleotide polymorphisms. The conclusions of this 
review may be used either from the farmer or the State and other Organisations in 
order not only to certify traceability throughout the whole food process chain but 
to ensure also consumers‟ food safety. 
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INTRODUCTION 

 
It is common sense that the term “traceability” may 
receive many definitions in accordance to the approach 
and the limits that each Organization, scheme, national or 
international legislation attempts to ensure or set. The 
most easily understandable approach defines traceability 
in livestock production as “the ability to follow an animal or 
group of animals during all stages of its life” (OIE, 2017). 
However, the best approach of the word is found in the 
fundamental law on food safety in Europe (European 
Commission, 2002), which is defined as “the ability to trace 
and follow a food, feed, food producing animal or ingredients, 
through all stages of production and distribution”. Since its 
application (January 1, 2005), the definition of a food 
sector traceability scheme has become obligatory in all 
EU countries. On the other part, under the 
implementation of the ISO 2205 standard norms, a 
traceability system aims to help an association to adjust 
with its specific targets and is applied when it is 
important to specify the history, or area of a product  or 
its significant components (ISO, 2007). Internet sources 
(Wikipedia) defines the word “traceability” as the ability 
to substantiate historical events, position(s), place(s) or 
implementation of a procedure by terms of recorded 
documentation, while other approaches may include the 
ability to track any information up to a certain level, or to 
be able to chronologically relate identifiable entities in a 
verifiable way. (Murugappan and Prabha, 2017). In 
addition, traceability is also known as the „one-step-back-
one-step-forward‟ principle (ITC, 2015).  However, most 
of the definitions, does not specify which points should 
be assesed or how to recall the origin, rendering the 
definition of the European Regulation, the most suitable 
in the agro-nutritional sector. 
 
The aim and the importance of traceability process 
 

Tracing the origin of animals‟ products is an important 
task of growing concern during the last decades, because 
of the increase consumers‟ attention on food quality and 
on products‟ authenticity (Rychlik et al., 2018). The 
stroke of many nutritional scandals (i.e., dioxins, BSE, 
horse meat scandal etc), have provoked the increase of 
such concern. In line to the aforementioned, a simple 
consensus of the term “traceability” could be set as the 
ability to identify an animal and/or its product 
throughout the whole production chain But, is the 
traceability control throughout the whole food chain so 
important? Is it only considered as a matter of 
consumer‟s safety? The answer is “No”, if the 
multipurpose approach regarding the importance of 

traceability control is considered. The latter is reflected by 
the following basic axes (Murphy et al., 2008; Rychlik et 
al., 2018): 
a. Farm management:by means of offering a proof of 
ownership, a tool of selection or subsidy payment of a 
desired animal or protection against illegal activities (e.g., 
thefts). 
b. Genetic management:by means of pedigree or artificial 
insemination implementation. 
c. Biodiversity management:as an assist to detect and notify 
outbreaks or to control animal grazing or assortment.  
d. Prevention/control of animal diseases:by means of ensuring 
inspection, certification of animal‟s health and tracking down 
the infected animals.  
e. Trade opportunities, control in products:by means that traceability 
process may be a “vehicle” of protecting or prevent public 
health (food safety), deceptive practices and fraud in the market 
place (e.g., geographic indication, food quality), adulteration and 
food contamination. 

 
Methods of traceability 
 
Several traceability methods have been described, based 
on the approach that traceability is achieved and on what 
data/information furnishes (Dalvit et al., 2007). On live 
animals, phenotypic characteristics such as coat colour, 
horns, tattoos, ear tags etc, have been widely used 
throughout decades as tracing method and reflect the 
simplest and the oldest markers used for this purpose. 
Reviewing all the methods used for tracing live animals, 
the method of the electronic RFID ear tag and the rumen 
bolus are the more sufficient by terms of implementation 
easiness and cost approach (Bowling et al., 2008; Awad 
2016). 
 
At biochemical level, enzyme-based methods have been 
widely used as a traceability tool (Dogu and Sireli, 2016). 
The developed methods focused either on the “isoelectric 
point” of the protein, or on agar gel immunodiffusion or 
counter immunoelectrophoresis or ELISA (Schwägele, 
2005). Disadvantages of the above methods have been 
mainly described regarding the heat treatment, which 
might change the conformation of the proteins. In 
addition, the immunological methods already used, 
present serious drawbacks as they fail to analyze complex 
food matrices (Rodríguez et al., 2004). 
 
As DNA technology is improved, new approaches based 
on the analysis at molecular gene level invented as a 
“vehicle” of ensuring traceability (Figure 1) in a more 
accurate way (Scarano and Rao, 2014; Guan et al., 2018). 
The ideal method is supposed to be reproducible, and 
thus to generate easily reliable data. DNA based 
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Figure 1. Traceability process on small ruminant species and their products using DNA based methods. 
 

 

methods are usually focused on “polymorphic” DNA 
markers and they are grouped in two major categories: (a) 
methods that require the clone and/or the sequence of 
the marker, and (b) methods that the sequence of 
polymorphic location or the isolation and the cloning of a 
DNA fragment is not required. The first category 
includes markers such as Restriction Fragment Length 
Polymorphisms (RFLPs), microsatellites/short tandem 
repeats (STRs), Single Nucleotide Polymorphisms (SNPs) 
and specified DNA sequences, while the second one 
includes markers such as Amplified Fragment Length 
Polymorphisms (AFLPs), Variable Number of Tandem 
Repeats (VNTRs) and Random Amplified Polymorphic 
DNA (RAPDs).  
 
Although the sequencing of the animal‟s DNA offers the 
most accurate way of an individual identification, it is not 
always feasible and cost affordable (Pillai et al., 2017). 
However, some recent research have been conducted on 
the matter of species discrimination (Bertolini et al., 2015; 
Giusti et al., 2017; Carvalho et al., 2017). On the other 
hand, PCR-RFLPs offer a more convenient, ease, cheap 
and time affordable way of traceability (Guan et al., 
2018), but it cannot be implemented on all the desired 
cases, as cleavage sites of the restriction enzymes are case 

sensitive. However, many studies have been reported 
using this method for food traceability purposes (Guan et 
al., 2018). In addition, the results from AFLP and VNTR 
methods, although their lower cost, are quite difficult 
interpreted as the detection requires technical ability in 
casting and staining the gel. They are, also, more 
laborious to produce, renders high quality of DNA and 
the procedures request several steps (Marmiroli et al., 
2003), rendering these methods not so desirable for 
implementation. De Marchi et al. (2003), managed to 
trace using AFLPs three local Italian chicken breeds, but 
improvement by means of cost diminish  per sample, 
work input, reproducibility and precision of results 
should be obtained. Similarly, the distinguish of six 
different chicken breeds has been accomplished (Soattin 
et al., 2009), while recently, Zhao et al. (2018) reported 
the successful implementation of a combined use of eight 
primer pairs in order to distinguish the individuals of six 
cattle breeds.  
 

RAPD has been implemented for evaluating commercial 
adulteration in an accurate and fast way  (Ramella et al., 
2005), but this method in many studies was used as a tool 
for investigating genetic diversity and for genetic 
population purposes rather than species identification 
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(Jawasreh et al., 2018). However, recently, some efforts 
using this technique have been conducted by means of 
fraud control (Cunha et al., 2016; Cunha and Domingues, 
2017). On the other hand, mitochondrial DNA (mtDNA) 
genes offer several advantages in species discrimination 
tests, as it is maternally inherited. There are many 
references (Panwar et al., 2015; Floren et al., 2015; Jahura 
et al., 2016; Munira et al., 2016; Prusakova et al., 2018) 
that illustrate the effectiveness of mtDNA to discriminate 
adulteration i.e., of meat, with different technique 
approaches (mitochondrial 12S ribosomal RNA gene or 
mito-chondrial cytochrome b gene). Implementing 
several PCR protocols detection of ovine (Ovis aries) and 
caprine (Capra hircus) sequences, in unprocessed and 
treated (with heat) meat blends containing several other 
species have been achieved, allowing, thus, the clear 
species identification with a detection limit of the 1% 
(wt/wt) for each species analyzed. Multi-specie 
discrimination has been also achieved based on 
mitochondrial DNA (Park et al., 2013; Prusakova et al., 
2018).  
 
In the dairy sector the higher market value of goat or 
sheep milk in many countries is related to an extended 
adulteration practice with bovine milk, which is cheaper. 
Many efforts have been conducted to detect such 
practices, especially using simple methods like PCR-
RFLP analysis or using mtDNA (Golinelli et al., 2014; 
Tortorici et al., 2016; Barron et al., 2018). The sensitivity 
level can reach up to the 0.5%, depending on the raw 
material and the implemented methodology. Recently the 
use of more sensitive methods like End-Point PCR, RT-
PCR and next generation sequencing (Di Pinto et al., 
2017; Seçkin et al., 2017) revealed a great extent (over the 
65% of the tested samples) of fraud in ovine or goat milk.  
 
The above findings indicate the importance of the 
traceability procedure so as to prevent illegal practices, to 
preserve the quality of animal products and to protect 
consumers‟ health. Although mtDNA or PCR-RFLPs 
methods are not suitable for the discrimination of meat 
or milk at the breed level, an up to date research (Cunha 
et al., 2016), reported the precise identification of cheese 
adulteration made by milk from Serra da Estrela ewes, 
using the implementation of a RAPD method combined 
with sequenced characterized markers.  
 
Although sheep and goats contribute considerably to the 
livestock sector, identification systems in order to 
traceback and traceforward the live animals and their 
products are poorly developed, and in some cases is not 
implemented any approach. However, it is recognised the 

need to link products with a specific breed not only for 
satisfying the consumer‟s desire, but also for ensuring the 
quality of several PDO or PGI products of dairy or meat 
origin (Negrini et al., 2008; Mateus and Russo-Almeida, 
2015), which consecutively gain the increase preference 
of consumers. In this review the focus will shift on two 
DNA methods which rely on microsatellites (STRs) and 
Single Nucleotide Polymorphisms (SNPs) technology to 
cover genetic traceability demands in small ruminant 
species and their products. Both methods are considered 
reliable, worth of cost and time input and their results are 
repeatable reproduced. Multiplex PCR kits for STR 
implementation or SNPs panels have been developed or 
synthesised for species with invasive commercial interest. 
Although many studies have been conducted focusing on 
the traceability of products mainly on beef or porcine 
products using STRs or SNPs panels (Mateus and Russo-

Almeida, 2015; Rogberg-Muñoz et al., 2016; Rębała et 

al., 2016; Kannur et al., 2017), the area of small ruminant 
species remains still not so over explored.  
 
Implementation of microsatellites on traceability of 
small ruminant species and their products. 
 
Microsatellite markers (STRs), defined as small tandem 
repeats of 2-6 bp widely spread across DNA (Gettings et 
al., 2015), have been widely used as a mean to determine 
the genetic variation in livestock populations. The latter 
reflects in the majority of the conducted studies to the 
genetic description of a breed (Ciani et al., 2013; Silva et 
al., 2017), or the evaluation of the genetic diversity 
(Ceccobelli et al., 2015; Cao et al., 2017; Nguluma et al., 
2018), or genetic identification  in animals or parentage 
assessment (Rosa et al., 2013; Clarke et al., 2014).   
 
Although such approaches led to a different STRs pattern 
outputs, none of them have been highlighted as a tool for 
discriminating small ruminant breeds or their respective 
products. However, in some cases, the use of STRs in 
evaluating the genetic structure or diversity of various 
small ruminant populations gave the motivation to apply 
also this methodology as a discrimination tool of tracing 
the breed and/or the origin of their products and thus, 
protecting food authenticity. For instance, Koutsouli et 
al. (2007) managed to discriminate three indigenous 
Greek breeds and two foreign breeds, using a 12 set of 
microsatellites and breeding assignment approaches. In 
addition, a successful implementation of STRs have been 
reported to discriminate cheese starters and possible 
contaminating during cheese manufacturing (Giraud, et 
al., 2010).  Similarly, the correct discrimination of seven 
purebred Italian ovine breeds have been conducted using 
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19 STR markers (Bramante et al., 2011). Moreover, 
Sardina et al. (2015) analyzed 20 microsatellites on three 
Italian goat breeds resulting firstly to the creation of a 
breed tracking system of dairy products made by 
Gergentana goat milk, and secondly to the fact that only 
three of the used STRs can be implemented to this 
system. Recently, Di Stasio et al. (2017) successfully 
developed a traceability method to verify the authenticity 
of Sambucano sheep a registered traditional Italian 
product, using 14 STRs. Obviously, a great number of 
studies using microsatellite markers have been conducted 
in small ruminant species, mainly on genetic structure and 
variability of the breeds or populations and with a minor 
effort to traceability purposes. However, in both cases 
unique discriminating or comparative DNA patterns for 
each breed exist as first outputs; but there is a need to 
summarize, organize, extend and diffuse all this amount 
of information, specialized in each breed, in a public 
database.  All these patterns so far provided could serve 
then as a first approach in the development of a breed 
distinguished protocols based on DNA level (DNA bar 
coding system) for small ruminant species or products. 
 

Implementation of single nucleotide polymorphism 
(SNPs) on traceability of small ruminant species and 
their products  
 

DNA technology is evolving rapidly and STRs markers 
used for genetic diversity studies, and breed or individual 
assignment tests, are gradually being replaced by SNPs 
technology. The discrimination power of SNPs is 
exceptional as SNPs are abundant, more informative, less 
expensive and can be run  automatically compared to 
STRs in massive tests. (Kawęcka et al., 2016). In several 
studies, the objective is to verify the parentage (Tortereau 
et al., 2017), to assign breeds and assess the genetic and 
population variability (Grasso et al., 2014; Edea et al., 
2017) and more generally for phylogenetic and 
biodiversity purposes (Kawęcka et al., 2016; Leaché and 
Oaks, 2017). Subsequently this information is applied to 
the genetic identification of breed and furthermore to 
find possible adulteration practices on superior quality 
products from specific breed (i.e., PDO cheese products 
and meat). The distinction and choice of DNA that will 
be able to discriminate different breeds should depend on 
the unique genetic “fingerprint” of each breed 
(Fontanesi, 2009). However, the creation of the 
contemporary breeds not only reflects the complicated 
connection among populations, but also the exchange of 
genetic material leading to a different levels of variability. 
In addition, as no biological reproductive barriers exist 
among breeds, distinction of their genetic mixture is not 
easily, leading to difficulties in specifying unique breed 

markers for traceability purposes. Although the 
implementation of novel genotyping methods using chip-
technology  that include thousands of SNPs, is a 
promising possibility for breed identification, the main 
drawback of this approach is relied on the fact that it is 
difficult to certify the origin for dairy products made by 
milk mixtures of different breeds (Fontanesi, 2009). The 
discovery of breed-exclusive markers, is expected to 
overcome the challenge regarding the  intra-species 
identification products‟.  
 
Although many applications of SNP technology in 
animals have been reported (Gurgul et al., 2014), most of 
the research on traceability aspects using SNPs is focused 

on beef breeds discrimination for their meat (Orrù et al., 
2009; Lasagna et al., 2015; Xu et al., 2018) or on dairy 
cattle breeds (Karniol et al. 2009; McClure et al., 2018) or 
swine breeds/products (Choi et al., 2015; Kwon et al., 
2017). The discoveries on this issue concerning 
traceability studies in small ruminants are rather few. 
Initial research from Pariset et al. (2006) identified 37 
SNPs, located within 27 genes in 16 animals from eight 
different European sheep breeds, which were associated 
with  key metabolic pathways or potentially significant  
productive traits. The achieved information contributed 
sufficiently to reconstruct the history of each studied 
breed. In goat the research of Crepaldi and Nicoloso 
(2007) was focused on SNPs involved in pigmentation, as 
a tool to identify 4 goat breeds with different coat colour 
phenotypes (Camosciata delle Alpi, Blonde of Adamello, 
Saanen and Orbica), but resulted that a relative greater 
number of SNPs may be needed for traceability methods. 
Subsequently, Heaton et al. (2014) using a parentage 
SNPs approach managed to identify a SNPs panel for the 
North American sheep‟s identification,  which according 
to the authors can be also used for global traceability 
efforts.  
 
More recently, a panel of 249 SNPs, derived from a 
commercial 50K SNP chip, has been successfully used in 
an on-farm test on the Blanche du Massif Central breed 
resulting in more than 95% accuracy concerning the 
assignment of the tested sheeps to a distinct sire  
(Tortereau et al., 2017). In the same line seven SNPs have 
been successfully identified as potential markers to 
identify and trace the meat derived from sheep reared in 
north-western and eastern China (Wu et al., 2017).  
 
Although SNPs provides a powerful tool both for genetic 
diversity and traceability purposes, it remains unexplored 
the possibilities of origin‟s discrimination in the situation 
of product adulteration or mixed final products. 
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Which method would be the perfect choice in the 
area of traceability control? SNPs or STRs? 
 

The answer to this certain question is not so easy as many 
factors should be considered apart from the experienced 
personnel, labor timing and cost aspects.  Even though 
STRS are considered highly informative, with a great level 
of polymorphism and wide-spread in the genome 
(Gettings et al., 2015), the  STRs outputs obtained  by 
different researchers or labs are not in all occasions 
compared to each other due to inconsistency of the 
genotype calling and/or mistakes in  the output 
interpretation. Moreover, microsatellites are labor 
intensive, regarding the time needed for trained personnel 
to analyse the running output (Vignal et al., 2002).  
 

The implementation of next generation sequencing and 
novel in-silico approaches, forced the use of SNPs to 
become more prominent (Heaton et al., 2002). Although 
by means of DNA information a two-allele marker may 
be interpreted  as a movement to outdated methodo-
logies, SNPs are considered as a powerful tool for genetic 
analysis purposes, mainly due to their abundance, 
stability, low cost and their ability to participate in high 
throughput analyses (Koopaee and Koshkoiyeh, 2014; 
Leaché and Oaks, 2017). In addition, SNPs not only have 
been successfully used in the approach and character-
izations of quantitative trait loci (QTL) and the  link of 
commercially important traits with specific genes (Chen 
and Abecasis 2007; Wollstein et al., 2007), but also in  
tracing specific individuals or breeds (Negrini et al., 2008) 
or other applications on animals (Koopaee and 
Koshkoiyeh, 2014). The first step for an efficient 
traceability method based on SNPs, is the set of a 
minimal number of marker that will be able to uniquely 
certify animals among pure breeds or cross-bred herds 
(Heaton et al., 2002). Generally, 2-5 SNPs for each STR 
are a prerequisite in order to have the same genetic 
information (Schopen et al., 2008; Koopaee and 
Koshkoiyeh, 2014). However, this is a matter either 
depending on the implemented purpose or the studied 
organism (Schopen et al., 2008; Lee et al., 2017) or on 
how informative is the set of SNPs used in each study 
(Glover et al., 2010). According to Fernández et al. (2013) 
for the genetic discrimination and parentage control in an 
Angus population, almost a double number of SNPs were 
needed in order to receive the same genetic information 
compared to STRs. Moreover, the reported SNPs sample 
matching probability showed that the 24 SNPs had an 
equivalent informative power with that of the minimal set 
of 10-11 STRs (recommended by ISAG (International 
Society for Animal Genetics). 

Although SNPs reveal a great genetic power for diversity 
purposes, according to Karniol et al. (2009) the most 
important drawbacks compared to STRs are faced during 
the examination of samples containing DNA from 
different bovine breeds or animals. Such blends would 
not be easily identificated using  SNPs. On the other 
hand,  STRs would reveal rapidly the mixed samples by 
determining the existence of more than two alleles per 
STR.  
 
To the best of our knowledge, no further analysis to this 
field have been conducted in the area of small ruminants. 
However, it would be useful if such information can be 
retrieved in the future, in order not only to be more 
precise by terms of cost implication of SNPs or STRS in 
a routine control of food safety or adulteration, but also 
to identify the higher informative SNPs loci that may lead 
researchers to a powerful approach of traceability control 
of animals and their products. 
 

CONCLUSION 
 

Considering the positive impact of traceability 
throughout the whole food chain, we can conclude that 
this impact not only can lead to an increase of its 
acceptance but also to the distribution of an added value 
of the final product among all stakeholders. All 
participants at national and international level should 
insist on its importance. As the cost of SNPs examination 
decreases, more studies will be designed, and more results 
are expected to provide the available information to trace 
animal products to their breed of origin. However, 
genetic patterns revealed by STRs or SNPs should be 
interpreted in a simpler way (i.e., handling data with 
friendly to use software outputs) in order the final 
implementation of the method to be the easiest by means 
of final results and by means of a massive routine 
protocol use. 
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