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ABSTRACT

Objective: This study aimed to assess the impact of different rearing site zones with varying tem-
perature–humidity index (THI) on the metabolic regulation of lactating local dairy cows.
Materials and Methods: Forty local dairy cows were used in this study, consisting of 20 in rearing 
sites with THI 66–70 (Pangalengan) and 78–82 (Sumedang), at 950 and 550 m above sea level, 
respectively. Basal rations were given every morning and evening, consisting of forage and con-
centrate. Temperature and humidity were recorded daily to determine the average daily THI. 
Blood samples in both groups of experimental animals were collected according to standard pro-
cedures every month during the 4 months of the experiment. Blood analysis followed procedures 
based on protocols from KIT Randox (UK), using a spectrophotometer.
Results: Lipid activity and regulation appeared higher (p < 0.05) in the group of lactating dairy 
cows kept at THI comfort zone 66–70 than at THI slight stress zone (78–82). Similarly, blood lipid 
levels were better (p < 0.05) in the cows in the comfort zone (66–70).
Conclusion: The study’s results on the impact of the rearing zone of lactating local dairy cows 
appeared to affect the modulation of lipids in the body. Lipogenesis regulation and metabolism 
showed higher activity in the group of dairy cows reared in the comfort zone (THI = 66–70) com-
pared to the group of dairy cows reared in the discomfort zone.
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Introduction

One of the dairy cattle breeds widely kept in Indonesia is 
the Friesian Holstein (FH) dairy cow. FH cattle milk pro-
duction is high, reaching 5,982 kg per lactation with an 
average milk fat content of 3.7% [1], and has good adapt-
ability to tropical and subtropical regions [2,3]. FH cows 
can produce optimal productivity if kept in environmen-
tal conditions with temperatures around 18°C and 55% 
humidity [4]. The ecological conditions of dairy cattle 
rearing, especially in West Java, are a problem related to 
temperature and moisture, even though the location is in 
the highlands. Research results [5,6] show that the average 
temperature of dairy cattle rearing locations in the high-
lands (>800 asl) is 25°C with 82% humidity.

FH dairy cows are homeothermic animals that require 
an optimum environmental temperature to live comfort-
ably and produce [7,8]. The comfort zone for European 
dairy cows ranges from 13°C to 18°C [5,9]. Indonesia, 

especially in the Tunas Mekar KSU Tandangsari Livestock 
Group area, has an ambient temperature range of 25℃–
31℃ and air humidity of 85% [4,10]. Climate differences 
in this maintenance can affect the physiological conditions 
and productivity of livestock, so it needs to be monitored 
for the survival of animals.

Keeping dairy cows above the comfort zone can cause 
heat stress that negatively affects physiological and hema-
tological blood levels [11], changes in total leukocytes 
and leukocyte differentials, and dairy cows’ immune sys-
tems and inflammatory responses [12]. Leukocyte levels, 
including neutrophils, lymphocytes, monocytes, eosino-
phils, and basophils in the blood, are an indicator in eval-
uating heat stress experienced by dairy cows. In addition, 
heat stress can also lead to imbalances in physiological and 
metabolic functions. Excessive organ work mechanisms 
result in increased inflammation, damage, and cell death, 
which affects metabolite compounds in the blood such as 
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total bilirubin, alkaline phosphatase, creatinine, creatine 
kinase [13,14], gamma-glutamyl transpeptidase, and lac-
tate dehydrogenase that migrate to the blood circulation 
system, which means that the higher the levels of these 
compounds in the plasma, the more the cattle are experi-
encing heat stress [15].

The good adaptability of FH cows is indicated by good 
physiologic and production conditions, although still lower 
than in their country of origin. The low milk production 
produced can be influenced by the quality and quantity of 
feed given [16,17], so the nutrient needs of dairy cows are 
not met, which causes low milk biosynthesis [18]. Adding 
feed supplements to the ration aims to increase digestive 
efficiency so that physiological conditions [19,20] and live-
stock productivity increase [21,22].

Many studies have been reported, showing efforts to 
reduce the adverse effects of environmental factors on 
dairy cows caused by maintenance above the comfort zone, 
among others, through nutritional engineering such as pro-
viding feed supplements in the form of bypass protein [23], 
Ca-polyunsaturated fatty acid (PUFA) [10], and organic 
minerals [24]. These three types of feed supplements can 
reduce the adverse effects of livestock physiological condi-
tions by stimulating metabolic rates [4,25] associated with 
lipid synthesis [26], increasing immunity [14], preventing 
inflammation, and supporting thermoregulation [6,13,27]. 
Some other researchers reported that feed protein tends to 
be degraded by rumen microbes to produce large amounts 
of ammonia [28,29]. Additional bypass protein is required 
through feed supplements. Bypass protein is a protein 
that rumen microbes cannot degrade. Therefore, most of 
it will be distributed to post-protein because post-rumen 
protease enzymes quickly digest this protein and have a 
high digestibility efficiency [30,31]. Previous research 
reports also show that feeding PUFA increases hemato-
logical levels of hematocrit, hemoglobin, and erythrocytes. 
PUFA (linoleic) compounds in feed are one of the precur-
sors of prostaglandin hormones, one of whose function is 
to repair cells in the body, including erythrocyte cell mem-
branes [6,16].

However, production efficiency and optimization 
through various feed engineering methods have not shown 
satisfactory results. One aspect that needs to be controlled 
is the drum’s microenvironment. The microenvironment of 
the drum diet plays a vital role in the balance of tempera-
ture and humidity. THI affects overall metabolism, so its 
approach to the appropriate diet must be studied carefully. 
Therefore, it is essential to observe their lipid metabolism, 
especially in lactating local dairy cows. Lipid metabolism 
plays a critical role in increasing milk production.

Materials and Methods

Ethical approval

This experiment was carried out and has been carefully 
reviewed by the Ethical Assessment Commission for Animal 
Experiments, Directorate of Research and Technology, DRT, 
with number 1027/Anim_Res.ER/11/23, to ensure that it 
meets the ethical requirements of animal experiments.

Animal, housing, and location

The experimental animals used for this study were forty 
lactating FH dairy cows with 1st, 2nd, and 3rd lactation 
periods and 1st–5th lactation months and milk production 
of 8–12 l/day. The experimental cattle were given basal 
rations (grass and concentrate). The experimental animals 
were placed in individual pens measuring 1.5 × 2 m, each 
pen equipped with feed and water containers. Feeding was 
done in the morning and evening, while drinking water 
was given ad libitum.

This study was conducted at THI 66–70 and 78–82 
rearing sites in Pangalengen, Bandung, and Tanjungsari, 
Sumedang. The altitudes of each area are 950 and 550 
m above sea level. Daily temperature and humidity were 
recorded before and during the experiment.

Data and blood sample collection

Blood samples were collected four times at weeks 5, 9, 12, 
and 16, respectively. Blood samples were taken from forty 
local dairy cows using a syringe needle in the jugular vein 
on the right side of the neck. As much as 5 ml of blood was 
collected in tubes containing ethylenediaminetetraacetic 
acid anticoagulant to obtain whole blood. The blood sam-
ples were then taken to the laboratory using a cooling box 
to prevent damage.

The blood samples were centrifuged for 15 min to sep-
arate the plasma. The blood plasma was analyzed using 
the spectrophotometer technique by mixing reagents and 
buffer solutions based on the Randox Kit instructions, UK, 
with wavelengths according to the respective parameters.

Data analysis

Data were analyzed using an unpaired T-Student test anal-
ysis. Differences between treatments were determined 
using Mann–Whitney analysis/test. All analysis proce-
dures were performed using SPSS IBM 25 software, with a 
significance level of 95%.

Results and Discussion

Lipid transport in plasma

Based on the current study’s results, Table 1 shows the con-
centrations of lipoproteins associated with lipid transport 
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in the blood plasma of local dairy cows reared in terrestrial 
zones with different THI.

The current study results indicate that the rearing 
zones with different THIs overall increased the lipid trans-
port activity in the blood plasma. This increase in trans-
port activity was particularly evident in the group of local 
dairy cows reared in the comfort zone, with an average THI 
of 66–70 during the study. Table 1 shows that trans lipid 
albumin activity and low-density lipoprotein (LDL) cho-
lesterol were highest in the group of cows in the comfort 
zone, at 19.03 µg/ml and 192.63 mg/dl, respectively.

Lipid transport activity in both groups of dairy cows 
reared in areas with different zones through venous 
and arterial vessels for inter-tissue purposes does 
not seem to be the same; this fact is characterized by 
higher levels of apolipoprotein (apl) A, Apl B, and Apl C  
(p < 0.05) in the group of dairy cows in the comfort zone 
(THI = 66–70). This result also proves that lipogenesis 
activity in the context of milk biosynthesis appears to be 
higher in dairy cows with a more comfortable environment.

It is known that ApL A and ApL B are instrumental in 
maintaining cholesterol concentration [26] and its biolog-
ical function [4,12]. Apl A activity stimulates HDL produc-
tion [3,25]. Increased HDL concentration increases lipid 
transport from tissues to liver cells [13,14]. Conversely, an 
increase in ApL B stimulates an increase in LDL, thereby 
increasing cholesterol transport from liver cells to tissues. 
During lactation, activity is needed to maintain the con-
centration of lipids [17,19] and cholesterol in the milk, as 
well as to maintain the concentration of lipid precursors 
in the alveoli cells [18]. Previous studies have also shown 
that feeding organic fatty acids and minerals can improve 
the physiologic condition of lactating cows [11], as well as 

maintain lipid homeostasis [9,12,32], and increase milk 
biosynthesis [18].

Table 2 shows the study’s results, based on which 
the effect of THI on the lipid profile of local dairy cow 
blood plasma is apparent. Based on this study, dairy 
cows’ blood lipid profile [cholesterol, non-esterified fatty 
acid (NEFA), and triglyceride (TAG)] in the comfort zone 
appeared to be higher than those of cows in the mild 
stress zone. Research [10,13] shows that comfortable 
environmental conditions for lactating dairy cows sig-
nificantly increased the rate of lipogenesis, decreased 
the rate of adipocyte hypertrophy, increased TAG accu-
mulation [14,15], increased lipoprotein lipase activity 
[9,13,16,26] in epididymal adipose tissue, and increased 
the activity of enzymes in the liver related to lipid biosyn-
thesis [10,17,25].

Comfortable conditions have been reported to activate 
adenosine monophosphate (AMP) significantly activated 
protein kinase (AMPK) phosphorylation [18,19,27]. A 
high-fat diet induces the expression of lipogenic transcrip-
tion factors [Peroxisome proliferator-activated receptor 
gamma PPAR-γ and sterol receptor element-binding pro-
tein 1c] in the liver and adipose tissue [20,25,29].

The high cholesterol concentration in liver cells is one 
cause of the inhibition of 3-hydroxymethyl glutaryl coen-
zyme A (HMG-CoA) synthesis. This enzyme plays a role 
in cholesterol synthesis [11,16,21], so a decrease in its 
expression reduces endogenous cholesterol synthesis, and 
the amount of cholesterol circulating in the vascular sys-
tem also decreases.

In addition, rearing conditions with ideal microenviron-
mental conditions appear to significantly increase the syn-
thesis of PUFAs (Table 2). These conditions simultaneously 
inhibit the expression of lipogenic genes, including fatty 

Table 1.  The effect of THI on lipid transport in local dairy cows.

Parameters Average THI during study (zone)

66–70 (Comfort zone) 78–82 (Minor stress zone)

Albumin lipid trans (µg/ml) 19.03 ± 0.23a 13.94 ± 0.25b

ApL A-I (gm/m) 3.18 ± 0.19a 2.04 ± 0.14b

ApL A-II (gm/l) 4.81 ± 0.89a 2.14 ± 0.78b

ApL B (gm/l) 5.93 ± 0,08a 1.12 ± 0.07b

ApL C-II (gm/l) 3.86 ± 0.11a 2.46 ± 0.09b

ApL C-III (gm/l) 4.63 ± 0.59a 1.63 ± 0.60b

ApL E (gm/l) 3.98 ± 0.08a 2.52 ± 0.07b

Cholesterol HDL (mg/dl) 97.55 ± 3.04a 78.78 ± 3.05b

Cholesterol LDL (mg/dl) 192.63 ± 4.06a 109.53 ± 3.95b

FATP1 14.62 ± 0.62a 9.24 ± 0.53b

Value in this table are means ± SD; a,b The average in the same line, marked with different superscripts, shows a significant difference 
(p < 0.05).
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acid synthase, HMG-CoA, fatty acid transport 1 (FATP1), 
and fatty acid binding protein 4 in the liver to synthesize 
saturated fatty acids [4,22,30]. Previous animal studies 
have also shown that the adipose tissue of experimental 
animals fed a diet high in unsaturated fats reduces satu-
rated fat levels in the blood plasma [24,32].

The highest TAG level was 173.12 mg/dl in the comfort 
zone group, compared to the other groups. When related 
to research [25], the ideal THI factor significantly increases 
the rate of lipogenesis, decreases the rate of adipocyte 
hypertrophy, TAG accumulation, and lipoprotein lipase 
activity in epididymal adipose tissue [11,26], and reduces 

Tabel 2.  Effect of THI on plasma lipid.

Parameters Average THI during study - (zone)

66–70 (Comfort Zone) 78–82 (Minor Stress Zone)

Triglyceride (mg/dl) 173.12 ± 1.57a 152.83 ± 3.53b

NEFA (mg/l) 87.68 ± 2.63a 50.01 ± 2.63b

Cholesterol (mg/dl) 154.38 ± 3.36a 122.52 ± 3.76b

Glycerol (mg/dl) 32.73 ± 2.53a 19.68 ± 2.82b

C12:0 (% of total fatty acid) 0.98 ± 0.01a 0.84 ± 0.02a

C15:0 (% of total fatty acid) 0.53 ± 0.01a 0.47 ± 0.03a

C16:0 (% of total fatty acid) 18.34 ± 1.02a 20.53 ± 1.61b

C17:0 (% of total fatty acid) 1.82 ± 0.01a 1.55 ± 0.04b

C17:1 (% of total fatty acid) 1.43 ± 0.02a 0.35 ± 0.01b

C18:0 (% of total fatty acid) 12.42 ± 2.14a 9.42 ± 1.27b

C18:1 (% of total fatty acid) 38.93 ± 2.41a 32.25 ± 2.41b

C18:2 (% of total fatty acid) 6.82 ± 0.36a 4.36 ± 0.12b

C20:0 (% of total fatty acid) 4.63 ± 0.02a 2.52 ± 0.12b

C20:4 (% of total fatty acid) 5.53 ± 0.11a 4.17 ± 0.11b

C22:0 (% of total fatty acid) 4.53 ± 0.14a 2.63 ± 0.01b

Value in this table are means ± SD; a,b The average in the same line, marked with different superscripts, shows a significant 	
difference (p < 0.050).

Figure 1. Prediction model and effect of PPAR-γ on total lipids of dairy cows at rearing sites with 
average THI 78–82.
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the activity of enzymes in the liver related to lipid biosyn-
thesis [17,27].

Conversely, the discomfort zone causes an increase in 
lipolysis. The high lipolysis rate causes energy reserves, 
such as fat, to be broken down into NEFA and glycerol. NEFA 
is also a precursor for forming TAGs in adipose tissue, liver, 
and muscle through esterification [15,28,29]. However, in 
this study, high NEFA levels in the comfort zone, a sign that 
they are not formed into triacylglycerol/ TAG, are due to 
NEFA contributing to the formation of milk lipids.

Regulation of peroxisome proliferator-activated receptor 
gamma on total lipid

The influence of PPAR protein on total plasma lipids in 
dairy cows reared with THI 78–82 (Fig. 1) was 0.5%, and a 
more significant impact, 73.48%, was shown in dairy cows 
reared in the comfort zone (Fig. 2).

PPAR-g are proteins that regulate lipid homeostasis 
in the body. Several previous studies have reported that 
lipid regulation and modulation in cells and tissues is 
determined by PPAR-gene expression. Increased gene 
expression correlates positively with cell and plasma lipid 
concentration balance [4,29]. Several other studies have 
also shown the critical role of PPAR-g in maintaining blood 
cholesterol [20], lipids in cells [15,30], and lipid transport 
from and to tissues [3,19,31].

Feed supplementation at low altitudes was shown to 
stimulate PPAR-gene expression; therefore, increasing 
the concentration of this gene significantly increased lipid 
concentration. Previous researchers [5,6,32] have also 

reported similar results, showing that total lipids can be 
controlled by administering protein and essential fatty 
acids through PPAR and sterol binding protein receptor-1α 
[11,30,32].

Conclusion

The study’s results on the impact of the rearing zone on 
lactating local dairy cows appear to affect lipid modula-
tion in the body. Regulation and metabolism of lipogenesis 
showed higher activity in dairy cows kept in the comfort 
zone (THI = 66–70) than in the less comfortable zone (THI 
= 78–82). PPAR-g regulator also showed a higher influence 
on dairy cows in comfort conditions.
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