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ABSTRACT

Objective: Morphometric measurement is essential in the determination of breeding program 
zones that need to be improved.
Materials and Methods: This research aims to compare the precision of morphometric mea-
surement to linear models, such as regression analysis and machine learning methods, such as 
Random Forest (RF), to improve the precision of live weight estimation in animal breeding pro-
grams. A total of 228 rabbits were used in the current study, and they comprised the following 
breeds:39 Satin, 40 Rex, 40 New Zealand White, 29 Hyla, 40 Hycole, and 40 Reza were utilized for 
the study. Each rabbit was measured on body weight, head (width and length), chest circumfer-
ence, body length, and hip width. Stepwise regression and linear regression analyses were con-
ducted using the lm function in R version 4.4.1. For the RF algorithm, the caret and randomForest 
packages were utilized to build and evaluate the model.
Results: In this study, linear regression [R-squared value of 0.82 and an Root Mean Squared 
error (RMSE) of 300.16] outperformed RF (R-squared value of 0.8 and an RMSE of 326.37) in 
predicting rabbit body weight based on morphometric measurements. The results showed that 
chest circumference and body length were the most influential predictors, with the largest coef-
ficients and highest significance levels, and the IncNodePurity illustration showed head length 
(IncNodePurity: 19388974) emerged as an important factor in predicting body weight.
Conclusion: The Linear regression model showed superior results compared to the RF model in 
predicting rabbit body weight based on morphometric measurements.
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Introduction

Rabbits can be utilized both for meat production and as pets. 
Their small size, docile temperament, and rapid reproduc-
tive rate make them well-suited for these roles [1]. For meat 
production, rabbits possess a number of unique benefits, 
such as a high rate of reproduction [2,3]. In relation to other 
animals, rabbits require little space and resources to raise, 
and thus, they consume less in terms of the environment.

Rabbit meat is also becoming increasingly acceptable 
in Indonesia due to the increasing demand for alternative 
protein sources [4,5], and rabbit meat has the immense 
scope to provide sustainable income to the small farm-
ers [6]. Rabbit is a very good source of nutrition since it 

consists of high protein content, extremely low fat content, 
and a desirable percentage of unsaturated fatty acids. In 
addition, rabbit meat contains virtually no cholesterol and 
consists mainly of calcium and phosphorus, thus being a 
healthy choice of food [7].

Morphometric measurements play an important role 
in the classification and differentiation of various breeds 
of animals [8–10]. This study can prove to be helpful in 
the knowledge about how different populations have 
evolved and how one can maximize the changes that can 
be enhanced in the breeding programs. Furthermore, 
morphometrics is a reliable predictor of carcass weight 
and body weight of animals [11,12]. Such an approach is 
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particularly appropriate in the livestock production sec-
tor, where meat yield and performance of growth may be 
tested non-invasively and to an economically reasonable 
degree.

Moreover, linear models and machine learning software 
can be used to significantly improve prediction accuracy in 
the field of animal science, such as the estimation of live 
weight [13,14]. Linear models such as regression analysis 
offer a simple and interpretable method for determining 
the relationship between morphometric measurements 
and factors such as body weight or carcass yield. Conversely, 
machine learning algorithms like Random Forest (RF) 
have superior attributes to identify a non-linear pattern in 
data. Thus, the purpose of this research is to compare and 
evaluate the linear regression and RF algorithm to deter-
mine how efficient they are in forecasting the body weight 
from the measurements of the body size. Through these 
two different modeling techniques, the research aims to 
determine which of the two methods is more accurate and 
reliable in predicting body weight from morphometric 
measurements.

Materials and Methods

Ethical approval

This study was carried out at the Indonesian Research 
Institute for Animal Production in Ciawi, Indonesia. 
Approval for this study was sought from the Institutional 
Animal Care and Use Committee of the Indonesian Agency 
for Agricultural Research and Development with the 
approval number Balitbangtan/Balitnak/Rd/01/2021.

Animals

A total of 228 6-month-old rabbits were used in this study, 
comprising 39 Satin (20 male and 19 female), 40 Rex (20 
male and 20 female), 40 New Zealand White (20 male and 
20 female), 29 Hyla (9 male and 20 female), 40 Hycole (20 
male and 20 female), and 40 Reza (16 male and 24 female) 
breeds. The kits were weaned at 5 weeks. The diet used 
in this study contained 18% crude protein, 2,500 kcal/
kg metabolic energy, and 14% crude fiber. The diet was 
made in the form of a pellet. The pellet was delivered in 
the morning and evening, with drinking water supplied ad 
libitum.

Statistical analysis

Each rabbit individual was measured on body weight, head 
(width and length), chest circumference, body length, and 
hip width. Stepwise regression and linear regression anal-
yses were conducted using the lm function in R version 
4.4.1. For the RF algorithm, the caret and randomForest 
packages were utilized to build and evaluate the model. 
Data visualization and plotting were performed using the 
ggplot2 package, ensuring clear and informative graphical 
representations of the results.

Results and Discussion

The model of stepwise regression shows a significant result 
of the variance in body weight, as indicated by the highly 
significant predictor values (head length, chest circumfer-
ence, and body length) (Tables 1 and 2). Chest circumfer-
ence and body length are the most influential predictors, 
with the largest coefficients and the highest significance 

Table  1.  Dataset for predicting body weight using morphometric data.

Breed Sex Body weight (gm) Head length 
(cm)

Head width 
(cm)

Chest circumference 
(cm)

Body length (cm) Hip width (cm)

Satin Male (n = 20) 2,066.25 ± 251.25 11.24 ± 0.88 4.59 ± 0.29 29.22 ± 2.59 31.53 ± 1.68 8.90 ± 1.17

Female (n = 19) 2,568.16 ± 404.66 13.25 ± 1.11 4.41 ± 0.66 31.69 ± 2.81 33.21 ± 1.14 8.47 ± 0.83

Rex Male (n = 20) 2,579.25 ± 421.85 12.87 ± 1.39 5.12 ± 0.49 31.61 ± 1.93 33.48 ± 1.04 8.84 ± 0.56

Female (m = 20) 1,829.50 ± 269.10 11.18 ± 1.43 4.14 ± 0.53 27.47 ± 2.58 30.39 ± 1.69 8.52 ± 1.01

New 
Zealand 
White

Male (n = 20) 3,434 ± 566.54 13.75 ± 0.97 5.22 ± 0.68 32.45 ± 2.26 37.33 ± 3.13 8.93 ± 0.66

Female (n = 20) 3,024.50 ± 402.04 13.93 ± 0.82 4.80 ± 0.34 31.54 ± 1.29 35.76 ± 1.91 8.63 ± 0.59

Hyla Male (n = 9) 3,397.78 ± 455.96 14.47 ± 0.65 5.08 ± 0.35 34.13 ± 2.14 34.93 ± 1.23 8.08 ± 0.95

Female (n = 20) 3,492.25 ± 701.55 13.76 ± 1.89 4.90 ± 0.34 33.96 ± 2.35 36.31 ± 2.39 9.13 ± 1.05

Hycole Male (n = 20) 3,377.50 ± 523.49 14.25 ± 1.18 5.01 ± 0.34 34.16 ± 2.49 37.73 ± 1.60 9.22 ± 0.69

Female (n = 20) 3,379.50 ± 601.14 13.73 ± 2.36 4.69 ± 0.34 33.56 ± 2.09 37.37 ± 1.53 8.97 ± 0.71

Reza Male (n = 16) 2,392.19 ± 318.82 12.91 ± 1.06 4.81 ± 0.24 30.26 ± 1.28 33.92 ± 1.18 8.14 ± 4.94

Female (n = 24) 2,271.46 ± 324.12 13.10 ± 0.51 4.43 ± 0.23 30.17 ± 1.47 33.72 ± 1.82 7.92 ± 0.47

The numbers in the table are (mean ± SE)
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levels. This suggests that these variables can accurately 
predict body weight.

Head width and hip width are less likely to contribute to 
the model, indicating that they provide additional explana-
tory power. The intercept suggests that the model predicts 
a negative body weight when all predictors are zero, which 
is biologically implausible. This indicates that the relation-
ship between the predictors and body weight is not linear 
across the entire range of values, or that the model may not 
extrapolate well outside the observed data range.

The findings are consistent with previous studies on 
other species, such as Belgian Blue cattle, where Chest 
Circumference and Body Length were identified as the 
most important predictors of body weight [15]. This sup-
ports the belief that such morphometric characteristics 
are strong universal predictors of body mass across vari-
ous animal species. The same outcome is attained in more 
recent research on goats and sheep, whose chest girth and 
body length have been significantly correlated with body 
weight as predictors in models of body weight prediction 
[16,17].

The linear regression model that was applied to fore-
cast the body weight of the rabbits based on predictors 
like chest circumference, body length, head length, and 
hip width had an R-squared of 0.82 and an Root Mean 
Squared error (RMSE) of 300.16 (Fig. 1a). These findings 
can be useful to explain the performance of the model 
and relations between the predictors and body weight. An 
R-squared value of 0.82 indicates that the model accounts 
for a large part of the underlying relationship between 
these morphometric measurements and body weight.

The RF model that was used to predict the body weight 
of the rabbits based on predictors, which included chest 
circumference, body length, head length, and hip width, 
had an R-squared of 0.8 and an RMSE of 326.37. (Fig. 
1b). Linear regression was better than RF for rabbit body 
weight prediction based on morphometric measurements 
in this study. The finding is consistent with Ruchay et al. 
[18], who found that linear regression gave improved body 

weight predictions in Hereford cows as compared to sup-
port vector machines and RF.

In addition, the development of machine learning 
algorithms has also confirmed the significance of these 
morphometric traits. For instance, a study on pigs demon-
strated the StackingRegressor model for predicting body 
weight, achieving high accuracy and robustness [19]. 
Similarly, poultry research highlighted the utility of com-
bining traditional morphometric measurements with 
machine learning algorithms to improve weight prediction 
accuracy, particularly in large-scale farming operations 
[20]. The findings from this comparison will contribute 
to the development of more effective tools for weight pre-
diction, supporting improved livestock management and 
breeding practices. However, simpler models may be more 
effective when the relationships between predictors and 
body weight are predominantly linear.

Figure 1c illustrates IncNodePurity (Increase in Node 
Purity), a metric used in RF models to assess the impor-
tance of predictor variables. In the context of this study, 
IncNodePurity for chest circumference (IncNodePurity: 
27698337) and body length (IncNodePurity: 25253933) 
are most influential in predicting body weight. 
Interestingly, head length (IncNodePurity: 19388974) 
emerges as an important factor in predicting body weight 
in this study. This finding is unexpected, as head length 
is not commonly identified as a significant predictor in 
body weight estimation models. For instance, Abbas et al. 
[21] found no significant effect of head length in predict-
ing body weight in sheep. The prominence of head length 
in this study could be attributed to unique breed char-
acteristics or specific morphometric relationships in the 
studied population.

Machine learning became an essential tool in modern 
livestock management, offering innovative solutions for 
monitoring animal health, predicting body weight, opti-
mizing breeding programs, and enhancing overall farm 
efficiency. Algorithms such as RF [22,23], Support Vector 
Machine [24,25], Artificial neural networks [26,27], 
Convolutional Neural Network [28,29], and Gradient 

Table 2.  Stepwise regression results for body weight prediction.

Variable Estimate Std. Error t-value p-value Significance

Intercept −5,797.995 259.508 −22.342 < 2e–16 ***
Head length 60.519 15.174 3.988 9.04e–05 ***
Head width 73.511 41.386 1.776 0.0771 .

Chest circumference 116.409 9.966 11.680 < 2e-16 ***
Body length 95.233 9.403 10.128 < 2e-16 ***
Hip width 54.446 25.505 2.135 0.0339 *

*:p < 0.05, **:p < 0.01, ***:p < 0.001
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Boosting [30,31] were successfully applied to analyze mor-
phometric data, classify animal behavior, predict growth 
performance, predict electricity consumption on dairy 
farms, and predict milk yield.

Moreover, RF had a higher accuracy compared to 
Gradient Boosting and Support Vector Machine in deter-
mining active and inactive activities in growing rabbits 
[32]. In addition, the use of machine learning in rabbit 
farming can be used for image recognition of fecal shape 
to monitor rabbit health [33]. The integration of machine 
learning with the Internet of Things (IoT) is expected to 
enhance rabbit farm management by enabling real-time 
monitoring, optimizing growth performance, and improv-
ing breeding selection programs. IoT devices, such as 
smart sensors and cameras, can continuously collect data 
on environmental conditions, feeding patterns, and rab-
bit behavior, while machine learning algorithms analyze 

this data to detect health issues, predict growth rates, 
and recommend optimal breeding pairs. This advanced 
approach can lead to more efficient resource utilization, 
reduced production costs, and improved overall farm 
productivity.

Conclusion

In conclusion, chest circumference, body length, and head 
length are reliable predictors of body weight for rabbits. 
The linear regression model showed superior results com-
pared to the RF model in predicting rabbit body weight 
based on morphometric measurements.

List of abbreviations

RMSE: Root Mean Squared Error; RF: Random Forest.

Figure 1.  (a) Linear regression for predicting body weight using morphometric data in Indonesian rabbits. 
(b) Random forest for predicting body weight using morphometric data in Indonesian rabbits. (c) Variable of 
importance in a random forest.
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