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ABSTRACT

Objective: Orangutans (Pongo abelii), as endemic primates of Indonesia, are characterized by a 
predominantly arboreal lifestyle. Klebsiella pneumoniae (K. pneumonia) and other Gram-negative 
bacteria are present in the Indigenous flora of many mammals, including orangutans. This study 
aimed to investigate the antibiotic resistance and virulence profile of K. pneumonia isolated from 
wild Sumatran orangutans.
Materials and Methods: This study investigated 10 fecal samples from wild Sumatran orangutans 
from the Gunung Leuser National Park, Aceh, Indonesia. Biochemical and molecular identification 
of K. pneumoniae using the RNA polymerase subunit b gene and detection of virulence-associated 
genes. In addition, molecular detection of antibiotic resistance genes was performed to character-
ize the resistance mechanisms in the isolates.
Results: K. pneumonia was detected in 6 out of 10 fecal samples from wild Sumatran orangutans. 
The virulence genes mrkD and entB were detected in all (100%) of the isolates, whereas wabG 
was identified in 83.33% of the strains. Antibiotic susceptibility testing against K. pneumoniae 
revealed that three isolates were susceptible to streptomycin (S) and nalidixic acid (NA), while 
all six isolates were susceptible to chloramphenicol and ciprofloxacin. One isolate demonstrated 
intermediate resistance to NA, while the remaining two exhibited intermediate resistance to S. 
Six isolates were resistant to ampicillin, tetracycline, and erythromycin, indicating multidrug resis-
tance. Furthermore, antibiotic resistance genes were detected in the isolates with the following 
prevalence: blaTEM gene (six isolates; 100%), blaSHV (six isolates; 100%), blaCTX-M gene (four isolates; 
66.67%), and tetA gene (four isolates; 66.67%).
Conclusion: This study revealed the virulence and resistance profile of K. pneumoniae bacterium 
isolated from wild Sumatran orangutans, which is essential for formulating effective conservation 
and healthcare strategies.
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Introduction

Orangutans are members of the family Hominidae, which 
includes the giant apes and primates (Pongo spp.). They 
are one of the few extant giant ape species in Southeast 
Asia [1–3]. Orangutans have long limbs and reddish or 
brown hair. Only three species of orangutans are known 
to occur in Indonesia: Pongo pygmaeus (P. pygmaeus) on 

the island of Borneo, Pongo abelii, and Pongo tapanulien-
sis (P. tapanuliensis) on the island of Sumatra [4–6]. The 
International Union for the Conservation of Nature has 
listed all three orangutan species as critically endangered 
due to population declines [7,8]. Orangutans are predom-
inantly arboreal, living in and around trees. In general, 
Sumatran orangutans generally engage in social, feeding, 
and resting daily activities. Sumatran orangutans relax 
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by sleeping at night and taking midday naps between 
activities. Sumatran orangutans typically build their shel-
ters in trees. Orangutans live in semi-solitary communi-
ties. Social behaviors commonly observed in orangutans 
include mother-child interactions and juvenile orangutans 
engaged in play [9]. Sumatran orangutans primarily feed 
during the morning and afternoon, engaging in foraging 
behavior. Orangutans sample and smell their food before 
consuming it, discarding items that are unpalatable and 
searching for alternative sources. Although primarily fru-
givorous, their diet also includes bark, seeds, leaves, vines, 
flowers, and bark. In addition, orangutans often consume 
insects for protein [10,11].

The presence of gram-negative bacteria, such as 
Klebsiella pneumoniae (K. pneumoniae), in the normal 
flora of several mammals [12–14] underscores the possi-
bility of cross-species transmission of infectious agents. 
Understanding the dynamics of bacterial transmission and 
antibiotic resistance in wildlife populations is critical, as 
evidenced by the impact of K. pneumoniae infections on 
immunocompromised and apparently healthy orangutans. 
Several virulence factors of K. pneumoniae enable this bac-
terium to evade the host’s innate immune mechanisms. 
Capsules, exopolysaccharides associated with mucoviscos-
ity, lipopolysaccharides, adhesins, and iron uptake systems 
are virulence factors of K. pneumoniae [15–17]. Infection 
caused by K. pneumoniae is exacerbated by its ability to 
cause nosocomial infections and its resistance to multiple 
antibiotics [18,19]. The emergence of antibiotic resistance 
in K. pneumoniae is a global concern [20–22], and the resis-
tance of this bacterium in orangutan populations suggests 
the need for careful monitoring of environmental contami-
nation and potential sources of antibiotic exposure.

This study aimed to enlighten the antibiotic resistance 
and virulence profile of K. pneumoniae isolated from wild 
Sumatran orangutans. This research has significant impli-
cations for the conservation of endangered species, includ-
ing orangutans. We can strengthen conservation efforts to 
better address environmental challenges by identifying 
K. pneumoniae and its antibiotic resistance profile. This, 
in turn, will facilitate the implementation of strategies 
that effectively prevent the spread of antibiotic resistance 
in wildlife populations. As such, this study serves as an 
important scientific resource and makes a valuable contri-
bution to both animal conservation and the preservation 
of natural habitats in Indonesia.

Materials and Methods

Ethical approval

This study received approval and a written letter of rec-
ommendation from the Ministry of Environment and 
Forestry Directorate General of Natural Resources and 

Ecosystem Conservation (Kementerian Linkugnan Hidup 
dan Kehutanan, Direktorat Jenderal Konservasi Sumber 
Daya Alam dan Ekosistem) Number SK 433/KSDAE/SET.3/
KSA.2/8/2021.

Sample collection

Ten fecal samples were collected from adult Sumatran 
orangutans (Pongo abelii) living in Gunung Leuser National 
Park, Southeast Aceh Regency, Indonesia. The samples 
were collected from wild orangutans between 11 and 
15 years old. No treatments were administered to these 
orangutans. Gunung Leuser National Park is located at 
903°02’50.5” north latitude and 097°25’02.0” east longi-
tude and covers an area of 281,574.62 hectares. Regarding 
topography, the regions range from coastal areas (above 0 
meters above sea level [MASL]) to alpine areas (up to 3,000 
MASL). About 80% of the topography has a more than 40% 
slope. In this jungle environment, orangutans thrive with-
out human intervention for health management, nutrition, 
vaccination, or deworming. Their diet consists of fruit 
harvested and eaten directly from the trees. They live in 
nesting trees between 15 and 40 m high. The feces of the 
orangutans that fell from the trees were collected. To avoid 
environmental contamination, only the central part of the 
feces of recently defecated orangutans was collected. The 
samples were placed in plastic bags and transported in 
a cool box to the laboratory, where the temperature was 
kept between 2°C and 10°C [9].

Biochemical methods for identification

Samples were cultured on MacConkey agar (MAC) differen-
tial selective medium CM0007 (Oxoid, UK) for 24 h at 37°C. 
Colonies of K. pneumoniae can be identified macroscopi-
cally by observing mucoid formation and the ability of the 
bacteria to ferment lactose. Single colonies were then sub-
cultured on tryptic soy agar (TSA) CM0131 (Oxoid, UK) for 
purification. Bacterial colonies from the TSA culture were 
picked, placed on a glass plate, and stained with Gram’s 
stain for microscopic identification. The 3% potassium 
hydroxide test was also performed to confirm that the bac-
teria were Gram-negative. The oxidase test was then car-
ried out by dropping some oxidase reagents. In addition, 
indole, methyl red, voges-proskauer, and Simmon citrate 
(indole MB0209, methyl red-Voges-Proskauer CM1092, 
and Simmon citrate CM0155B), triple sugar iron agar 
(TSIA) CM0277B, Christensen’s urea agar CM0053, and 
carbohydrate fermentation tests (Oxoid, UK) were per-
formed for biochemical characterization. K. pneumoniae 
is positive for the methyl red test, Simmon’s citrate test, 
urease test, gas and sugar fermentation tests on TSIA, and 
the glucose, lactose, sucrose, maltose, dulcitol, and manni-
tol fermentation tests, but negative for the indole, Voges 
Proskauer, and hydrogen sulfide (H2S) tests [23].
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DNA extraction and molecular characterization

DNA extraction was performed using the Geneaid Presto™ 
Mini gDNA Bacteria Kit (Geneaid Biotech Ltd., New Taipei 
City, Taiwan) according to the manufacturer’s instructions. 
Identification of putative K. pneumoniae isolates based on 
biochemical characterization was confirmed by the detec-
tion of the RNA polymerase subunit b (rpoB) gene using 
polymerase chain reaction (PCR). The following primers 
were used to detect the rpoB gene: forward primer 5’-AAC 
CAG TTC CGC GTT GGC CTG A-3’ and reverse primer 5’-CCT 
GAA CAA CAC GCT CGG A-3’. The amplicon size was 1090 
bp [24,25].

The PCR mix (25 μl/reaction) was composed as follows: 
3 µl DNA template, 2 µl forward primers (10 M), 2 µl reverse 
primers (10 M), 12.5 µl of MytaqTM HS Red Mix (Bioline, 
UK), and 5.5 µl ddH2O. The PCR was carried out using a 
GeneAmp® PCR System 9700 thermal cycler (Applied 
BiosystemsTM, USA) with the following conditions: 4 min 
at 94°C (predenaturation), 30 sec of denaturation at 94°C, 
1 min of annealing at 54°C, and 4 min of extension at 78°C, 
for 30 cycles. The final extension was carried out at 72°C 
for 5 min [24]. PCR results were detected by 1% agarose 
gel electrophoresis (Thermo Fisher Scientific USA).

Detection of virulence-associated genes of K. pneumoniae

Virulence-associated genes of K. pneumoniae were iden-
tified using PCR. Primer sequences used to amplify frag-
ments of the targeted virulence factor genes rmpA, magA, 
mrkD, and entB are shown in Table 1. The amplification 
conditions were as follows: initial denaturation at 94°C for 
4 min, followed by 30 cycles of denaturation at 94°C for 
30 sec, annealing at 54°C–59°C for 30 sec, and extension 
at 72°C for 1 min. A final extension was performed at 72°C 
for 10 min.

Antibiotic susceptibility testing

The antibiotic susceptibility test was conducted using the 
Kirby-Bauer disc diffusion method. The turbidity level 
was compared to McFarland standards of 0.5 or 1.5 108 
colony forming unit/ml. Suspensions were pipetted using 
a micropipette and dropped onto Mueller-Hinton agar 
(Oxoid, UK). Antibiotic discs of ampicillin (AMP; 10 μg), 
chloramphenicol (C; 30 μg), ciprofloxacin (CIP; 5 μg), nali-
dixic acid (NA; 30 μg), tetracycline (TET; 30 μg), erythro-
mycin (E; 15 μg), and streptomycin (S; 10 μg) were used. 
The isolates were then incubated at 37°C for 18 h. Bacterial 
susceptibility was determined by measuring the size of the 
zone of inhibition and interpreting the results according 

Table 1.  Primers to detect rpoB, virulence-associated genes, and antimicrobial resistance genes.

Gene target
Nucleotide sequence
(5’-3’)

Amplicon (bp) Reference

rpoB F: 5'-ACCAGTTCCGCGTTGGCCTGG-3'
R: 5'-CCTGAACAACACGCTCGGA-3'

1090 [25]

magA F: 5'-GGTGCTCTTTACATCATTGC-3'
R: 5'-GCAATGGCCATTTGCGTTAG-3'

1.283 [26]

rmpA F:  5'-ACTGGGCTACCTCTGCTTCA-3'
R: 5'-CTTGCATGAGCCATCTTTCA-3'

535 [26]

mrkD F: 5'-CCACCAACTATTCCCTCGAA-3'
R: 5'-ATGGAACCCACATCGACATT-3'

240 [26]

entB F: 5'-ATTTCCTCAACTTCTGGGGC-3'
R: 5'-AGCATCGGTGGCGGTGGTCA-3'

371 [26]

wabG F: 5'-CGGACTGGCAGATCCATATC-3'
R: 5'-ACCATCGGCCATTTGATAGA-3'

683 [27]

blaTEM F: 5'-ATTTCCGTGTCGCCCTTAT-3'
R: 5'-CTACGATACGGGAGGGCTTA-3'

516 [28]

blaSHV F: 5'-CCTGTTAGCCACCCTGCC-3'
R: 5'-CCGCAGATAAATCACCAC-3'

768 [28]

blaCTX-M F: 5'-ATGATGAAAAAATCGTTATGC-3'
R: 5'-CAGCATCTCCCAGCCTAAT-3'

866 [28]

tetA F: 5'-GTA ATT CTG AGC ACT GTC GC-3'
R: 5'-CTG CCT GGA CAA CAT TGC TT-3'

965 [28]

qnrS F: 5'-ACG ACA TTC GTC AAC TGC AA-3'
R: 5'-TAA ATT GGC ACC CTG TAG GC-3'

417 [29]

ermB F: 5'-GAAAAGGTACTCAACCAAATA-3'
R: 5'- GTAACGGTACTTAAATTGTTTAC-3'

639 [30]
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to the Clinical and Laboratory Standards Institute’s 2023 
guidelines [31].

Detection of antibiotic resistance genes

Detection of the resistance genes blaSHV, blaTEM, and blaCTXM 
(AMP); tetA (TET); qnrS (NA and CIP); ermB (E); and aac 
(3)-IV (S) was performed only in K. pneumoniae isolates 
that showed phenotypic intermediate susceptibility and 
resistance. Antibiotic resistance genes were identified by 
PCR using the primers listed in Table 1.

Results

Bacterial isolation and identification

Six out of ten fecal samples (60%) from wild orangutans in 
Gunung Leuser National Park were positive for Klebsiella 
sp. Based on colony morphology and biochemical tests, 
we identified these isolates as Klebsiella spp. On MAC, 
the Klebsiella colonies appeared convex, mucoid, and fer-
mented lactose, as indicated by a pink coloration (Fig. 1). 
The TSIA test characterized Klebsiella spp. as producing 
acid at the base and slope and did not produce gas or H2S. 
Positive results in the methyl red test, Simmons citrate 
test, and urease test were observed. The fermentation of 
glucose, sucrose, lactose, maltose, dulcitol, and mannitol 
occurs during the carbohydrate test. The resulting bacteria 
are indole and Voges-Proskauer negative and nonmotile.

Putative K. pneumoniae isolates, identified through 
biochemical characterization, were further confirmed by 
detecting the rpoB gene, which encodes the RNA poly-
merase subunit β. All isolates displayed a positive result 
for the rpoB gene. Positive isolates exhibited a band of 
1090 bp, consistent with the results of the molecular iden-
tification (Fig. 2).

Virulence-associated genes of K. pneumoniae

This study investigated five virulence-associated genes, 
namely rmpA, magA, mrkD, entB, and wabG. All isolates 
detected the mrkD and entB genes, while five isolates 
(83.33%) detected the wabG gene. None of the isolates 
had the rmpA or magA genes detected. Figures 3 and 4 and 
Table 2 present these results.

Antibiotic resistance genes of K. pneumoniae

The results of antibiotic susceptibility testing of K. pneu-
moniae isolates showed that all six isolates were suscepti-
ble to C and CIP, while three isolates were susceptible to S 
and NA. Two isolates showed intermediate susceptibility 
to S, and one isolate showed intermediate susceptibility to 
NA. All isolates were resistant to AMP, TET, and E; two iso-
lates were resistant to NA, and one isolate was resistant to 
S (Table 3).

All isolates in this study exhibited resistance to three 
or more classes of antibiotics, a characteristic commonly 
defined as multidrug resistance (MDR). MDR is the resis-
tance of bacteria to three or more groups of antibiotics 
[32]. In this study, all isolates were MDR. Table 3 shows 
that there were four isolates: OU-1, OU-3. OU-5 and OU-7 
were resistant to three types of antibiotics, one isolate 
(OU-9) was resistant to four antibiotics, while another iso-
late (OU-10) was resistant to five types of antibiotics.

Phenotypically resistant K. pneumoniae isolates were 
subsequently tested for resistance genes. The following 
resistance genes were detected: blaTEM (6 isolates; 100%), 
blaSHV (6 isolates; 100%), blaCTX-M gene (4 isolates; 66.67%), 
tetA gene (4 isolates; 66.67%), qnrS gene (0 isolates; 0%), 
ermB gene (0 isolates; 0%), and aac(3)-IV (0 isolates; 0%). 
The results are shown in Figures 5 and 6 and Table 4.

Discussion

K. pneumoniae has been identified in the gastrointestinal 
tract of a wide range of animal species, including orang-
utans [33,34]. K. pneumoniae, a common gut microbiota 
member, has the potential to become pathogenic and 
cause infections, especially in immunocompromised indi-
viduals [35,36]. Although data on K. pneumoniae infec-
tions in Sumatran orangutans are limited, it is crucial to 
highlight that infectious diseases, including those caused 
by K. pneumoniae, pose significant threats to the survival 

Figure 1. Isolation of Klebsiella bacteria from wild Sumatran 
orangutan samples. The morphology of Klebsiella genus colonies 
on MCA are convex, pink, and mucoid.
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Figure 2. Amplification of the rpoB gene (1090 bp) isolates K. pneumoniae from wild 
Sumatran orangutans. M: 100 bp DNA marker; 2. ATCC: Positive control, 2–7: Positive isolates 
of K. pneumoniae.

Table 2.  Virulence factors profile of K. pneumoniae isolated from wild Sumatran orangutans.

Isolate rmpA magA mrkD entB wabG

OU-1 − − + + +

OU-3 − − + + -

OU-5 − − + + +

OU-7 − − + + +

OU-9 − − + + +

OU-10 − − + + +

Description: (+) = positive result, (−) = negative result for the gene which being tested.

Figure 3. Amplification of the virulence factor K. Pneumoniae from wild Sumatran orangutans. 
(A) mrkD gene (240 bp); (B) entB gene (370 bp). M: 100 bp DNA marker; 1–6: Positive isolates.

Figure 4. Amplification of the virulence factors of K. Pneumoniae from wild Sumatran 
orangutans. (A) rmpA gene (535 bp) and magA gene (1.283 bp). M: 100 bp DNA marker 1–6: 
Negative isolates; (B) wabG gene (683 bp). 1–6: Positive isolates.
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and well-being of these endangered animals. K. pneumo-
niae infections can potentially cause various diseases in 
orangutans, including pneumonia, bacteremia, and addi-
tional systemic infections. The lack of access to medical 
intervention and treatment for these infections is partic-
ularly problematic in wild orangutan populations. Factors 
such as human-animal interactions, habitat degradation, 
and environmental changes can increase stress levels and 

susceptibility to infections in wildlife, particularly endan-
gered species like the Sumatran orangutan.

The presence of K. pneumoniae isolates from wild 
Sumatran orangutans, all carrying the mrkD and entB 
genes, indicates a common genetic trait among these 
strains. These genes play crucial roles in the pathogenic-
ity and virulence of K. pneumoniae [17,19,37]. The mrkD 
gene, which is associated with the synthesis of type 3 

Table 3.  Antimicrobial resistance patterns of K. pneumoniae isolated from wild Sumatran 
orangutans.

Antimicrobial susceptibility for each sample

Antibiotics OU-1 OU-3 OU-5 OU-7 OU-9 OU-10

AMP R R R R R R

TET R R R R R R

CIP S S S S S S

NA I S S S R R

C S S S S S S

E R R R R R R

Streptomycin I I S S S R

MDR Yes Yes Yes Yes Yes Yes

Description: I = intermediet, R = resistant, S = sensitive.

Figure 5. Amplification resistance genes of the blaTEM (516 bp), blaSHV (768 bp) and blaCTXM 
(866 bp). M: 100 bp DNA marker, 1–6: K. pneumoniae isolates from wild Sumatran orangutans.

Table 4.  Profile resistance genes of K. pneumonia isolated from wild Sumatran orangutans.

Isolate blaTEM blaSHV blaCTX-M tetA qnrS ermB aac (3)-IV

OU-1 + + + + X − X

OU-3 + + + − X − X

OU-5 + + − + X − X

OU-7 + + + + X − X

OU-9 + + − − − − X

OU-10 + + + + − − −

Description: (+) = positive result, (−): negative resultfor the gene which being tested, X: test not performed.
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fimbriae, enhances the adherence of the bacterium to host 
cells, thereby facilitating the processes of colonization and 
eventual infection [38]. By enhancing the ability of the 
bacterium to colonize and infect the host, this adhesion 
mechanism contributes to its pathogenesis. The detection 
of the mrkD gene in all strains suggests a possible common 
virulence mechanism among the strains of K. pneumoniae 
in the orangutan population.

Similarly, the entB gene is involved in iron acquisition 
via enterobactin, a siderophore. Iron is a critical nutrient 
for bacterial growth, and the ability of K. pneumoniae to 
scavenge iron from the host environment enhances its sur-
vival and development [39–41]. The presence of the entB 
gene in each isolate highlights the critical role of this mech-
anism in the pathogenicity and persistence of K. pneumo-
niae in the orangutan gastrointestinal tract.

The presence of the wabG gene in 83.33% of the isolates 
suggests potential resistance to fosfomycin, a commonly 
prescribed antibiotic [42]. This finding emphasizes the 
importance of understanding the antimicrobial resistance 
profile of these bacterial strains and the need for compre-
hensive antimicrobial stewardship initiatives to prevent 
the spread of resistance within wildlife populations. The 
absence of the rmpA and magA genes in all isolates indi-
cates a unique genetic feature distinguishing these strains 
from certain strains of hypermucoviscous K. pneumoniae 
associated with severe human infections [43,44]. The 
absence of these genes in the K. pneumoniae strains from 
the Sumatran orangutan population suggests that they 
have distinct virulence potential. The results of this study 
improve the understanding of the genetic characteristics 
and virulence components of K. pneumoniae strains that 
infect orangutans. As a result, there is now a clearer under-
standing of the precise mechanisms by which these strains 
can induce infection and promote pathogenesis.

Antibiotics are frequently derived from natural sources, 
including specific microorganisms that generate them 
for defense. For example, E is produced by Streptomyces 
erythraeus [45,46]. Beta-lactam and TET can also be 

synthesized by environmental microorganisms. TETs are 
formed through the fermentation of actinomycetes, and the 
antibiotic penicillin is naturally produced by Penicillium 
mold [47,48]. Orangutans may encounter trace amounts 
of these antibiotic compounds by consuming vegetation, 
water, or other environmental components harboring 
antibiotic-producing microorganisms. This exposure has 
the potential to influence the gut microbiota of orangutans, 
potentially leading to the emergence of antibiotic resis-
tance within their microbial communities.

Antimicrobial resistance is a global issue affecting var-
ious species, including wildlife [49,50]. In orangutans, 
resistance can arise from various factors, including inges-
tion of antibiotic compounds present in the environment, 
overuse and inappropriate use of antibiotics in veterinary 
and human medicine, and environmental contamination. 
Human-wildlife interactions potentially also introduce 
antibiotic-resistant microorganisms. The emergence and 
spread of antibiotic-resistant bacteria are often linked 
to inappropriate and excessive use of antibiotics in vet-
erinary medicine and human and animal populations. In 
addition, environmental factors such as contamination and 
the release of antibiotics into the environment can contrib-
ute to the development of antibiotic resistance in various 
bacterial strains.

All isolates in this study exhibited resistance to three 
or more classes of antibiotics, a characteristic commonly 
defined as MDR. The discovery of MDR isolates in this 
study underscores the urgent concern about antimicrobial 
resistance in K. pneumoniae infections in orangutans. MDR 
strains are a major concern because they are resistant to 
a wide range of antibiotics, making the treatment of infec-
tions caused by these strains much more difficult [51,52]. 
Particularly for endangered species like orangutans, the 
presence of MDR isolates in this study highlights the impor-
tance of understanding the mechanisms underlying anti-
biotic resistance in wildlife populations. Comprehensive 
surveillance programs and strategic interventions are 

Figure 6. Amplification resistance genes of K. pneumonia from wild Sumatran orangutans M: 
100 bp DNA marker, (A) tetA gene (965 bp) 1, 3, 4 and 6 Positive isolates; (B) ermB gene (639 
bp) 1–6: negative isolates.
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urgently needed to manage and reduce the spread of MDR 
strains in the environment.

A comprehensive strategy would be required to reduce 
the risk of antimicrobial resistance and MDR K. pneumoniae 
in orangutans. This would include advocating the respon-
sible use of antibiotics in animal and human healthcare, 
establishing efficient waste management systems, and 
limiting human-wildlife interactions that can facilitate the 
spread of resistant bacteria. Understanding and addressing 
the potential impact of antimicrobial resistance on endan-
gered species, such as the Sumatran orangutan, requires 
vigilant monitoring of wildlife health. Understanding the 
prevalence and characteristics of MDR isolates in orang-
utans is critical not only for health management but also 
for advancing conservation initiatives aimed at protecting 
these endangered species. This information can serve as a 
basis for informed decision-making and the formulation of 
targeted interventions to protect the survival and welfare 
of orangutans.

As the sample size of wild orangutans in the study was 
limited, it is important to interpret these findings cautiously 
and consider the broader context of orangutan populations 
in their natural habitat. Observations of wild orangutans 
in various forest habitats reveal diverse behaviors, such as 
arboreal activity and wide-ranging movement in the forest. 
The dispersed population of around 30 wild orangutans 
across hundreds of hectares of forest illustrates the diffi-
culties of conducting in-depth research and monitoring in 
large and isolated habitats. The challenges include sam-
ple collection limitations, operational constraints, and the 
complications associated with studying animals in their 
natural, often inaccessible, habitats. Despite these limita-
tions, this study contributes significantly to understanding 
the prevalence and genetic characteristics of K. pneumo-
niae within the sampled orangutan population. To assess 
the broader prevalence and distribution of this bacterium 
among orangutans in different forest areas and their native 
habitats, further research is necessary.

Further research and surveillance initiatives should 
include the potential use of non-invasive sampling methods 
and advanced genetic analysis. To reduce the likelihood of 
K. pneumoniae infection in wildlife populations, including 
Sumatran orangutans, it is imperative to prioritize habitat 
conservation and protection, establish disease surveil-
lance initiatives, and advocate for responsible tourism and 
human-wildlife interaction protocols. A comprehensive 
understanding of the prevalence, transmission dynam-
ics, virulence factors, and resistance of K. pneumoniae in 
orangutans is essential to formulating effective health and 
conservation strategies. Enforcement of environmental 
management practices, responsible antibiotic use, and 
comprehensive surveillance are imperative to prevent 
the spread of infection and the emergence of antibiotic 

resistance in orangutans and other wildlife populations. To 
ensure the conservation and welfare of Sumatran orang-
utans and their ecosystems, conservation organizations, 
local communities, researchers, and government agencies 
must work together to improve our understanding of dis-
ease dynamics and health status.

Conclusion

K. pneumoniae was found in the feces of wild Sumatran 
orangutans. The virulence of K. pneumoniae was deter-
mined by the presence of the mrkD, entB, and wabG genes. 
K. pneumoniae isolates obtained from wild Sumatran 
orangutans exhibited resistance to multiple antibiotics, 
including AMP, TET, and E, indicating MDR. Understanding 
the prevalence, virulence factors, and resistance of K. pneu-
moniae in orangutans is essential for developing effective 
conservation and healthcare strategies.
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