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ABSTRACT

Global warming poses a significant threat to aquatic animals, particularly fish production, because
of the rising summer temperatures, leading to issues such as summer mortality syndrome. This
issue could impact fish farms, leading to 30%—-100% mortality rates and significant financial losses.
This study aims to identify the underlying causes of summer mortality syndrome in fish and to
evaluate modern mitigation strategies to protect aquaculture systems effectively. Mortality rates
of stocked fish ranged between 30% and 70%, with some instances reaching 100%. The reasons
behind summer mortality syndrome are complex and multifactorial. Contributing factors include
pathogenic agents such as bacteria, viruses, fungi, and parasites, as well as poor management
practices and unfavorable environmental conditions. Most types of bacteria that caused mor-
tality rates in many fish species were Aeromonas spp., Flexibacter columnaris, Flavobacterium
columnare, Pseudomonas spp., and Enterobacteriaceae, namely Edwardsiella tarda, Yersinia spp.,
and Streptococcus spp. To mitigate the impact of this syndrome, several protective measures can
be implemented. These include applying some nutritional inventions such as herbal additives,
essential oils, natural compounds, water management, antibiotics, vaccinations, modern tech-
nology, and improved management practices. By addressing these factors comprehensively, the
risk of summer mortality syndrome can be significantly reduced. This review provides further
evidence regarding the effects of summer mortality syndrome in fish. The main causes of this
phenomenon are pathogens and poor management. Nutritional additives and vaccinations were
effective ways to mitigate these harmful effects to maintain fish production. Further research
is needed to evaluate the long-term effectiveness of these mitigation strategies and to develop
guidelines for sustainable fish farming practices under changing climatic conditions.
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Introduction

In addition to being a significant food source for humans,
fish is also highly valuable economically [1-5]. Profitability
and human nutritional health depend on it [6]. Fish dis-
ease is one of the challenging issues impeding the global
expansion of tilapia aquaculture [7]. Fish infections usu-
ally result from a combination of factors [8]. Low dissolved
oxygen (L-DO) induced by water temperatures impedes
the immune system and raises the susceptibility of fish to
secondary bacterial infections when combined with poor
water quality and high unionized ammonia (NH3) levels
[9]. Climate change is a major threat to fish productivity,

and global warming has been considered one of the most
important environmental problems affecting the world in
the past 10 years [10]. Various aquatic species, including
fish, plants, mammals, and corals, have suffered wide-
spread mortality as a result [11].

According to Algammal et al. [12], bacterial infections
have been identified as the main or the first cause of sum-
mer mass mortalities, posing a significant obstacle to tila-
pia fish production over the past 10 years. Stressed fish are
susceptible to various bacterial pathogens [13]. Bacterial
disease outbreaks lead fish farms to suffer significant finan-
cial losses due to their high mortality rates, particularly in
the summer [14]. For aquaculture worldwide, disease and
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parasitism are the main causes of welfare, environmental,
and economic concerns [15]. Furthermore, ecological ele-
ments such as salinity, pH, temperature, and oxygen level
have been linked to disease spread, especially in intensive
aquaculture systems [16-18].

Fish with bacterial infections [19] exhibit similar clin-
ical signs, such as swimming aimlessly near the surface,
reduced appetite, and various pathologic conditions such
as tail rot, dermal ulceration, hemorrhagic skin and fins,
exophthalmia, red sores, erected scales, and erythroderma
(Fig. 1). Postmortem abnormalities associated with bacte-
rial infections include conspicuous localized hemorrhages,
spleen congestion, and necrosis in the liver and gills. 16S
rDNA sequencing provides accurate and detailed informa-
tion, even for rare isolates [19-21].

Additionally, Choi et al. [22] reported that internal
observations and diagnostic results revealed some red-
dish-brown liver, intestinal bleeding, and congestion in
the fish’s abdominal cavity as clinical indicators of Korean
rockfish. Swollen filaments in the gills were shown to result
from mucus secretion and accumulation of foreign mate-
rial. Some studies have found that hemorrhagic patches
spread on the external body surfaces with fin rot in tilapia
fish [7]. Internally, ascites was noticed with the presence
of blood-tinged fluid in the abdominal cavity. The same
authors found that the liver and spleen of tilapia fish with
summer mortality syndrome were enlarged and friable.

Recently, there has been a significant increase in
summertime Nile tilapia mortality rates in fish farms.
Approximately 37% of fish farms in Egypt were affected
by outbreaks of summer mortality syndrome, which
had an average mortality rate of 9.2% and cost close to
US$100 million [23]. The precise causes of mortality are
unknown. However, certain risk factors such as the type

Figure 1. Clinical signs in Nile tilapia are affected by summer
mortality syndrome: (A) red patches, (B) mouth ulcers, (C)
exophthalmos, and (D) inflamed vent (Adapted from Ali et al.

[19]).
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of culture system, water quality, elevated temperatures,
and increased salinity have been proposed to predispose
fish to this mortality [24]. Ali et al. [19] reported that each
of the predisposing causes contributed to the mass mor-
tality event. Furthermore, according to other studies, the
main cause of the common disease impacting Nile tilapia
in farms may be bacterial infections such as Aeromonas
veronii [13]. Environmental and interdisciplinary microbi-
ological factors have also been identified as the main rea-
sons for fish mass mortalities in other studies [25].

The most significant concern in fish culture systems is
bacterial disease, which can lead to high mortality rates
among farmed fish, especially in stressful conditions.
According to Rathinam et al. [26], Gram-negative bac-
terial infections are the main cause of elevated mortal-
ity in freshwater fish farming. Most of these bacteria are
Aeromonas, Flavobacterium, Edwardsiella, Pseudomonas,
and Vibrio. Many studies have documented disease out-
breaks in a variety of commercially significant fish spe-
cies due to Aeromonas spp. infestations, including channel
catfish [27], salmonids [28], Nile tilapia [29], pangasius
catfish [30], common carp [31], koi carp [32], and silver
carp [33], among others. Additionally, research has shown
co-infections of Aeromonas spp. with epizootic ulcerative
syndrome (EUS) [34], Cyprinid herpesvirus-2 [35], tilapia
lake virus (TiLV) [36], and ich parasite [37] in fish culture
systems.

In numerous freshwater fish farms, bacterial infections
account for the majority of severe morbidities and fatali-
ties among cultivated fish (Nile tilapia), and summertime
temperatures can have a substantial impact on mortality
rates [38]. Diseases of cultured fish negatively impact the
attainment of optimum potential in fish farming. Bacterial
infections cause 80% of fish mortality in tilapia produc-
tion [39]. Two distinct biotypes of Streptococcus agalac-
tiae were identified: biotype I (f-hemolytic) and biotype 11
(non-hemolytic). Biotype I causes acute mortality patterns
[40], whereas biotype II causes chronic and persistent
mortality patterns. After samples taken in the summer of
2017 were subjected to bacteriological analysis, 160 bac-
terial isolates were identified and classified as Aeromonas
hydrophila, Pseudomonas putida, Pseudomonas fluorescens,
and Vibrio cholera with the percentages of 50%, 15.62%,
21.87%, and 12.5%, respectively, while in the winter of
2018, 100 samples contained the following three micro-
organisms: V. cholera and A. hydrophila, with percentages
of 50%, 37%, and 13%, respectively. In all, 40 samples
were isolated in the summer of 2018; of them, 47.22%
contained A. hydrophila, 22.22% contained P. fluorescens,
13.88% contained P, putida, and 16.66% contained V. chol-
era. According to the findings of a seasonal spread of bac-
terial strains, A. hydrophila has the highest mortality rate
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among naturally damaged farmed fish, and summertime
mortality rates are higher than wintertime ones [38, 41].

One of the largest fish in the world that is only found in
freshwater is the Murray cod (Maccullochella peelii), a well-
known and valuable freshwater fish native to Australia. Due
to their excellent nutritional value and rising economic sig-
nificance, Murray cod have been successfully produced and
raised recently, making them one of China’s most import-
ant new commercial fish. However, in farmed Murray cod,
reports of bacterial and viral infections leading to disease
epidemics have been made [42,43]. A new infectious dis-
ease has surfaced in China that has killed large numbers
of young Murray cod. In the current study, fish with viral
nervous necrosis showed aberrant swimming behaviors,
including spinning close to the water’s surface, plunging to
the bottom, and then rising to the surface again. The mor-
ibund fish also displayed clinical signs such as anorexia
and skin discoloration. There were no noticeable gross
pathological abnormalities seen during the necropsy [44].
According to a recent study by Magouz et al. [45], the most
common bacterial infections found during mass-farmed
tilapia summer mortality include A. hydrophila, Vibrio sp.,
and Streptococcus iniae. This finding supports the theory
that warm water could increase the likelihood of these
bacterial illnesses, leading to a large number of dead tila-
pia and significant financial losses. Recently, aquaculture
has gained increasing significance as a key contributor to
global food security, and Egypt has been at the forefront
of advancements in fish farming. However, the aquaculture
industry faces notable challenges, such as infectious dis-
eases being a primary concern [59].

In this review, the primary objective is to highlight the
key reasons for summer mortality syndrome in fish and
discuss potential approaches to mitigate these negative
effects. Additionally, we will explore the role of environ-
mental conditions in this phenomenon.

Summer Mortality Syndrome

The unidentified phenomenon affecting cultured farms of
Nile tilapia (Oreochromis niloticus) was commonly called
“summer mortality syndrome.” This disease occurred in
the summer season and was characterized by a high mor-
tality rate and a general symptom of septicemia in dead
and moribund fish [19, 46].

Summer mortality syndrome was first documented in
scientific literature by Fathi et al. [23], although it began
affecting tilapia farms in 2012. The first reports of mass
fatalities in the impacted marine fish farms were made in
2014; however, the spread in 2019 that hit the farms was
particularly severe [47]. Mariculture farms have experi-
enced annual losses due to disease outbreaks, especially
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during the summer months, known as summer mortality
syndrome.

According to Ali et al. [48], every epidemic is distin-
guished by numerous general indications of septicemia
in affected fish. Mortality of stocked fish ranged between
30% and 70%, with some instances reaching 100% [49].
Other research suggests that microbiological causes and
interdisciplinary environmental factors were responsible
for the mass fatalities [25].

Increasing production of aquaculture is necessary to
meet the world’s food demands; fish diseases must be pre-
vented and controlled, antibiotic use must be reduced or
replaced, and environmental protection must be enhanced
to ensure the safety of both human and animal health
[50,51]. Immunostimulant factors play a crucial role in
supporting aquaculture growth and survival by preventing
opportunistic diseases using antioxidants and enhancing
natural defense mechanisms [50,52]. Aeromonas hydroph-
ila is one of the most common pathogenic bacteria asso-
ciated with the cytokine responses in common carp [53].
Mass mortalities caused by A. hydrophila infections are
frequently observed in aquaculture, resulting in substan-
tial financial losses [54]. According to Choi et al. [22],
the substantial temperature changes in the water due to
typhoon Wukong during the summer of 2006 may have
weakened the fish physiologically, resulting in mass mor-
tality in Korea. Summer mortality has been reported in
farmed species in Australia [55]. The complex interplay
between biological, environmental, anthropogenic, and
dietary stresses is likely to contribute to summer mor-
tality [56]. Hooper et al. [57] suggest that these stressors
can lead to physical and immunological impairments in
abalone, increasing their susceptibility to opportunistic
bacterial infections and eventual death. Reports indicate
an increased presence of bacteria, primarily Vibrio spp., in
abalone death incidents [56].

Recently, in the Arabian Gulf, Ibrahim et al. [58] iden-
tified that larval tapeworms (plerocercoid) can infect the
Indian halibut (Psettodes erumei) with an overall preva-
lence of 15.4%. They reported that the seasonal prevalence
was the highest in summer (14.6%), followed by spring
(10.6%), winter (4.4%), and autumn (3.5%). Infection
rates increased with fish size. Moreover, Abdelkhalek et
al. [59] reported that summer conditions can cause many
clinical signs, such as encysted metacercariae of digene-
tic trematodes, which displayed an array of clinical signs,
including lethargy, erratic swimming behavior, loss of
appetite, darkening of the skin, loss of scales, emaciation,
stuck abdomen, tail and fin erosions, abdominal hydropsy,
excessive mucus production, respiratory distress, and
impaired growth in tilapia fish. From the above, it is clear
that this phenomenon negatively affects fish production
in several countries. Since it was mentioned in 2017 until
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now, it still threatens fish production during the summer,
so we aim in this review to reveal more causes of infection
as well as methods of prevention.

Reasons for Mortality in Fish

Aquaculture is one of the world’s most active and rapidly
expanding food production industries, offering a potential
solution to meet the global demand for aquaculture goods
[26]. However, aquaculture faces numerous challenges,
with diseases being the primary concern. Bacteria, viruses,
parasites, fungi, and noninfectious factors all contribute
to the global output deficit in aquaculture [58-60]. Fish
diseases are complex and rarely result from a simple rela-
tionship between a virus, a host fish, and an environmental
factor. The causes and routes of infection in fish are diverse,
with additional issues such as low water quality further
complicating the problem and increasing the occurrence
of sickness [22, 23]. Many infections are common and feed
on fish and saprophytes in soil, water, and invertebrate
hosts such as crabs and snails. The majority of infections
are caused by stress, and poor fish health management
allows pathogens to come into direct and indirect contact
with farmed fish, which makes disease transmission easier
(Fig. 2). Aly [41] has identified factors typically involved in
the mechanisms behind fish disease outbreaks, including
contaminated water supplies, culture facilities, eggs or fish
stocks, and environmental elements associated with fish
culture (air, soil, ponds, equipment, and pollutants in feed).
Future trends should concentrate on the development of
pathogen-resistant fish strains or innovative diagnostic

tools.
Reasons of ht

r'/
High \ fish mortality
temperature Bad
ator management
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water feed

Figure 2. Reasons for summer mortality syndrome in fish.
Environmental factors such as polluted water, high water
temperatures, and contaminated feeds can induce the release of
bacteria, viruses, and fungi, which can affect the health and well-
being of fish and increase mortality rates in fish farms.
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Bacterial Infections

Bacteria cause numerous diseases and significant fish
mortality rates in aquaculture. The majority of the micro-
organisms are caused by saprophytes, which are naturally
occurring microorganisms that develop and reproduce by
utilizing the organic and mineral matter substances in the
aquatic environment. Summarized bacterial pathogens in
fish mortality syndrome are presented in Table 1. Fish's
natural bacterial flora reflects the water’s bacterial popula-
tion. Most of the bacteria that cause disease in fish are small,
Gram-negative rods and members of Pseudomonadaceae,
Vibrionaceae, and Enterobacteriaceae. Bacteria typi-
cally cause ulcerative and septicemic disease states. High
mortality rates in fish stocks can also be brought on by
the long myxobacteria (Gram-negative) of the family
Cytophagaceae, which are not known to cause pathogens
in warm-blooded animals.

Even though Gram-positive bacteria, some of which
are even acid-fast, are less prevalent, under the right
conditions, they can cause significant harm to some
fish species. In Egypt studies, the most types of bacte-
ria that caused mortality rates in many fish species were
Flexibacter columnaris, Flavobacterium columnare, P. fluo-
rescens, Streptococcus faecalis, Enterobacteriaceae, namely
Edwardsiella tarda, and Yersinia spp., P. fluorescens, S. iniae,
and Streptococcus pneumoniae [61-64].

Several Gram-negative bacteria, such as A. hydrophila,
A. veronii, and Aeromonas jandaei, have been identified
as pathogens that can cause ulcerative lesions and hem-
orrhages on the skin, liver, kidney, spleen, and swim blad-
der of cultured tilapia. These infections can also lead to
conditions such as ascitic fluid accumulation, fatty liver,
and enlarged hemopoietic tissue [65]. According to Dong
et al. [66], a filamentous, Gram-negative bacterium called
E columnare is responsible for gill necrosis, fin erosion,
and skin lesions. Concurrent infections with A. veronii
and other opportunistic organisms have also been con-
nected. According to Nguyen et al. [67], tilapia infected
with F noatunensis subsp. orientalis exhibits skin dark-
ening, exophthalmia, irregular swimming, gill pallor, skin
ulcers, and multifocal white. Additionally, S. agalactiae and
S. iniae, two Gram-positive bacteria that cause severe mor-
tality rates in fish when they exhibit clinical signs such as
spiraling erratic swimming behavior, pop-eye, and hem-
orrhages, can infect tilapia [68]. Emerging as a potential
zoonotic pathogen [69]. According to Vendrell et al. [70],
Lactococcus garvieae has been linked to human cases in
the USA, France, Canada, Taiwan, and Great Britain. The
bacteria are Gram-positive and cause exophthalmia, inter-
nal lesions, lack of appetite, melanosis, lethargy, and hem-
orrhagic septicemia. According to Anshary etal. [71], it has
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Table 1. Bacterial species responsible for fish mortality syndrome.

Species of fish affected

Species of bacteria

References

Catfish
Freshwater fish

Salmonids, Channel catfish, Common carp, Nile
tilapia, Pangasius catfish, Koi carp, Indian major
carps

Nile tilapia

Common carp, monosex Tilapia, and Nile tilapia,
Grey mullet, Common carp, Nile tilapia, and
African catfish

Nile tilapia

Marine water fish

Nile tilapia

Marine water fish
Nile tilapia

Thin-lipped grey mullet (Liza ramada), European
seabass (Dicentrarchus labrax), and gilthead
seabream (Sparus aurata)

Aeromonas spp.

Aeromonas, Flavobacterium, Edwardsiella, and Pseudomonas

Aeromonas spp.

Flavobacterium columnare
Yersinia ruckeri

Streptococcus faecalis, Edwardsiella tarda, Edwardsiella ictaluri,
Enterobacteriaceae (E. tarda and Yersinia spp.), Aeromonas
hydrophila and Pseudomonas fluorescens

Streptococcus iniae and Enterococcus faecalis
Vibrio brasiliensis and Vibrio harveyi

Aeromonas spp., Streptococcus agalactiae, Staphylococcus
spp., Vibrio spp., Plesiomonas shigelloides, Pseudomonas
oryzihabitans, and Acinetobacter Iwoffii

Tenacibaculum maritimum
Aeromonas hydrophila, Vibrio sp., and Streptococcus iniae

Photobacterium damselae
Subspecies including P. damselae subspecies damselae and P.
damselae subspecies piscicida

Baumgartner et al. [27]

Rathinam et al. [26]

[28-33]

Mohamed and Saleh [64]
El-Gamal [61]

Abd El-Sattar [63]

Anshary et al. [71]
Montanchez and Kaberdin [72]

Ali and Aboyadak [49]

Brosnahan et al. [73]

Magouz et al. [45]

Eissa et al. [47]

been documented in tilapia fish from Indonesia, Brazil, and
Thailand.

Further research is required to fully comprehend the
pathogenic impact of Vibrio brasiliensis on farmed ani-
mals. Additionally, Vibrio harveyi has been identified
as a significant aquatic animal pathogen [72]. Ali and
Aboyadak [49] reported that the most widespread patho-
gens were Aeromonas spp. (42%), S. agalactiae (14.5%),
and Vibrio spp. (21%). Other evolving infections, such as
Staphylococcus spp. (8%), Plesiomonas shigelloides (10%),
Acinetobacter lwoffii (2.3%), and Pseudomonas oryzihabi-
tans were also identified. In a recent study, Magouz et al.
[45] reported on the identification and isolation of bac-
teria, including Aeromonas species, Pseudomonas species,
Vibrio species, Edwardsiella species, Streptococcus species,
and Enterococcus species. Recently, a study by Eissa et al.
[47] aimed to uncover the underlying causes of massive
fish kills and suggest an emergency control strategy in
Egypt focusing on bacterial infection diseases. Moribund
farmed thin-lipped grey mullet (Liza ramada), European
seabass (Dicentrarchus labrax), and gilthead seabream
(Sparus aurata) have demonstrated emaciation, congested
gills and fins, ascites, skin darkness, skin erosions, and
ulcerations. Internally, moribund fish emitted an unpleas-
ant odor upon opening the abdomen, together with severe
congestion and hemorrhages in the kidneys and brain.
Mottled atrophied spleens were the most prominent find-
ings, while the gastrointestinal tracts were filled with
whitish caseous material. The liver was pale with multiple
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whitish nodules. Photobacterium damselae was the most
retrievable bacterial pathogen from most infected fish and
trash fish. Photobacterium damselae subspecies damse-
lae and P. damselae subspecies piscicida were definitively
identified from examined moribund fish using both con-
ventional morpho-chemical and molecular assays. The
authors suggested that this bacterial infection may be
attributed to poor water quality, which was profoundly
incriminated in triggering bacterial infections leading to
mass mortality [47].

Parasitic Infections

The most frequent cause of disorders in fish farms is par-
asites. Both obligatory and opportunistic parasites exist.
Obligatory parasites require the host’s protection to sur-
vive and proliferate. Thus, many parasites that cause minor
issues were discovered in wild fish. Problems can arise
when diseased fish are introduced to a lab or an intensive
culture system [76-79]. The fish are usually overcrowded,
and the parasites that multiply are not separated as they
would be in nature. Fish parasitic diseases are divided into
three categories: helminthic, protozoan, and crustacean
disorders. Protozoans can cause internal and external
infections depending on their location, while most crusta-
ceans are external parasites that cause harmful diseases.
Most digeneans cause internal parasitic disorders, while
annelids and monogeneans typically cause external para-
sitic ailments. Internal parasite diseases include infections
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by nematodes, cestodes, and acanthocephalans [80-85].
Due to the low host specificity of the adult stage, several
parasites with larval stages in freshwater fish can infect
humans. Table 2 summarizes the parasitic infections that
cause fish mortality syndrome.

According to Peddinti et al. [74], 18 freshwater fish
species from 10 families in Andhra Pradesh’s River Penna
were screened for metazoan ectoparasites. Only 12 of
the fish species had at least one parasitic species pres-
ent. The mean intensity of infected fish ranged from 44.3
(Oreochromis niloticus) to 0.1 (Glossogobius giuris), with
the prevalence record being 98.9% (Wallago attu) to
30% (Salmostoma bacaila). The dominance hierarchy was
found to be Monogena > Copepoda > Isopod. Wallago attu
was found to have the most diverse parasite community.
The study also revealed that ectoparasites can more easily
enter the skin and gills of carnivorous fish due to the lower
number of scales on their bodies.

Fish-borne zoonotic trematodes are attracting global
attention, with more than 18 million people reported to be
infected by these zoonotic trematodes by the World Health
Organization [75]. Heterophyid flukes are a significant
concern.

Recently, in Egypt, a cross-sectional analysis of fish-
borne zoonotic trematodes in freshwater fish in three geo-
graphical areas revealed an alarming threat by Mahdy et
al. [76]. The authors identified them as Haplorchis pumilio,
Prohemistomum vivax, and Pygidiopsis genata based on
morphological traits. Quantitative real-time PCR was used
to compare the immune response in O. niloticus infected
with EMCs to uninfected fish [76]. The results showed
higher levels of TNF-alpha and IL-1f in infected fish. The
presence of adult flukes and EMCs caused significant his-
tological changes in both experimentally infected pigeons

Table 2. Effects of parasitic infections on fish mortality syndrome.

and naturally infected fish, including inflammation and
muscle necrosis in the digestive tracts.

Okunade et al. [77] reported that a parasite found in
crustaceans infects certain types of cultured fish. A total of
484 Clarias gariepinus fish samples were randomly selected
from fish farms located in three distinct agro-ecological
zones within the state of Lagos, Nigeria. The Argulus para-
site, a type of crustacean parasite, is present in the gills of
fingerling fish during the rainy season. Its prevalence and
degree of infection are approximately 1.05%. Despite the
ideal temperature and L-DO levels that should favor para-
sites, the prevalence of Argulus was found to be low due to
successful management techniques. The study conducted
by Silva et al. [78] in the Quilombola zone of Maranhdo
State, Brazil, focused on the diversity of fish ectoparasitic
species, gill modifications in Hoplerythrinus unitaeniatus
(Characiformes: Erythrinidae) and Cichlasoma bimacula-
tum (Perciformes: Cichlidae), and the water quality for fish-
ing. The researchers examined the mucous, body surface,
and gills of fish specimens to identify ectoparasites. They
found that three phyla, Platyhelminthes, Trematoda, and
Arthropoda, accounted for approximately 30.95% of the
prevalence of ectoparasites. Histological analysis revealed
that 23.80% of specimens had mild tissue damage, 4.77%
had moderate to severe tissue alteration, and 9.52% had
severe and permanent lesions [78].

Tilapias can also be affected by facultative opportu-
nistic parasite infections caused by water molds, such as
those in the Saprolegniaceae family. According to Chauhan
[86], they exhibit clinical symptoms of hemorrhagic skin
lesions, tissue necrosis, edema, hemorrhaging, and cellu-
lar infiltration, which may result in subsequent bacterial
infections. Ichthyobodo necator is a causal agent of ichthy-
obodosis, as stated by Senthamarai et al. [87]. Fish from
both fresh and saltwater can become infected by this

Species of fish affected

Species of parasitic

References

Freshwater fishes

Clarias gariepinus fish
Freshwater and marine water
Freshwater and marine water
Common carp and big head
Fresh water and marine water
Wild and cultured fishes
Freshwater and marine water
Cultured fish

Ornamental fish

Red-belly tilapia (Coptodon zillii), Nile tilapia (Oreochromis niloticus), and
African catfish (Clarias gariepinus)

Wallago attu and Salmostoma bacaila
Crustacean parasite

Trematoda, and Arthropoda

Dactylogyrus Sp.

Dactylogyrus minutus and Lernaea cyprinacea
Trypanosoma (blood parasites)

Microsporidia

Chilodonella

Argulus sp.

Spironucleus

Fish-borne zoonotic trematodes

Peddinti et al. [74]
Okunade et al. [77]
Silva et al. [78]
Borji et al. [79]
Nematollahi et al. [80]
Hayes et al. [81]
Weiss et al. [82]
Sadeghi et al. [83]
Aalberg et al. [84]
Lloyd et al. [85]
Mahdy et al. [76]

http://bdvets.org/javar/

Shafi/ J. Adv. Vet. Anim. Res., 12(3): 890-907, September 2025

895



parasite, including ornamental fish. This parasite specifi-
cally damages the fish’s skin and gills, affecting salmonid
fry and fingerlings. The skin of diseased fish appears steel
grey, and they develop blue or grey mucous. Trichodina spp.
parasites infect both freshwater and saltwater fish and are
characterized by cilia. They are among the most common
ectoparasites in both farmed and wild fish [87]. Sick fish
show signs of weakness, inactivity, and loss of appetite.
Ichthyobodo is a flagellate ectoparasite that becomes highly
active at 38°C [88]. Recently, in the Arabian Gulf, Ibrahim
et al. [58] identified that larval tapeworms (plerocercoids)
can infect the Indian halibut (Psettodes erumei) with an
overall prevalence of 15.4%. They reported that the sea-
sonal prevalence was the highest in summer (14.6%),
followed by spring (10.6%), winter (4.4%), and autumn
(3.5%). Infection rates increased with fish size. Future
research should focus on the impact of climate change on
parasite prevalence or the development of resistance to
anti-parasitic treatments.

Fungi Infections

Fungi cause numerous economically significant diseases
that affect teleosts. The most significant fungal patho-
gens belong to the Oomycetes family, such as Achlya,
Saprolegnia, and Branchiomyces, which are commonly
encountered during winter and are associated with stress-
ors. Some of these fungi are parasitic and widely distrib-
uted in aquatic environments. Oomycetes can produce
motile biflagellate spores, which can lead to infestation at
any time. Freshwater and estuarine fish of all ages and spe-
cies are susceptible to the widespread and highly conta-
gious fungal disease known as Saprolegniasis [41]. Pang et
al. [89] reported that 225 fungal species were responsible
for infections in 193 animal species, resulting in 357 possi-
ble pairings of pathogenic fungi and marine animal hosts.
Among the 193 animal species, the most reported hosts of
fungal infections were found to be Chordata (100 species,
51.8%) and Arthropoda (68 species, 35.2%). Various fac-
tors contribute to fungal infections in fish. These factors
can affect either the fungus or the fish, and an infestation
is typically caused by a combination of factors rather than
a single condition. Fungi causing Saprolegniasis have long
been considered secondary infections. Lesions are often
observed following handling, traumatic skin injuries, in
crowded environments, pollution, or in conjunction with
bacterial, viral, or parasitic diseases. Temperature is a sig-
nificant factor influencing the growth of infestations, with
most epizootic conditions occurring when temperatures
drop below the ideal range for the fish species.

Numerous investigations have demonstrated that
Saprolegnia spp. are pathogenic fungal species with ther-
mal tolerance comparable to their host fish. They infect
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fertilized eggs, causing them to develop hairy tufts with a
white cottony encapsulation, resulting in focal cytoplasmic
infection and loss of cytoplasm. Senthamarai et al. [87] state
that Oomycetes, a significant fungal group, are common in
freshwater environments and cause fungal infections in
both wild and farmed fish. Important aquaculture fungi
include Aphanomyces, Saprolegnia, Achlya, Calyptratheca,
Pythiopsis, Thraustotheca, Leptolegnia, and Leptomitus.
These fungi thrive in fish exposed to environmental stress-
ors such as low pH, L-DO, or high algal blooms. According
to Choudhury et al. [90], common fungal illnesses in
fish include Saprolegniasis, Branchiomycosis, EUS, and
Ichthyophoniasis. Saprolegniasis is a common infection in
freshwater and estuarine fish in warm equatorial environ-
ments. These opportunistic fungi induce immunosuppres-
sion by feeding saprophytically on decomposing organic
matter. The development of Saprolegnia infection is greatly
influenced by temperature, with outbreaks in some fish
species occurring at physiologically low temperatures.
Branchiomyces demigrans and Brevibacterium sanguinis
are the main causes of branchiomycosis, a widespread
issue in Taiwan and Europe.

Viral Infections

Viruses are a significant cause of clinical and subclinical
problems that impact the profitability of the fish farming
sector. Viruses infecting fish species are not well under-
stood, despite the presence of members of the 12th viral
family worldwide in wild and farmed fish. A research sys-
tem dedicated to studying fish viruses could help bridge
this knowledge gap. By combining molecular biology tech-
nology, genetic markers, and multidisciplinary collabora-
tion, a more comprehensive understanding of the fish virus
situation could be achieved in the coming years [91,92].
The Tilapinevirus, which belongs to the Amnoonviridae
family, contains the single-stranded RNA virus known
as the TiLV, as identified by Thawornwattana et al. [91].
According to Tattiyapong et al. [92], the TiLV is a viral ill-
ness that spreads intercontinentally and causes significant
mortality in fish. Authorities have ensured that all available
information regarding the discovery of the Tilapia virus in
tilapia fish is not confidential, despite conflicting claims
about the presence of the TiLV in fish that died during
the summer [23]. Many countries, including Malaysia,
Bangladesh, Thailand, Ecuador, Indonesia, Uganda, the
United States, and others, have reported widespread out-
breaks of the tilapia virus [93]. The tilapia virus affects all
stages of tilapia life, particularly during high temperatures
in the summer [7]. According to Aich et al. [94], it is con-
tagious and can spread through vertical and horizontal
transmission routes. Fish infected with the tilapia virus
experience significant damage to their liver, brain, and
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eyes. The virus causes highly pathogenic changes, includ-
ing the formation of syncytial cells and severe hepatic
necrosis with karyolysis and pyknotic nuclei in the hepato-
cytes [94]. Six virulence genes (saga, scpl, simA, cpsD, pgm,
and pdi) were found to be involved in the pathogenesis of
streptococcal infections in fish by Legario etal. [95] in some
strains of S. agalactiae isolated from clinical infections and
fatalities in cultured Nile tilapia fish. The pathogenicity
of S. agalactiae was confirmed through an experimental
infection of Nile tilapia fish. The high cumulative mortality
and characteristic signs of streptococcosis exhibited by the
challenged fish were like those reported by Abu-Elala et al.
[96] and Sudpraseart et al. [97] and observed in naturally
infected fish.

Several virulence genes have been identified in S. aga-
lactiae isolates [98]. The histopathological findings of
shrimp muscles affected by Loose Shell Syndrome showed
sporadic hemocytic infiltration, which differed from the
findings in Litopenaeus vannamei infected with infectious
myonecrosis virus and the nodavirus PvNV, known to cause
muscle necrosis [99]. Laem Singh virus was identified in a
Penaeus monodon affected by Loose Shell Syndrome in a
study on viral infections in shrimp [100]. The virus first
emerged in 1992 and has since spread to various countries,
including Indonesia. Although the TiLV is not zoonotic, its
recent emergence in three continents—Africa, Asia, and
South America—has sparked significant interest in tilapia
fish health worldwide [101]. Since its initial discovery in
Israel in 2014, TiLV has been identified in 13 countries, as
reported in publications and government notifications to
the World Health Organization (OIE). Various organiza-
tions, including the World Organization for Animal Health
(OIE), the CGIAR Research Program on Fish Agri-food
Systems, the FAO Global Information and Early Warning
System, the Network of Aquaculture Centers in Asia-
Pacific, and Jansen and Mohan [102], have all contributed
to raising public awareness about the disease.

Infectious Diseases in Fish Hatcheries

Most of the pathogens in fish hatcheries are bacteria
and parasites. According to Faruk et al. [103], 76.66%
of Bangladeshi hatcheries adopted equipment disinfec-
tion as a biosecurity precaution, possibly due to a fail-
ure to recognize its significance. Several fish-pathogenic
Flavobacterium species, such as Flavobacterium psychro-
philum, Flavobacterium, and Flavobacterium branchio-
philum, belong to the family Flavobacteriaceae (phylum
Bacteroidetes) and cause significant losses in farmed fish
populations globally. Recent studies have shown that ovar-
ian fluid and unfertilized eggs contain various species of
Flavobacterium and Chryseobacterium [104-106]. The
highest infection intensity (measured in counts per fish)

http://bdvets.org/javar/

was observed in silver carp (3-53), mirror carp (4-28),
and grass carp (4-22) among immature carp. Among
mature fish, silver carp (6-60) had the highest intensity,
followed by grass carp (4-30) and mirror carp (10-20)
[107]. According to Kyule-Muendo et al. [108], 76% of fish
farmers reported mortality in their hatcheries and farms,
resulting in an overall loss of almost 10%. However, these
farmers did not attribute the mortality to fish infections,
indicating that they considered them a common event.

Environmental Effects

According to AlAsely et al. [39], unfavorable environmen-
tal factors significantly contribute to the spread of infec-
tions and the occurrence of mass fatalities. Climate change
has a negative impact on fish products, especially due to
global warming, where high temperatures, such as heat
waves, can lead to heat stress and immediate physiolog-
ical effects [109]. One of the major challenges in Atlantic
salmon culture in sea cages is high water temperatures,
as climate change is increasing average ocean tempera-
tures and the frequency and severity of heat waves [110].
Recent reports have shown that high summer tempera-
tures have adversely affected the production of sea-caged
salmon in Tasmania [111], and 2.9 million salmon died in
Newfoundland, Canada, in the summer of 2019 [112].

The anterior kidney of teleost fish contains ste-
roidogenic cells that release cortisol, the primary glucocor-
ticoid in fish. According to Martinez-Porchas et al. [113],
heat stress activates the hypothalamus-pituitary internal
axis, leading to the release of cortisol. Many fish species
release cortisol in response to prolonged or severe expo-
sure to high temperatures [114]. Reactive oxygen species
generation induced by heat stress is the cause of oxidative
damage in various biomolecules and tissues, as stated by
Kamyab et al. [115].

The three most important oxidative stress indica-
tors are catalase, malondialdehyde, and superoxide dis-
mutase. They serve as an effective indicator for tracking
the heat-induced oxidative stress response. Fish behavior,
immunology, and physiology are all negatively impacted
by L-DO, which is one of the most restricting elements in
fish production. Fish immunological responses are directly
impacted by hypoxia, which also heightens their disease
susceptibility [116]. According to Cheng et al. [117], oxi-
dative stress is triggered by intracellular reactive oxygen
species, which are, in turn, triggered by toxic ammonia.
Ammonia also disrupts intracellular calcium homeostasis,
which damages DNA and causes cell death.

As water temperature increased, dissolved oxygen
significantly decreased due to the negative correlation
between oxygen solubility and temperature [118]. Fish
exposure to chronic ammonia poisoning was measured by
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measuring hazardous ammonia levels in all the sea bass
farms under study, which were 2-3 times higher than the
permitted level. Analyzed farms that fed garbage fish had
harmful ammonia levels that were directly elevated; lower
dissolved oxygen levels also increased ammonia toxicity.
According to Li et al. [119], persistent ammonia poisoning
directly lowers the survival rate by causing fin, skin, and
tail erosions as well as immune system suppression and
high mortality.

Farm management, physical, and biological elements
are subcategories of environmental factors, encompass-
ing all farm biotic and abiotic components. By identifying
these variables, a more focused approach to health man-
agement can be adopted, encompassing all choices that
affect the disease’s expression (feeding, pond bottom man-
agement, stock density, and water quality management)
[120]. Low oxygen levels worsen losses caused by the
Summer Syndrome and have occasionally been observed
in conjunction with significant mortality rates [121].

Exposure to environmental stressors can lead to changes
in physiology, biochemistry, molecular, and DNA methyla-
tion patterns in fish, affecting global DNA methylation and
disrupting biological pathways [122-123]. The majority
of fish diseases are brought on by opportunistic bacterial
pathogens that prey on stressed fish. Even in the absence
of external stressors, certain illnesses can be rather seri-
ous. Gram-positive bacteria follow Gram-negative bacteria
as the main offenders in these outbreaks. Pathogens such
as Vibrio spp., Photobacterium damselae subsp. piscicida,
Renibacterium salmoninarum, Tenacibaculum maritimum,
Edwardsiella spp., Pseudomonas spp., Streptococcus spp.,
Aeromonas spp., and Mycobacterium spp. pose significant
threats to fish in polluted aquatic environments. Effective
management strategies and strict regulations are essential
to prevent or minimize the impact of marine pollutants
on aquatic animal health [123]. This strategy could assist
regulatory authorities in developing effective management
strategies to combat marine pollution, ensure the sus-
tainability of commercial marine fisheries, and safeguard
aquatic animal health.

Utilizing Methods to Reduce the Causes of Fish
Mortality

Fish mortality is a significant issue in aquaculture, often
resulting from a complex interplay of factors including
pathogenic infections, environmental stressors, and sub-
optimal management practices [1-5]. To effectively miti-
gate fish mortality, it is crucial to address these underlying
causes through a range of preventive strategies. This sec-
tion discusses methods that can be implemented to reduce
the risk of fish mortality, focusing on two major areas: anti-
biotics and medicinal plants.
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1. Antibiotics: managing pathogenic infections

One of the primary contributors to fish mortality is the
outbreak of bacterial infections, which can rapidly spread
and cause significant losses in aquaculture systems. The
use of antibiotics has been a conventional method for
controlling bacterial diseases in fish. Antibiotics can help
eliminate pathogenic bacteria, preventing the spread of
infection and reducing mortality rates [9-10].

However, the use of antibiotics must be carefully man-
aged to avoid the development of antibiotic resistance,
which is an existential threat to aquaculture and public
health.

Key strategies for antibiotic use:

Targeted treatment: Using antibiotics specifically for
diagnosed bacterial infections rather than prophylactic or
blanket treatments.

Proper dosage and administration: Ensuring the cor-
rect dosage and duration of antibiotic treatment to maxi-
mize effectiveness and reduce the likelihood of resistance.

Integrated disease management: Combining antibi-
otic use with other methods, such as improved biosecu-
rity practices and monitoring, to minimize reliance on
antibiotics.

Despite its effectiveness, the overuse of antibiotics can
lead to resistance, making it essential to develop alterna-
tive or complementary methods for managing fish health
[50].

2. Medicinal plants: natural alternatives for disease
prevention

In recent years, the use of medicinal plants and natu-
ral compounds in aquaculture has gained attention as a
sustainable alternative to chemical treatments, including
antibiotics. Many medicinal plants have demonstrated
antimicrobial, anti-inflammatory, and immunostimula-
tory properties, which can help enhance the fish’s natural
defenses against diseases and reduce mortality rates [100].

Prominent medicinal plants used in aquaculture:

Garlic (Allium sativum): Known for its antimicrobial and
immunomodulatory properties, garlic can help combat
bacterial infections and strengthen the immune response
of fish [65].

Neem (Azadirachta indica): This plant has shown effi-
cacy in controlling various parasitic infections and improv-
ing overall fish health [69].

Ginger (Zingiber officinale): With its anti-inflammatory
and antioxidant effects, ginger is often used to boost fish
immunity and prevent diseases [102].

By integrating medicinal plants into aquaculture prac-
tices, farmers can reduce their reliance on chemical treat-
ments, promote sustainable practices, and decrease the
risk of antimicrobial resistance.
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3. Water management: environmental stressors and mor-
tality prevention

Environmental stressors, such as changes in water qual-
ity, oxygen levels, and temperature fluctuations, can sig-
nificantly impact fish health, leading to increased mortality
[47]. Proper water management is essential for maintain-
ing optimal conditions for fish growth and survival.

Key strategies for effective water management:

Maintaining optimal water temperature: Regularly
monitoring and controlling water temperature to pre-
vent thermal stress, which can lead to weakened immune
responses and increased susceptibility to diseases [75].

Oxygenation: Ensuring adequate oxygen levels in the
water, as low oxygen concentrations can stress fish and
increase mortality [59].

Water filtration and treatment: Implementing effective
filtration systems to remove toxins and pathogens, ensur-
ing a clean and healthy environment for the fish [59].

Proper water quality management not only reduces
stress-related mortality but also promotes overall fish wel-
fare and growth.

4. Management practices: enhancing fish health through
good practices

In addition to using antibiotics, medicinal plants, and
improving water quality, good management practices play
a pivotal role in reducing mortality rates in fish farming.
Implementing effective biosecurity measures, proper feed-
ing regimes, and regular health monitoring can signifi-
cantly improve fish survival rates [28].

Best management practices include:

Routine health monitoring: Regular health checks and
early detection of diseases can prevent outbreaks and min-
imize mortality [75].

Biosecurity measures: Ensuring clean tanks, equip-
ment, and personnel to prevent the introduction and
spread of pathogens [95].

Optimized feeding practices: Providing a balanced
diet that meets the nutritional needs of the fish, helping
to maintain strong immune systems and promote overall
health [25].

By integrating these management practices, fish farm-
ers can create a healthier and more sustainable farming
environment, reducing the risk of mortality.

Controlled Mortality in Fish by Medicinal Plants

Abdel-Tawwab et al. [124] found that incorporating green
tea into experimental diets for Nile tilapia can enhance
growth, feed consumption, and resistance to A. hydroph-
ila infection, thereby improving fish health. The optimal
level of green tea inclusion was determined to be 0.5 gm/
kg of diet. In a study by Enany et al. [38], 100 Nile tilapia
fish with clinical infections were randomly sampled from
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a farm in Egypt to identify the bacterial pathogens affect-
ing the fish. Samples were collected from the brain, kidney,
spleen, liver, and ulcers. Methods for preventing and con-
trolling fish mortality are illustrated in Figure 3.

Medicinal herbs have been used as immunostimu-
lants to enhance animals’ resistance to infection due to
their ability to activate white blood cells [60]. The active
components of plants, such as quinones, polypheno-
lics, terpenoids, alkaloids, and polypeptides, can effec-
tively replace synthetic substances, antibiotics, and other
medications, making them safe for both humans and the
environment. These plant-derived products can promote
growth and reduce stress, particularly in shrimp and fin-
fish. Therapeutic plants include seaweeds, spices, herbs,
herbal extracts, traditional Chinese medicines, and com-
mercial plant-derived products [60].

Studies have shown that medicinal plants like Withania
somnifera, also known as Indian ginseng, can reduce
the mortality of Greasy Groupers (Epinephelus tauvina)
infected with V. harveyi [125]. Fish fed with dietary gin-
ger exhibited increased nonspecific immunity, leading
to reduced susceptibility to V. harveyi infection. Allium
sativum, the plant used in garlic, possesses immunostimu-
lant, therapeutic, and antibacterial properties that enhance
immunity against V. harveyi, promoting better growth and
survival [126]. Similarly, Van Hai [60] discovered that feed-
ing seaweed extracts to Fenneropenaeus indicus Indian
prawns prevented them from contracting Vibrio parahae-
molyticus infection.

One mangrove species that has been studied and is
being developed as a replacement for other components
in disease control, including the prevention of the White
Spot Syndrome Virus in shrimp, is Sonneratia alba [127]
in Indonesia. This type of mangrove grows in various
locations near rivers and aquaculture sites. It is consid-
ered a potential substitute for disease prevention in tiger
shrimp: S. alba [128-129]. This mangrove species has
been identified as a potent antibacterial agent in shrimp,

No pathogens

Prevention of fish
mortality

Figure 3. Prevention and control of fish mortality syndrome.

High quality water
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with minimum inhibitory concentrations of 1 mg/l for
V. harveyi and 0.1 mg/l for V. parahaemolyticus, respec-
tively. Other mangrove species that have shown the abil-
ity to inactivate the White Spot Syndrome Virus include
Rhizophora mucronata, Sonneratia sp., and Ceriops tagal.
The potential of Sonneratia caseolaris mangrove extract
as an immunological stimulant has also been recognized.
This type of mangrove can be used as an immune stimulant
material in shrimp farming, as the methanol extract from it
can enhance the immune response, phagocytic character-
istics, and phenoloxidase activity in shrimp [127]. The use
of methanol, ethanol, butanol, and other chemical solvents
for mangrove extraction has been the subject of numerous
investigations.

According to Muliani et al. [130], the butanol extract of
Bruguiera gymnorrhiza and the diethyl ether and methanol
extract of S. alba exhibit potent antibacterial properties.
Both types of mangroves are believed to have anti-White
Spot Syndrome Virus properties in addition to their anti-
bacterial effects. Susianingsih [131] suggests that the sur-
vival rates of tiger shrimp can reach 100% when using
methanol, butanol, and diethylene extracts from S. alba
and B. gymnorrhiza instead of the control group. A recent
study by Muliani et al. [127] indicates that tiger shrimp
mortality can be reduced by using a 1% concentration of
S. alba extract, which is most effective in inactivating WSSV.

Controlled Mortality in Fish by Antibiotics

Aeromonas hydrophila, P. putida, P. fluorescens, and V. chol-
erae were identified as isolated fish pathogens based on
morphological features, antibiotic sensitivity testing, and
biochemical analyses. The results of the microbial sen-
sitivity testing for the isolated strains revealed that the
preferred antibiotics for A. hydrophila were tetracycline
(TE30), tobramycin (TOB10), oxytetracycline (T30), nor-
floxacin (NOR10), and sulfamethoxazole-trimethoprim
(SXT25). For P, fluorescence, the preferred antibiotics were
tetracycline (TE30), tobramycin (TOB10), oxytetracycline
(T30), and kanamycin (K30). For P. putida, the preferred
antibiotics were tetracycline (TE30), nalidixic acid (NA30),
streptomycin (S10), and kanamycin (K30). In contrast, the
preferred antibiotics for treating V. cholerae were nalidixic
acid (NA30) and oxytetracycline (T30). The results of the
PCR test confirmed the findings of the antibiotic sensitivity
test and the presence of V. cholerae, P. fluorescence, and A.
hydrophila in the affected fish [127]. According to Matern
[120], unfavorable environmental factors play a significant
role in the spread of infestation and high-mortality out-
breaks. Therefore, it is essential to maintain a cultured fish
environment and proper husbandry practices to produce
healthy fish. Assar et al. [132] demonstrated that phyto-
chemicals could be a suitable substitute for controlling this
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infestation. Further research is needed to investigate the
effects of olive leaf extract on the immune response and
growth performance of common carp to determine the
most effective way to use this extract as an immune stimu-
lant for these fish.

Prevention of Fish Disease

To enhance the tilapia-rearing environment and reduce
pathogen virulence, it is essential to maintain optimal fish
culture practices, environment, and husbandry proce-
dures to ensure the health of the fish [45]. Prevention is
a key aspect of any public health protection program, and
it can be as challenging and complex as disease control
efforts. Fish disease control encompasses both preventive
and therapeutic measures. Preventive measures for fish
diseases include various factors, such as regulatory com-
pliance, nutrition and feeding practices, and genetic resis-
tance to diseases. The following methods play a crucial
role in disease prevention.

Vaccination

The development of immunization techniques and
research on fish immune responses has progressed swiftly
[133]. While vaccinations cannot completely protect fish
from infestation, they can assist them in fighting off infec-
tions to the extent that they are cost-effective in many sit-
uations where certain diseases lead to serious difficulties.
Eliminating and de-infesting purging programs aim to stop
fish infections from spreading from one area to another.
The methods for ensuring the purging of fish production
facilities, the disinfestation procedures, and the evaluation
of the cost-effectiveness of different purging strategies
have not been extensively documented in the literature
[134]. The goal of egg disinfestation warfare is to stop
infections from spreading horizontally from the egg facil-
ity to the keeping facility and vertically from the parent
stock to the progeny. Purging techniques can be beneficial
in keeping distinct fish populations apart while the fish are
being raised. When a facility cannot be depopulated and
disinfested in a single operation, phased disinfestations
can be carried out. Completely disinfecting fish kills them,
but it is simpler to do so. Because there is less contamina-
tion, complete disinfection offers a higher chance of suc-
cess than a staged approach [134].

Since vaccination is the best immunological preventive
approach against diseases, it has the potential to improve
fish survival and enhance the profitability of [135,136].
The development of fish vaccines has garnered signifi-
cant interest in studies focusing on vaccine composition,
immunization schedules, and protective efficacy. Over
time, fish disease diagnosis and immunization techniques
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have improved, making them more applicable to the aqua-
culture industry. Initially, fish vaccinations were limited
to salmonid species before becoming widely adopted
in aquaculture. The success of salmon farming can be
largely attributed to vaccination, which is essential for
large-scale commercial fish farming [137]. The advance-
ments in salmonid farming due to vaccination have led to
increased interest in cultivating other marine fish species
[138]. Research and development efforts on vaccines for
fish species have also been extended to Asian fish species,
with commercial vaccinations now available for seabasses
(Lates spp.), tilapias (Oreochromis spp.), and other spe-
cies in Southeast Asian countries, as well as amberjacks
(Seriola spp.) in Japan and grass carp (Ctenopharyngodon
idella) in China [139]. Grouper species (Epinephelus spp.)
have been the focus of numerous studies utilizing vacci-
nation techniques to combat infections. Huang et al. [140]
successfully inoculated orange-spotted grouper against
pathogenic S. iniae using an intraperitoneal injection of a
formalin-inactivated vaccine, resulting in a 100% survival
rate 6 months post-inoculation.

Green Water Technique

According to Defoirdt et al. [141], the larvae are culti-
vated in water rich in microalgae using the relatively new
green water technology. Studies have indicated that the
growth of V. harveyi in giant tiger prawns was effectively
prevented by green water comprising eight bacterial iso-
lates and 12 fungal isolates [142]. However, fish farms have
not yet made extensive use of this approach. Aquaculture
utilizes green water technologies to manage the growing
environment [143]. In the rearing ponds employed for
this method, fish larvae are surrounded by an abundance
of microalgae, bacteria, and zooplankton. If the system
water has been pretreated to remove competing bacte-
ria, cultivated microalgae strains can be added to culture
tanks, or the technique can be based on naturally occur-
ring microalgal populations that are encouraged to grow
with the addition of fertilizer. Better direct and indirect
feeding of larvae, reduced stress levels, improved envi-
ronmental conditions for feeding by increasing turbidity
and light, and enhancing visual contrast, increased oxy-
genation rates, and increased antibacterial properties in
rearing ponds are all considered major contributors to
the better growth and survival rates reported by several
authors [144]. The profitable and advantageous benefits
of green water are linked to many processes, including the
synthesis of bioactive chemicals by algal cells, which have
antioxidant and antibacterial properties that regulate viru-
lence genes. The most often utilized microalgal species for
this purpose include Chlorella, Nannochloropsis gaditana,
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Nannochloropsis sp., Isochrysis galbana, Isochrysis sp., and
Tetraselmis sp.

Molecular Technology

Thanks to the advantages of molecular innovation, fish
genome sequencing can facilitate gene editing using
recently developed genome editing technologies such as
zinc-finger nuclease (ZFN), transcription activator-like
effector nuclease (TALEN), and clustered regularly inter-
spaced short palindromic repeats associated with Cas9
(CRISPR/Cas9). Studies on fish gene editing have already
been conducted to demonstrate the viability and use of
these methods. For example, sterile channel catfish were
created using the ZFN technique to delete the pituitary
LH hormone f8 subunit gene. In another study, common
carp was modified using CRISPR/Cas9 to alter the mst-
nba gene, which codes for myostatin, an inhibitor of skel-
etal muscle growth, resulting in increased muscle growth.
TALEN technology was used to disrupt the signal trans-
ducers and activators of transcription (STAT) gene, cre-
ating mutant zebrafish with scoliosis, a fractured spine,
and deformed bone joints, highlighting the importance
of STAT genes in vertebrate cell proliferation and differ-
entiation. Transgenesis is another method used to create
genetically altered tilapia resistant to illness. Fish with
the growth hormone gene inserted into them are known
as transgenic fish in the salmon industry. Transgenic fish
showed a growth rate two to six times faster and a higher
feed conversion rate compared to control fish. These find-
ings suggest that introducing disease-resistant genes into
tilapia to increase production may be a viable strategy for
disease control in aquatic animals. According to a recent
study, nanotechnology is a cutting-edge technology that is
garnering interest worldwide due to the essential role of
nanoparticles in various fields of science and technology.
Different nanoparticles, such as zinc, selenium, silver, iron,
and copper, have been utilized in the aquaculture industry
to address various issues, including disease management,
vaccine delivery, growth factor delivery, water cleaning,
and nutrition delivery (Fig. 4).
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Conclusion

Aquaculture is one of the world’s most active and rapidly
expanding food production industries. Fish not only serve
as a major food source for humans but are also economi-
cally crucial, contributing to both human economic stabil-
ity and nutritional well-being. Diseases pose the biggest
obstacle to aquaculture and its global output. Summer
mortality syndrome in fish can be caused by various fac-
tors, including bacterial pathogens, poor water quality,
viral infections, parasitic infections, fungal infections, and
compromised immune systems in fish. Fish can become
more vulnerable to secondary illnesses as a result of poor
water quality and management techniques. Methods for
controlling and preventing fish diseases include the use
of antibiotics (such as oxytetracycline, nalidixic acid,
norfloxacin, sulfa-trimethoprim, tetracycline, and tobra-
mycin), herbal medicine (such as green tea and olive leaf
extract), improving environmental conditions, and imple-
menting excellent management practices. Prevention of
fish disease can be done by using many methods, such as
vaccination, green water technique, and molecular tech-
nology. Further research is necessary to develop effective
solutions to prevent disease outbreaks, maintain fish pro-
duction, and support fish farmers. There are important
reasons for continued innovation in fish farming prac-
tices to combat summer mortality syndrome effectively.
Aquaculture is one of the world’s most active and rapidly
expanding food production industries. Fish, in addition
to being a major food source for humans, is also crucial
economically, contributing to human economic and nutri-
tional well-being. Diseases pose the primary obstacle to
aquaculture and its global output. Summer mortality syn-
drome in fish can be caused by various factors, including
bacterial pathogens, poor water quality, viral infections,
parasitic infections, fungal infections, and compromised
immune systems. Poor water quality and management
practices can make fish more susceptible to secondary
infections. Methods for controlling and preventing fish
diseases include the use of antibiotics (such as oxytetra-
cycline, nalidixic acid, norfloxacin, sulpha-trimethoprim,
tetracycline, and tobramycin), herbal medicine (such
as green tea and olive leaf extract), improving environ-
mental conditions, implementing good management
practices, and adopting innovative approaches such as
vaccination, the green water technique, and molecu-
lar technologies such as CRISPR/Cas9. These advanced
methods hold promise for improving disease prevention
and boosting fish production. Further research is needed
to develop effective, sustainable solutions to prevent dis-
ease outbreaks, maintain fish production, and support
fish farmers worldwide.
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