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ABSTRACT

Objective: This study evaluated the utilization of marigold leaves (MGLs) in rations and their 
impact on rumen enzyme activity, fermentation parameters, methane (CH4) emission, and nutri-
ent digestibility in vitro.
Materials and Methods: The experimental diets comprised different proportions of MGL incorpo-
rated into the dry matter (DM) rations. Experimental design: The MGL treatments in diets include 
0% (MGL-0), 7% (MGL-7), and 14% (MGL-14).
Results: Results indicated that MGL-14 substantially raised (p < 0.05) the rumen parameters, 
including NH3–N and microbial protein, total volatile fatty acids, acetate (C2), propionate (C3), 
butyrate (C4), and the C2:C3 ratio. In contrast, the MGL-7 and MGL-14 groups experienced a note-
worthy reduction (p < 0.05) in the total protozoa population. The MGL-7 and MGL-14 treatments 
also led to a substantial increase in the digestibility of DM, organic matter (OM), and crude fiber 
(CF) in the rumen. However, they also resulted in a decline (p < 0.05) in crude protein (CP) digest-
ibility. The DM and OM total digestibilities were higher (p < 0.05) in the MGL-14 and MGL-7 groups. 
The utilization of MGL did not influence (p > 0.05) the ruminal enzyme activities (carboxymethyl 
cellulase, amylase, protease), cumulative gas production, kinetics, ruminal pH value, CH4 and CO2 
production, total CF, and CP digestibility.
Conclusion: The utilization of MGL until 14% DM in diets can enhance ruminal fermentation 
parameters and nutrient digestibility in vitro without negatively affecting gas production kinetics 
or ruminal enzyme activities. However, it did not have any impact on CH4 production.
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Introduction

Livestock rearing plays a crucial role in meeting the global 
demand for food. However, in several tropical countries, 
the production of animals is frequently hindered by the 
need for more availability and better-quality animal feeds. 
The scarcity of feedstuffs, particularly protein sources 
like legumes, cereals, and grains, has led to their high 
cost and limited accessibility in many regions worldwide. 
Therefore, it is crucial to explore cost-effective alternative 
feed sources that are nutritionally rich in essential nutri-
ents and capable of meeting the critical requirements of 
ruminant animals [1,2].

While ruminant livestock undoubtedly generate sizable 
methane (CH4) emissions, their farming also plays a role 

in significantly affecting the release of gases impacting 
the climate. Ruminants contribute CH4 gas emissions from 
anaerobic enteric fermentation processes in the rumen 
[3]. Every year, domesticated ruminant animals collec-
tively generate approximately 86 million metric tons (Tg) 
of CH4 [4,5]. According to Saunois et al. [6], the estimated 
CH4 emissions from ruminants were approximately 111 
(106–116) Tg CH4/year, making up slightly over 30% of 
the total global emissions from 2008 to 2017. During the 
rumen’s feed degradation process, the production of ace-
tate (C2) and butyrate (C4) production leads to pure hydro-
gen generation as a by-product. However, propionate (C3) 
formation offers an alternative pathway for hydrogen uti-
lization, resulting in the production of CH4. In addition, 
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ruminal methanogenic archaea also contribute to the for-
mation of CH4, utilizing hydrogen and carbon dioxide (CO2) 
to generate energy [7,8].

Ruminant productivity can also be enhanced by reduc-
ing CH4 emissions and restricting greenhouse gas (GHG) 
emissions [9]. There have been studies on the strategy 
of employing multiple feed additives such as flavonoids, 
tannin, saponin, essential oils, enzymes, 3-nitrooxypropa-
nol, organic acids, and lipids for purposes of reducing CH4 
emissions from ruminant livestock [10–18]. Feeding rumi-
nant tree leaves has been investigated, and multiple inves-
tigations have revealed a reduction in the creation of CH4. 
Furthermore, many experts have suggested tree leaves as a 
viable alternative animal protein source [19].

The marigold plant (Tagetes erecta L.) is acknowledged 
for its potential to treat wounds caused by bacterial infec-
tions. Due to the phytochemicals derived from marigolds 
possessing antibacterial qualities, their application has 
historically been utilized in treating injuries. These com-
pounds effectively combat bacterial infections and pro-
mote wound healing [20]. It is a widely distributed plant 
worldwide and has been used as a traditional medicine 
in China [21]. It has been discovered that certain mari-
gold species offer therapeutic qualities. They are capable 
of addressing numerous ailments, including such issues 
as irregular menstruation, varicose veins, hemorrhoids, 
burns, skin diseases, wounds, and duodenal ulcers [22]. 
Furthermore, the leaf part of the marigold has potential as 
a feed supplement because of its greater availability than 
the flowers [23]. Additionally, based on initial research, 
we identified that marigold leaves (MGLs) had 83.68% 
organic matter (OM), 16.87% crude protein (CP), 15.83% 
crude fiber (CF), 2.17% ether extract (EE), 48.81% nitro-
gen-free extract (NFE), and 64.25% total digestible nutri-
ent (TDN) content. This diverse array of active natural 
antioxidants, vitamins, terpenoids, alkaloids, phenolics, 
flavonoids, saponins, and steroids are all together within 
MGL, working harmoniously. These components make 
MGL valuable as a feed additive for various purposes [24]. 
While ruminants are recognized as a significant provider 
of high-quality animal protein, they are also accountable 
for considerable GHG. However, natural feed additives 
available in the form of secondary plant metabolites can 
modify ruminal enzyme activities and fermentation, effec-
tively reducing CH4 production and enhancing ruminant 
production. These additives offer a promising alternative 
to address the environmental effects of ruminant farming 
while improving overall productivity [25].

Several researchers have examined the advantages of 
using marigolds for animals. Hou et al. [26] investigated 
the quality improvement of marigold crop residues using 
lactic acid bacteria. Rahman et al. [27] concluded that MGL 
paste reduced tissue reactions and promoted effective 

wound healing in sheep. Wencelová et al. [28] studied 
medicinal plant mixtures containing marigold flowers 
as sheep feed and showed increased nutrient digestibil-
ity and decreased CH4. Nevertheless, there is currently a 
scarcity of data on the specific impacts of implementing 
MGL in ruminant feeding, particularly concerning ruminal 
fermentation.

MGL as a feed supplement shows the potential to mit-
igate CH4 production and enhance rumen fermentation in 
ruminants. Incorporating MGL into the diet can improve 
sustainability and environmental impact by mitigating CH4 
emissions, a potent greenhouse gas. The beneficial effects 
of rumen fermentation lead to increased nutrient utiliza-
tion and the potential for increased animal performance. 
Additional investigations are needed to explore the ideal 
dose and long-term impact of MGL use in ruminant rations. 
Therefore, this research aims to examine the use of MGL 
in diets and its effects on rumen enzyme activity, fermen-
tation parameters, CH4 emissions, and nutrient digestibil-
ity in vitro. The results obtained from in vitro studies can 
serve as a basis for further investigations and inform the 
potential application of MGL in ruminant nutrition.

Materials and Methods

Ethical statement

The animal ethics committee at Universitas Gadjah Mada 
approved all procedures used in the current trial (No. 003/
EC-FKH/Eks./2023).

Experimental diets

The experimental setup was a complete randomized design 
with four treatments, each having six replications (n = 6). 
The experimental diets comprised different proportions of 
MGL incorporated into the dry matter (DM) rations. The 
treatments include 0% MGL inclusion (referred to as MGL-
0), 7% MGL inclusion (referred to as MGL-7), and 14% 
MGL inclusion (referred to as MGL-14). Fresh MGL was 
collected 6 weeks after sowing. Pennisetum purpureum 
(elephant grass) and concentrate containing palm kernel 
meal, wheat bran, rice bran, soybean meal, molasses, and 
corn cob were used as basal feed. The composition of the 
diet for each experimental group is presented in Table 1. 
The diets were prepared to meet Bali cattle’s needs with 
12% CP and 57% TDN [29].

In this study, samples of MGL and fresh elephant grass 
were dried at 55°C for 3–4 days until a constant weight 
was achieved (with a water content of approximately 
10%–15%). Once dried, the samples were crushed into a 
reasonably acceptable particle size using a Willey mill with 
a screen size of 1 mm. Implementing this process guaran-
teed consistency and enabled precise chemical analysis of 
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the samples. Furthermore, the ground samples were uti-
lized in the in vitro test. The feed chemical constituents, 
consisting of DM, OM, CP, CF, EE, and NFE (as shown in 
Table 1), were determined using the procedures of AOAC 
[30]. The secondary metabolites in the MGL sample were 
determined using the UV-Vis spectroscopy method, as out-
lined by Mabasa et al. [31].

Rumen liquor preparation and in vitro fermentation 

In the experiment, two Bali cattle fitted with rumen fis-
tulae were served as rumen liquor, a source of microbial 
populations and enzymes for in vitro rumen fermentation 
studies. Throughout the adaptation period, which lasted 
for 14 days, the animals were provided with a concentrate 
with a CP content of 13% and a TDN content of 75%. The 
livestock were fed twice daily (morning and afternoon), 
with the amount provided being 3% of their body weight. 
The grass was provided ad libitum to the cattle and given 
unlimited access to water. Fresh rumen fluid was taken 
from the animals in the morning before feeding. The col-
lected liquor was then filtered using four layers of fil-
ter cloth to remove any solid substances. Subsequently, 
the filtered rumen liquor was transferred to a thermally 

insulated container and maintained at 39°C. The container 
was taken to the laboratory for additional analysis within 
15 min.

Therefore, a combination of rumen liquid and buffer 
medium was created at a ratio of 1:2 [32]. All mixing pro-
cedures were performed in anaerobic conditions to main-
tain rumen microbes in good condition according to their 
natural habitat. The feed substrate was weighed at 300 mg 
of DM for each dietary treatment. The weighed substrate 
was then transferred into a 100-ml glass syringe (Fortuna, 
Poulten & Graft GmbH, Germany). The pistons on each 
syringe were lubricated with Vaseline. Each glass syringe 
was supplied with 30 ml of rumen liquor medium while 
ensuring CO2 flushing. A total of 24 glass syringes were 
used in the experiment, with 6 syringes assigned to each of 
the 3 feed types. Additionally, six syringes were designated 
as blanks, containing only rumen fluid. All syringes were 
subjected to incubation at 39°C for 48 h.

Fermentation gases and end-products

The gas measurements, which had been carefully recorded 
at pre-determined checkpoints along a timeline stretch-
ing from the onset of incubation to 2 days beyond its 

Table 1.  Dietary ingredients and chemical composition of experimental diet.

Item
Treatment

Concentrate
Elephant 

grass
MGLs

MGL-0 MGL-7 MGL-14

Ingredients (%)

  Palm kernel meal 2.40 2.40 2.40 - - -

  Wheat bran 6.30 6.30 6.30 - - -

  Rice bran 10.50 10.50 10.50 - - -

  Soybean meal 3.00 3.00 3.00 - - -

  Molasses 1.05 1.05 1.05 - - -

  Corncob 6.75 6.75 6.75 - - -

  Elephant grass 70.00 63.00 56.00 - - -

  MGLs 0.00 7.00 14.00 - - -

Chemical composition 

  DM, % 92.11 91.79 91.48 89.04 93.42 88.93

  % of DM

  OM 87.23 87.03 86.84 88.94 86.50 83.68

  CP 11.40 11.89 12.39 15.28 9.73 16.87

  CF 31.97 30.50 29.04 20.71 36.80 15.83

  EE 1.76 1.83 1.89 2.85 1.30 2.17

  Ash 12.77 12.97 13.16 11.06 13.15 16.32

  NFE 42.10 42.81 43.52 50.10 38.67 48.81

  TDN 56.99 57.75 58.50 65.24 53.46 64.25

MGL-0 = diets supplemented with 0% of the marigold leaves (control); MGL-7 = diets supplemented 
with 7% of the marigold leaves; MGL-14 = diets supplemented with 14% of the marigold leaves.



http://bdvets.org/javar/	 � 785Hanim et al. / J. Adv. Vet. Anim. Res., 10(4): 782–793, December 2023

conclusion—precisely at 0, 1, 2, 4, 6, 8, 10, 12, 24, and 48 
h—were undertaken with scrupulous attention to detail to 
monitor the amounts being generated throughout the vari-
ous phases. At 48 h post-incubation, the rumen fluid from 
each syringe was strained using a glass wool crucible to pre-
pare the samples for further analysis. This filtration helped 
remove any solid particles or debris in the fluid. After that, 
the solution was spun for 15 min at 3,000 g in a centrifuge. 
This centrifugation step separated the liquid phase from any 
remaining sediment or particulate matter, facilitating sub-
sequent analyses or measurements of the clarified rumen 
fluid. The obtained filtrate was subsequently utilized for pH 
analysis through a pH meter (Hanna Model H1-2210). The 
procedures outlined in the works of Azizi et al. [33] to quan-
tify the functions of carboxymethyl cellulase (CMC-ase), 
amylase, and protease were tracked sequentially.

The procedure defined in the study performed by Wang 
et al. [34] was used to analyze volatile fatty acids (VFAs). 
The spectrophotometry method assessed the ammonia-ni-
trogen (NH3–N) and microbial protein contents, while total 
protozoa were enumerated using a Neubauer property 
[35]. After a 48-h incubation period, a 10 ml volume of gas 
was retrieved from the airspace inside the syringe. This 
extraction was carried out using a leakproof syringe to 
ensure accurate sampling. The extracted gas samples were 
then tested using a Shimadzu GC-14B gas chromatograph 
to test for levels of CH4 production [36].

Nutrient digestibility

The nutrient digestibility was determined in two phases, 
each with different incubation periods. The initial stage 
necessitates incubating for 48 h, whereas the subsequent 
phase lengthens the incubation period to 96 h. In the first 
step, the 50 ml test tubes containing 250 mg DM feed 
substrate were prepared for rumen digestibility analysis. 
Then, it was added to McDougall’s artificial saliva solution 
and rumen liquid (4:1, proportion ratio). A 25 ml medium 
solution was utilized to analyze DM and OM digestibility, 
whereas a 50 ml solution was used to assess CP and CF 
digestibility. Some tubes were left empty without feeding 
substrate as blanks. Each tube was purged with CO2 for 
each treatment to maintain anaerobic conditions and then 
incubated at 39°C. Following a 48-h incubation period, 
the liquid and feed substrate were separated using a glass 
wool crucible. The feed substrate obtained was utilized to 
assess the nutrient digestibility of the rumen. During the 
second step of the process, individual vessels holding the 
material under examination were augmented with a com-
bination of 20% hydrochloric acid and 5% pepsin enzyme 
at a ratio of three-part acid to one-part enzyme. Afterward, 
these tubes were further incubated for an additional 48-h. 
Following the second step, the feed substrate underwent 
filtration, and the remaining substrate was subjected to 

analysis to ascertain the total digestibility of DM, OM, CP, 
and CF [37,38].

Statistical analysis

The current research employs an equation model to mea-
sure gas production’s kinetics. This model is commonly 
used for analyzing the patterns and rates of gas production 
in ruminal fermentation experiments [39].

Y = a + b (1 − e−ct)
The parameters used for analysis were defined as fol-

lows: a-fraction, the fraction that dissolves immediately 
(ml); b-fraction, the fraction that is insoluble but can be 
degraded (ml); c-fraction, the rate at which degradation 
occurs (ml/h); a + b fraction, the overall gas production 
potential (ml); t, the length of the incubation period (h); y, 
the quantity of gas generated at a given time “t” (ml). The 
collected data underwent an analysis of variance using SAS 
On Demand for Academics® Software (www.sas.com) for 
statistical analysis. Following that, a comparison of means 
was performed using the Duncan multiple range test at a 
significance level of p < 0.05.

Results 

Secondary metabolites in MGL 

The secondary metabolites of MGL are presented in  
Table 2. The concentrations of various secondary metabo-
lites were calculated in milligrams per gram (mg/gm) based 
on the percentage of DM. The flavonoid content exhibited 
the highest value (167.31 mgQE/gm), followed by total 
phenols (39.69 mgGAE/gm), total tannins (32.50 mgTAE/
gm), and saponins (10.91 mg/gm), respectively. Moreover, 
total tannin consists of condensed tannins (20.58 mgTAE/
gm) and hydrolyzed tannins (11.92 mgTAE/gm), while the 
non-tannin phenolics observed on MGL were 7.20 mgGAE/
gm. Other constituents of MGL were steroid 7412.44 µg/
gm, alkaloid 6963 µg/gm, and ascorbic acid 68.90 µg/gm.

Table 2.  The secondary metabolites of MGLs.

Item Value

Flavonoids (mgQE/gm) 167.31

Total phenolic (mgGAE/gm) 39.69

Total tannin (mgTAE/gm) 32.50

Condensed tannin (mgTAE/gm) 20.58

Hydrolysable tannin (mgTAE/gm) 11.92

Non-tannin phenolic (mgGAE/gm) 7.20

Saponin (mg/gm) 10.91

Steroid (µg/gm) 7,412.44

Alkaloid (µg/gm) 6,963.96

Ascorbic acid (µg/gm) 68.90



http://bdvets.org/javar/	 � 786Hanim et al. / J. Adv. Vet. Anim. Res., 10(4): 782–793, December 2023

Ruminal enzyme activities

As indicated in Table 3, the ruminal CMC-ase, amylase, and 
protease activity were not influenced by MGL-7 and MGL-
14 treatment in comparison to MGL-0 (p > 0.05).

Cumulative gas production, kinetics, and methane 
production

Dietary supplementation with MGL did not modify (p > 
0.05) the cumulative gas production (Table 4). In addi-
tion, the kinetic parameters, such as the a, b, a + b, and 
c fractions, did not show any significant variations (p > 
0.05) across the dietary groups (Table 4). Moreover, when 
evaluated in milliliters or milliliters per unit of digested 
DM or OM, there were no differences (p > 0.05) in rumi-
nal CH4 and CO2 production across the dietary treatments 
(Table 4).

Rumen fermentation parameters

The utilization of MGL in the rations significantly affected 
(p < 0.05) the ruminal fermentation parameters, as shown 
in Table 5. The microbial protein content significantly 
improved (p < 0.05) with 7% and 14% MGL added to the 
rations instead of the MGL-0 treatment; meanwhile, a sig-
nificant increase in NH3–N levels (p < 0.05) was observed 
in the 14% MGL group. Additionally, the MGL-7 treatment 
decreased (p < 0.05) the total protozoa and MGL-14 groups 
relative to the MGL-0. Among the dietary treatments, the 
MGL-14 group exhibited the highest total VFA, as well as 
molar proportions of C2, C3, C4, and the C2:C3 ratio. However, 
the ruminal pH value was not influenced (p > 0.05) by the 
MGL levels.

Nutrient digestibility

DM, OM, and CF digestibility in the rumen revealed a sig-
nificant improvement (p < 0.05) for the inclusion of MGL-
14 and MGL-7 compared to MGL-0 (Fig. 1). Including both 
7% and 14% MGL significantly declined (p < 0.05) the 
CP digestibility in the rumen compared to MGL-0. The 

total DM and OM digestibility were greater (p < 0.05) in 
the MGL-14 and MGL-7 groups than in the control group. 
Nevertheless, the utilization of MGL in the diets had no sig-
nificant impact (p > 0.05) on total CF and CP digestibility, 
as depicted in Figure 2.

Discussion 

Secondary metabolites in MGL 

Leaves from various tree species have been identified as 
valuable feed sources for ruminant animals throughout 
the year, offering higher levels of essential nutrients and 
bioactive compounds than grasses [40]. While bioactive 
substances from plants may contain antinutritional quali-
ties, their properties could also modulate ruminal fermen-
tation procedures in a regulatory manner. Consequently, 
extensive studies have used bioactive compounds as nat-
ural feed supplements to exploit rumen fermentation pro-
cesses. Specifically, the impacts of flavonoids and tannin 
as dietary supplements in animal diets, particularly for 
ruminant species, have gained increasing attention and 
investigation [41].

Specific secondary metabolites within MGL, includ-
ing flavonoids, phenolics, tannins, and saponins, may 
enhance the digestibility of nutrients due to their possible 
effects. These compounds can serve as energy sources for 
rumen microbes without adversely affecting the fermen-
tation processes in the rumen. Moreover, they possess 
protozoan defecation effects, which aid in reducing CH4 

Table 3.  Ruminal enzyme activities as affected by the MGLs inclu-
sion in the diet.

Item Treatment SEM p-value

MGL-0 MGL-7 MGL-14

CMC-ase (U/gm) 5.60 6.09 5.48 0.148 0.212

Amylase (U/gm) 16.58 15.77 14.18 0.809 0.514

Protease (U/gm) 27.47 28.79 29.23 0.592 0.495

CMC-ase = carboxymethyl cellulase; MGL-0 = diets supplemented with 
0% of the marigold leaves (control); MGL-7 = diets supplemented with 
7% of the marigold leaves; MGL-14 = diets supplemented with 14% of the 
marigold leaves; SEM = standard error of the mean.

Table 4.  Rumen fermentation parameters as affected by the MGLs 
inclusion in the diet.

Item
Treatment

SEM p-value
MGL-0 MGL-7 MGL-14

pH 6.50 6.53 6.56 0.021 0.567

NH3–N (mg/100 ml) 37.85a 42.31ab 46.30b 1.582 0.038

Microbial protein (mg/ml) 22.03a 31.71b 37.20c 1.595 0.001

Protozoa (105 cells/ml) 1.38a 1.18b 0.90c 0.062 0.001

Total VFA (mM) 35.83a 45.56b 63.27c 3.003 0.001

C2 (mM) 18.26a 21.17a 34.88b 1.913 0.001

C3 (mM) 12.43a 15.84b 21.54c 0.274 0.001

C4 (mM) 5.36a 6.58b 7.68c 1.032 0.001

C2:C3 1.47a 1.54a 1.74b 0.678 0.001

a–cMeans with different superscript within the same column are statistically 
significant differences (p < 0.05).

NH3–N = ammonia-nitrogen; VFA = volatile fatty acids; C2 = acetate; C3 = 
propionate; C4 = butyrate; MGL-0 = diets supplemented with 0% of the 
marigold leaves (control); MGL-7 = diets supplemented with 7% of the 
marigold leaves; MGL-14 = diets supplemented with 14% of the marigold 
leaves; SEM = standard error of the mean.
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production and increasing C2 production. These effects con-
tribute to improved ruminant carbohydrate digestion [42]. 
Furthermore, secondary metabolites could potentially 
alter the cellulolytic and NH3–N-producing bacteria in the 
rumen. They can influence the composition and activity of 
these microbial populations, thereby affecting the break-
ing of cellulose and protein digestion. Furthermore, these 
metabolites could curb the gas production essential for the 
process of methanogenesis, thereby potentially resulting 
in lowered CH4 emissions from ruminant livestock [43].

Ruminal enzyme activities

The inclusion of MGL at various levels did not influence 
the ruminal enzyme activities of CMC-ase, protease, and 
amylase. Because the lower concentrations of tannins and 
saponins within MGL lacked detrimental impacts on rumi-
nal enzyme functions, these results possess a potential 

rationale. According to Jadhav et al. [44], low levels of sec-
ondary metabolites in feed had no harmful consequences 
for rumen enzyme activity. While their antimicrobial capa-
bilities could, at relatively elevated levels, induce a dimi-
nution of enzymatic function, Abdel-Raheem and Hassan 
[45] likewise determined that supplementing the diet of 
buffalo calves with 15% or 20% Moringa oleifera leaves, 
which themselves contain comparable phytochemicals 
such as flavonoids, phenolics, tannins, and saponin, served 
to decrease the enzymatic activities within the rumen of 
cellulase, protease, and amylase. In addition, the variations 
in substrates and bioactive components in different plant 
species can contribute to differences in research results.

Rumen fermentation parameters

No effect of MGL supplementation on the ruminal pH 
was observed. The pH values observed for the treatment 
groups in the rumen, ranging from 6.50 to 6.56, were con-
sistent with the normal range of 6.3–7, typically reported 
in similar studies by Reis et al. [46]. The NH3–N was higher 
when supplemented with MGL at 14% DM when compared 
with the control. Likewise, the research undertaken by 
Jafari et al. [47] had comparable findings; it was noticed 
that NH3–N levels were highest in the 31.25 mg/250 mg 
DM supplementation group when added with papaya leaf 
containing phenolics (30.31 GAE/gm). The higher concen-
trations of NH3–N demonstrated in the MGL groups could 
be attributable to the activity of hyper-ammonia-produc-
ing bacteria, which contribute to higher amino acid deam-
ination. It is implied from this that the existence of MGL 
could potentially incite microbes that specialize in gen-
erating more ammonia as an unintended result of amino 
acid processing [48]. The NH3–N is utilized for microbial 
protein synthesis. Previous studies, such as McDonald et 
al. [49], have illustrated that the concentration of NH3–N 
in ruminal fluid typically ranges from 8.5 to 30 mg/100 ml. 
However, it is worth noting that excess NH3–N exceeding 
50 mg NH3–N/l does not significantly impact microbial 
protein synthesis and is ultimately excreted, as indicated 
by Neto et al. [50].

The increase in MGL dose is linear with increasing micro-
bial protein concentrations. In contrast with the control 
group, the microbial proteins were augmented to a substan-
tially greater extent within the MGL-7 and MGL-14 groups, 
with respective increases of 43.87% and 68.83% from the 
baseline measure. This can be expected because using MGL-
containing flavonoids could affect the rumen microbial pop-
ulation, which can affect the microbial protein produced. At 
the same time, flavonoids are understood to have the ability 
to govern the makeup of microbes residing in the rumen, 
potentially bringing about shifts in nutrient breakdown 
metabolism [51]. This could also be linked to a reduction 
in the protozoan population when MGL was included in the 

Table 5.  Cumulative gas, kinetics, and methane (CH4) production as 
affected by the MGLs inclusion in the diet.

Item
Treatment

SEM p-value
MGL-0 MGL-7 MGL-14

Cumulative gas (48 h) 
ml/300 mg DM

61.17 62.68 63.38 0.51 0.198

Gas kinetics

 � a-fraction (ml/300 
mg DM)

−5.60 −5.44 −5.71 0.19 0.862

 � b-fraction (ml/300 
mg DM)

75.57 74.99 72.35 0.72 0.160

 � a + b-fraction 
(ml/300 mg DM)

79.76 78.10 77.36 0.84 0.566

  c-fraction (ml/h) 0.048 0.051 0.052 0.00 0.398

CH4 Production

  CH4 (ml/300 mg DM) 6.187 6.27 6.10 0.084 0.699

 � CH4 [ml/digested DM 
(mg)]

0.04 0.04 0.05 0.002 0.651

 � CH4 [ml/digested OM 
(mg)]

0.04 0.05 0.05 0.002 0.060

  CO2 (ml/300 mg DM) 39.77 41.82 42.56 0.774 0.345

 � CO2 [ml/digested DM 
(mg)]

0.26 0.26 0.29 0.006 0.346

 � CO2 [ml/digested OM 
(mg)]

0.26a 0.34b 0.35b 0.010 0.001

a–bMeans with different superscript within the same column are statistically 
significant differences (p < 0.05).

a-fraction = the fraction that dissolves immediately; b-fraction = the 
fraction that is insoluble but can be degraded; c-fraction = the rate at which 
degradation occurs e; a + b-fraction = the overall gas production potential; 
MGL-0 = diets supplemented with 0% of the marigold leaves (control); 
MGL-7 = diets supplemented with 7% of the marigold leaves; MGL-14 = 
diets supplemented with 14% of the marigold leaves; SEM = standard error 
of the mean.
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Figure 1. Ruminal digestibility as affected with the MGL inclusion in the diet (%). (A) DM digestibility; (B) OM digest-
ibility; (C) CP digestibility; and (D) CF digestibility.

Figure 2. Total digestibility as affected with the MGL inclusion in the diet (%). (A) DM digestibility; (B) OM digestibil-
ity; (C) CP digestibility; and (D) CF digestibility.
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ration. Morsy et al. [52] hypothesize that the decrease in total 
rumen protozoa counts seen in diets containing secondary 
plant compounds may help to explain the higher rumen 
bacterial counts. When protozoan populations decline, the 
rumen environment becomes more conducive to the growth 
and proliferation of bacteria. Protozoa are known to prey 
on bacteria; reducing their numbers increases nutrition 
availability while lessening predation pressure on bacteria. 
As a result, the rumen’s microbial population might grow, 
increasing the amount of rumen bacteria. According to 
Patra and Saxena [53], secondary metabolites, particularly 
saponins, substantially affect the rumen by inhibiting proto-
zoa. This inhibition could promote the synthesis process of 
microbial proteins and facilitate the transportation of pro-
teins to the duodenum. It is essential to consider that pro-
tein fermentation in the rumen generates NH3–N as the end 
product, which plays a vital role in synthesizing microbial 
protein within the rumen.

The study examined how the chemical makeup of fla-
vonoids might be connected to their biological effects 
on different types of cells, shedding light on a potential 
correlation between flavonoid composition and cellular 
impact [54]. Researchers discovered through their inves-
tigation the antimalarial abilities of flavonoids and pre-
cisely determined distinct biochemical objectives inside 
the Plasmodium falciparum parasite. Additionally, the 
catechins were found to interact with specific molecular 
targets, such as enzymes connected to the biosynthesis 
of fatty acids. Another study by Kim et al. [55] reported 
that flavonoids reduced ciliate protozoan populations by 
over 60%. Ciliate protozoa have a significant role in meth-
anogenesis, where methanogenesis can live symbiotically 
attached to the protozoa’s surface. Therefore, flavonoids in 
the diets decreased ciliate-associated methanogens, ulti-
mately reducing CH4 emissions.

The supplementation of MGL at 14% DM increased 
the total VFA, C2, C3, and C4. These findings contrast with 
those of Bryszak et al. [56], who showed that giving dairy 
cows 2 kg/day of flavonoids- and tannin-rich black currant 
seed residues did not change their VFA profiles. While the 
effect of flavonoid supplementation on VFA formation may 
vary depending on the flavonoid constituent utilized, the 
findings suggested this impact relied on the specific com-
ponent employed in the supplementation. Berchez et al. 
[57] reported contrasting findings, suggesting increased 
specific VFA concentrations. This phenomenon can be 
explained by the capability of rumen microbes to adjust 
to phenolic properties and flavonoids over time, which 
may result in the conversion of highly toxic phenolic acids 
into less harmful forms through hydrogenation. While the 
adaptation of microbes may add to the antimicrobial qual-
ities of flavonoid mixtures due to their chemical makeup, 
the precise means rely on their inherent constitution [58]. 

Including MGL in rations has increased total VFA, C2, and 
C3, indicating improved ruminal fermentation and feed 
digestion. This observation is corroborated by the results 
of Kholif and Olafadehan [59], indicating that secondary 
metabolites in plants can enhance the proportion of C3 
and, in some cases, C2 due to an enhanced breakdown of 
both complex and simple sugars during the digestive pro-
cess. This suggests that the secondary metabolites in MGL 
can positively influence rumen fermentation and promote 
more efficient utilization of carbohydrates in ruminants.

The reduction in rumen protozoa counts seen with 
MGL inclusion in the diet could be attributed to secondary 
metabolites in MGL. Other secondary metabolites found 
in plants, such as saponins, have been proven to eliminate 
rumen protozoa. Tannins, in particular, have long been rec-
ognized for their potent defaunation effects or the ability 
to diminish or eliminate rumen protozoan populations. 
Although the precise mechanism by which tannins create 
these effects is unknown, further research is required [60].

Cumulative gas production, kinetics, and methane emission

The incorporation of MGL in the rations did not influence 
the cumulative gas production or kinetic profiles. The 
lack of a substantial change in cumulative gas production 
when MGL-containing flavonoid levels increased suggests 
that MGL has a minimal impact on the rumen fermenta-
tion rate. This implies that including MGL in the diet does 
not adversely affect ruminal fermentation. Oskoueian et al. 
[61] exhibited that some flavonoid types (naringin, rutin, 
and quercetin) increased gas production, while flavones 
and myricetin decreased in vitro cumulative gas. While the 
influence of flavonoids on gas production fluctuated, these 
divergences seemed explicable by considering the particu-
lar substrate selected for use during the fermentation pro-
cedure. Different substrates may interact differently with 
flavonoids, resulting in diverse effects on gas production 
and fermentation parameters. Thus, substrate selection 
plays a vital role in defining the specific impact of flavo-
noids on rumen metabolism. Flavonoids’ effect on fermen-
tation is also influenced by dosage, type of phytofactors, 
molecular weights, and the specific substrate employed. 
Based on the present findings, using MGL-containing fla-
vonoids rather than pure flavonoids alone has a noticeable 
impact on cumulative gas production and kinetics.

In this research, the utilization of MGL in diets led to a 
decline in the protozoan population. Unfortunately, the out-
come did not lead to a diminishing of the CH4 quantity as 
one might have expected. The results Goel et al. [62] found 
were consistent with what was obtained. Incorporating 
Sesbania sesban leaves and Fenugreek seeds, which contain 
secondary metabolites, into the sheep’s diet reduced the 
total protozoa count within the rumen. However, this sup-
plementation demonstrated no discernible effect on CH4 
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production. According to Patra et al. [63], the correlation 
between protozoa and methanogenesis is intricate and can 
be affected by some variables. One factor in this difference 
is the contrasting generation times between single-celled 
protozoa and their methanogen counterparts. Changes 
in methanogenic population composition may play a role 
in these dynamic interactions. Although the interaction 
between protozoa and methanogen is complicated and war-
rants further investigation, these considerations indicate 
that their interactions could be more complex. Although 
Goel and Makkar [64] explained that protozoa reduction 
trials did not always result in lower CH4 emissions, more 
research is required to properly comprehend the complex 
interactions between different microbial species. This can 
be caused by species-independent methanogenic bacteria 
that can survive or modify the efficiency of CH4 synthesis. A 
decline in the protozoa population could change the micro-
bial community structure within the rumen. Specifically, any 
reduction in the Methanobacteriaceae species commonly 
associated with protozoa could be offset by a rise in free-liv-
ing Methanobacteriales. Consequently, this shift in the com-
position of the microbial community can facilitate higher 
levels of interspecies hydrogen transfer. The increased 
population of free-living Methanobacteriales may interact 
more intensively with hydrogen-producing bacteria, such 
as Ruminococcus flavefaciens and Fibrobacter succinogenes. 
However, despite these changes, the overall effect on CH4 
production may be negligible or insignificant.

Nutrient digestibility

The inclusion of MGL in diets significantly impacted nutrient 
digestibility. Feeding MGL increased the rumen’s digestibil-
ity of DM, OM, and CF. However, the ruminal CP digestibil-
ity declined when MGL was included in the rations. This 
impact can be attributed to the rumen microflora’s capacity 
to metabolize the secondary metabolites present in MGL, 
including flavonoids, phenolics, tannins, and saponins, as 
sources of energy without causing any detrimental effects 
on the ruminal fermentation process [65].

As mentioned earlier, secondary metabolite properties 
in MGL can stimulate the growth and activities of ruminal 
fibrolytic microbes. This stimulation leads to a faster degra-
dation rate and a greater extent of substrates in the rumen 
[66]. Moringa oleifera leaves, which contain similar phyto-
chemicals (i.e., flavonoids, phenolics, tannin, and saponin), 
improved the DM, OM, and fiber digestibility [67]. Emblica 
officinalis fruit pomace, with its phenolic compounds (224 
gm/kg DM), exhibited increased OM and neutral detergent 
fiber digestibility with a 10 gm/kg dosage. The analysis of 
MGL for tannins and saponins demonstrated concentra-
tions of 32.50 mgTAE/gm and 10.91 mg/gm, respectively. 
These concentrations were below the critical levels that 
could hinder ruminal fermentation and feed digestibility. 

This suggests that the levels of tannins and saponins in 
MGL are within a safe range and unlikely to have detri-
mental effects on ruminal processes and feed nutrient con-
tent utilization. The decline in CP digestibility in phenolic 
compounds and tannins found in MGL may be ascribed to 
their ability to bind with proteins, thereby reducing their 
degradation by ruminal microbes. Tannins and phenolic 
compounds have been known to interact with proteins, 
resulting in complex forms, making them less accessible to 
microbial enzymes and hindering their breakdown. This 
can result in a decrease in CP digestibility in the rumen [68].

The weakness in this research, which suggests fur-
ther research, is the need for specific detection of rumen 
microbes (microbiome), especially microorganisms 
involved in forming CH4 gas in the rumen. In addition, it is 
necessary to conduct further research using in vivo meth-
ods in livestock to validate the optimal level of MGL usage.

Conclusion

The present study suggests that using MGL until 14% DM 
in diets can enhance ruminal fermentation parameters 
and nutrient digestibility in vitro without negatively affect-
ing gas production kinetics or ruminal enzyme activities. 
Furthermore, CH4 production was not influenced by MGL 
supplementation. Nevertheless, additional research is 
required to explore the utilization of MGL in live animal trials.
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