Journal of Bangladesh Academy of Sciences, Vol. 36, No. 1, 61-69, 2012

SOME FEATURES OF α-T₀ SPACES IN SUPRA FUZZY TOPOLOGY

M. F. HOQUE, M.S. HOSSAIN¹ AND D. M. ALI¹

Department of Mathematics, Pabna Science and Technology University, Pabna-6600, Bangladesh

ABSTRACT

Four concepts of T_0 supra fuzzy topological spaces are introduced and studied in this paper. The workers also established some relationships among them and studied some other properties of these spaces.

Key words: Fuzzy topology, Supra fuzzy topology

INTRODUCTION

The fundamental concept of a fuzzy set was introduced by Zadeh (1965) to provide a foundation for the development of many areas of knowledge. Chang (1968) and Lowen (1976) developed the theory of fuzzy topological spaces using fuzzy sets. Mashhour *et al.* (1983) introduced supra topological spaces and studied s-continuous functions and s^{*}-continuous functions. They also gave the concept of α -T₀ fuzzy topological spaces. In 1987, Abd EL-Monsef *et al.* introduced the fuzzy supra topological spaces and studied fuzzy supra continuous functions and characterized a number of basic concepts. Ali (1993) made some remarks on α -T₀, α -T₁ and α -T₂ fuzzy topological spaces. In this paper, the present workers studies some features of α -T₀ spaces and obtained certain characterizations in supra fuzzy topological spaces. As usual I = [0, 1] and I₁ = [0, 1).

Definition: For a set X, a function $u: X \to [0,1]$ is called a fuzzy set in X. For every $x \in X$, u(x) represents the grade of membership of x in the fuzzy set u. Some authors say that u is a fuzzy subset of X. Thus a usual subset of X, is a special type of a fuzzy set in which the range of the function is $\{0, 1\}$ (Zadeh 1965).

Definition: Let X be a nonempty set and A be a subset of X. The function $1_A: X \to [0, 1] \{0, 1\}$ defined by $1_A(x) = \begin{cases} 1 & if \quad x \in A \\ 0 & if \quad x \notin A \end{cases}$ is called the characteristic function of A. The present authors also write 1_x for the characteristic function of $\{x\}$. The characteristic functions of subsets of a set X are referred to as the crisp sets in X (Zadeh 1965).

¹ Department of Mathematics, Rajshahi University, Rajshai-6205, Bangladesh.

Example : Suppose X is real number R and the fuzzy set of real numbers much greater than 5 in X that could be defined by the continuous function $U: X \rightarrow [0,1]$ such that

$$u(x) = \begin{cases} 0 & \text{if } x \le 5\\ \frac{x-5}{50} & \text{if } 5 < x < 55 \\ 1 & \text{if } x \ge 55 \end{cases}$$

Definition: Let X be a non empty set and t be the collection of fuzzy sets in I^X . Then t is called a fuzzy topology on X if it satisfies the following conditions:

- (i) $1, 0 \in t$,
- (ii) If $u_i \in t$ for each $i \in \Lambda$, then $\bigcup_{i \in \Lambda} u_i \in t$.
- (iii) If $u_1, u_2 \in t$ then $u_1 \cap u_2 \in t$.

If t is a fuzzy topology on X, then the pair (X, t) is called a fuzzy topological space (fts, in short) and members of t are called t- open (or simply open) fuzzy sets. If u is open fuzzy set, then the fuzzy sets of the form 1-u are called t- closed (or simply closed) fuzzy sets (Chang 1968).

Definition: Let X be a non empty set and t be a collection of fuzzy sets in I^X such that

- $(i) \quad 1,0 \in \mathfrak{t},$
- (ii) If $u_i \in t$ for each $i \in \Lambda$, then $\bigcup_{i \in \Lambda} u_i \in t$.
- (iii) If $u_1, u_2 \in t$ then $u_1 \cap u_2 \in t$.
- (iv) All constant fuzzy sets in X belong to t.

Then t is called a fuzzy topology on X (Lowen 1976).

Definition: Let X be a non empty set. A subfamily t^* of I^X is said to be a supra topology on X if and only if

- (i) $1, 0 \in t^*$,
- (ii) If $u_i \in t^*$ for each $i \in \Lambda$, then $\bigcup_{i \in \Lambda} u_i \in t^*$.

Then the pair (X, t^*) is called a supra fuzzy topological spaces. The elements of t^* are called supra open sets in (X, t^*) and complement of supra open set is called supra closed set (Mashhour *et al.* 1983).

Example: Let $X = \{x, y\}$ and $u, v \in I^X$ are defined by u(x) = .8, u(y) = .6 and v(x) = .6, v(y) = .8. Then we have $w(x) = (u \cup v)(x) = .8$, $w(y) = (u \cap v)(y) = .8$ and k(x) = .6.

 $(u \cap v)(x) = .6$, $k(y) = (u \cap v)(y) = .6$. If we consider t^{*} on X generated by {0, u, v, w, 1}, then t^{*} is supra fuzzy topology on X but t^{*} is not fuzzy topology. Thus we see that every fuzzy topology is supra fuzzy topology but the converse is not always true.

Definition: Let (X, t) and (X, s) be two topological spaces. Let t^* and s^* are associated supra topologies with t and s. respectively and $f : (X, t^*) \to (Y, s^*)$ be a function. Then the function f is a supra fuzzy continuous if the inverse image of each i.e., if for any $v \in s^*$, $f^1(v) \in t^*$. The function f is called supra fuzzy homeomeophic if and only if f is supra bijective and both f and f^1 are supra fuzzy continuous (Mashhour *et al.* 1983).

Definition: Let (X, t^*) and (Y, s^*) be two supra topological spaces. If u_1 and u_2 are two supra fuzzy subsets of X and Y respectively, then the Cartesian product $u_1 \times u_2$ is a supra fuzzy subset of X × Y defined by $(u_1 \times u_2) (x, y) = \min [u_1(x), u_2(y)]$, for each pair $(x, y) \in X \times Y$ (Azad 1981).

Definition: Suppose { X_i , $i \in \Lambda$ }, be any collection of sets and X denoted the Cartesian product of these sets, i.e., $X = \prod_{i \in \Lambda} X_i$. Here X consists of all points $p = \langle a_i, i \in \Lambda \rangle$, where $a_i \in X_i$. For each $j_o \in \Lambda$, the authors defined the projection $\pi_{jo} : X \to X_{jo}$ by π_{jo} ($\langle a_i : i \in \Lambda \rangle$) = a_{jo} . These projections are used to define the product supra topology (Wong 1974).

Definition: Let $\{X_{\alpha}\}_{\alpha \in \Lambda}$ be a family of nonempty sets. Let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$ be the usual product of X_{α} 's and let $\pi_{\alpha} : X \to X_{\alpha}$ be the projection. Further, assume that each X_{α} is a supra fuzzy topological space with supra fuzzy topology t^*_{α} . Now the supra fuzzy topology generated by $\{\pi_{\alpha}^{-1}(b_{\alpha}) : b_{\alpha} \in t^*_{\alpha}, \alpha \in \Lambda\}$ as a sub basis, is called the product supra fuzzy topology on X. Thus if w is a basis element in the product, then there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in \Lambda$ such that w(x) = min $\{b_{\alpha}(x_{\alpha}) : \alpha = 1, 2, 3, \dots, n\}$, where x = $(x_{\alpha})_{\alpha \in \Lambda} \in X$ (Wong 1974).

Definition: Let (X, T) be a topological space and T^* be associated supra topology with T. Then a function $f : X \to R$ is lower semi continuous if and only if $\{x \in X : f(x) > \alpha\}$ is open for all $\alpha \in R$ (Abd EL-Monsef *et al.* 1987).

Definition: Let (X, T) be a topological space and T^{*} be associated supra topology with T. Then the lower semi continuous topology on X associated with T^{*} is $\omega(T^*) = \{\mu: X \to [0,1], \mu \text{ is } \sup ra \text{ lsc}\}$. If $\omega(T^*): (X, T^*) \to [0,1]$ be the set of all lower semi continuous (lsc) functions. We can easily show that $\omega(T^*)$ is a supra fuzzy topology on X (Ming *et al.* 1980).

Let P be the property of a supra topological space (X, T^*) and FP be its supra fuzzy topological analogue. Then FP is called a 'good extension' of P "if and only if the statement (X, T^*) has P if and only if $(X, \omega(T^*))$ has FP" holds good for every supra topological space (X, T^*) .

Definition: A fuzzy topological space (X, t) is said to be fuzzy T_0 if and only if (i) for all x, $y \in X$ with $x \neq y$, there exists $u \in t$ such that u(x) = 1, u(y) = 0 or u(x) = 0, u(y) = 1, (ii) for all x, $y \in X$ with $x \neq y$, there exists $u \in t$ such that u(x) < u(y) or u(y) < u(x) (Ali 1987).

α -T₀(I), α -T₀(II), α -T₀(III) AND T₀(IV) SPACES IN SUPRA FUZZY TOPOLOGY

Definition: Let (X, t) be a fuzzy topological space and t^* be associated supra topology with t and $\alpha \in I_1$. Then

(a) (X, t^*) is an α - T₀(i) space if and only if for all distinct elements $x, y \in X$, there exists $u \in t^*$ such that u(x) = 1, $u(y) \le \alpha$ or there exists $v \in t^*$ such that $v(x) \le \alpha$, v(y) = 1.

(b) (X, t^*) is an α - T₀ (ii) space if and only if for all distinct elements x, $y \in X$, there exists $u \in t^*$ such that u(x) = 0, $u(y) > \alpha$ or there exists $v \in t^*$ such that $v(x) > \alpha$, v(y) = 0.

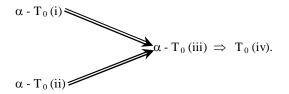
(c) (X, t^*) is an α - T₀ (iii) space if and only if for all distinct elements x, $y \in X$, there exists $u \in t^*$ such that $0 \le u(x) \le \alpha < u(y) \le 1$ or there exists $v \in t^*$ such that $0 \le v(y) \le \alpha < v(x) \le 1$.

(d) (X, t^*) is a T_0 (iv) space if and only if for all distinct elements $x, y \in X$, there exists $u \in t^*$ such that $u(x) \neq u(y)$.

Lemma: Suppose (X, t) is a topological space and t^* is associated supra topology with t and $\alpha \in I_1$. Then the following implications are true:

- (a) (X, t^*) is αT_0 (i) implies (X, t^*) is αT_0 (iii) implies (X, t^*) is T_0 (iv).
- (b) (X, t^*) is α T₀ (ii) implies (X, t^*) is α T₀ (iii) implies (X, t^*) is T₀ (iv).

Also, these can be shown in a diagram as follows:



Proof: Suppose that (X, t^*) is $\alpha - T_0$ (i). Let x and y be any two distinct elements in X. Since (X, t^*) is $\alpha - T_0$ (i), for $\alpha \in I_1$, by definition, there exists $u \in t^*$ such that u(x) = 1, $u(y) \le \alpha$ which shows that $0 \le u(y) \le \alpha < u(x) \le 1$. Hence by definition (c), (X, t^*) is $\alpha - T_0$ (ii).

Suppose (X, t^{*}) is α - T₀ (iii). Then, for x, y \in X with x \neq y, there exist u \in t^{*} such that $0 \le u(x) \le \alpha < u(y) \le 1$, i.e., $u(x) \ne u(y)$, hence by definition, (X, t^{*}) is α - T₀ (iv).

Let (X, t^*) is $\alpha - T_0$ (ii). Then, for x, $y \in X$ with $x \neq y$, there exists $u \in t^*$ such that u(x) = 0 and $u(y) > \alpha$, which implies $0 \le u(x) \le \alpha < u(y) \le 1$. Hence, by definition, (X, t^*) is $\alpha - T_0$ (iii) and hence (X, t^*) is $\alpha - T_0$ (iv). Therefore, the proof is complete.

The non-implications among α - T₀ (i), α - T₀ (ii), α - T₀ (iii) and T₀ (iv) are shown in the following examples, i.e., the following examples show that:

- (a) T_0 (iv) does not imply α T_0 (iii), so, not imply α T_0 (i) and α T_0 (ii).
- (b) α T₀ (iii) does not imply α T₀ (i) and α T₀ (ii).
- (c) α T₀ (i) does not imply α T₀ (ii).
- (d) α T₀ (ii) does not imply α T₀ (i).

Example: Let $X = \{x, y\}$ and $u \in I^X$ is defined by u(x) = 0.4, u(y) = 0.7. Let the supra fuzzy topology t^* on X generated by $\{0, u, 1, \text{Constants}\}$. Then for $\alpha = 0.8$, we can easily show that (X, t^*) is $T_0(iv)$ but (X, t^*) is not $\alpha - T_0(ii)$, so, not $\alpha - T_0(i)$ and $\alpha - T_0(ii)$.

Example: Let $X = \{x, y\}$ and $u \in I^X$ be defined by u(x) = 0.5, u(y) = 0.9. Let the supra fuzzy topology t^* on X generated by $\{0, u, 1, \text{Constants}\}$. For $\alpha = 0.7$, we have $0 \le u(x) \le 0.7 < u(y) \le 1$. Thus according to the definition, (X, t^*) is $\alpha - T_0(\text{iii})$ but (X, t^*) is not $\alpha - T_0(\text{ii})$. Also it can be easily shown that (X, t^*) is not $\alpha - T_0(\text{iii})$.

Example: Let $X = \{x, y\}$ and $u \in I^X$ be defined by u(x) = 1, u(y) = 0.5. Consider the supra fuzzy topology t^* on X generated by $\{0, u, 1, Constants\}$. For $\alpha = 0.7$, we have u(x) = 1 and $u(y) \le \alpha$. Thus according to the definition (X, t^*) is α -T₀(i) but (X, t^*) is not α -T₀(ii).

Example: Let $X = \{x, y\}$ and $u \in I^X$ be defined by u(x) = 0, u(y) = 0.8. Let the supra fuzzy supra topology t^* on X generated by $\{0, u, 1, Constants\}$. For $\alpha = 0.4$, it can easily show that (X, t^*) is $\alpha - T_0(i)$ but (X, t^*) is not $\alpha - T_0(i)$. This completes the proof.

Lemma: Let (X, t^*) be a supra fuzzy topological space and $\alpha, \beta \in t^*$ with $0 \le \alpha \le \beta < 1$, then

- (a) (X, t^*) is α T₀ (i) implies (X, t^*) is β -T₀ (i).
- (b) (X, t^*) is β T₀(ii) implies (X, t^*) is α -T₀(ii).
- (c) (X, t^*) is $0 T_0(ii)$ if and only if (X, t^*) is $0 T_0(iii)$.

Proof: Suppose that (X, t^*) is a supra fuzzy topological space and (X, t^*) is $\alpha - T_0(i)$. We have to show that (X, t^*) is $\beta - T_0(i)$. Let any two distinct elements $x, y \in X$. Since (X, t^*) is $\alpha - T_0(i)$, for $\alpha \in I_1$, there is $u \in t^*$ such that u(x) = 1, and $u(y) \le \alpha$. This implies that u(x) = 1, and $u(y) \le \beta$, since $0 \le \alpha \le \beta < 1$. Hence by definition, (X, t^*) is $\beta - T_0(i)$. Suppose that (X, t^*) is β - T₀ (ii). Then, for x, $y \in X$ with $x \neq y$, there exist $u \in t^*$ such that u(x) = 0 and $u(y) > \beta$, which implies u(x) = 0 and $u(y) > \alpha$, since $0 \le \alpha \le \beta < 1$. Hence we have (X, t^*) is α -T₀ (ii).

Example: Let $X = \{x, y\}$ and $u \in I^X$ be defined by u(x) = 1, u(y) = 0.6. Let the supra fuzzy topology t^* on X generated by $\{0, u, 1, Constants\}$. Then by definition, for $\alpha = 0.5$ and $\beta = 0.8$; (X, t^*) is β -T₀ (i) but (X, t^*) is not α -T₀ (i).

Example: Let $X = \{x, y\}$ and $u \in I^X$ be defined by u(x) = 0, u(y) = 0.65. Let the supra fuzzy topology t^* on X generated by $\{0, u, 1, \text{Constants}\}$. Then by definition, for $\alpha = 0.45$ and $\beta = 0.75$; (X, t^*) is $\alpha -T_0$ (ii) but (X, t^*) is not $\beta -T_0$ (ii).

In the same way, it can be proved that (X, t^*) is $0 - T_0(ii)$ if and only if (X, t^*) is $0 - T_0(iii)$.

Theorem: Let (X, T) be a topological space and T^* be associated supra topology with T and $\alpha \in I_1$. Suppose that the following statements:

- (1) (X, T^*) be a T_0 space.
- (2) $(X, \omega(T^*))$ be an α $T_0(i)$ space.
- (3) $(X, \omega(T^*))$ be an α $T_0(ii)$ space.
- (4) $(X, \omega(T^*))$ be an α $T_0(iii)$ space.
- (5) $(X, \omega(T^*))$ be a $T_0(iv)$ space.

Then the following implications are true:

- (a) $(1) \Rightarrow (2) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1).$
- (b) $(1) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1).$

Proof: Suppose (X, T^*) is a T_0 – topological space. We have to prove that $(X, \omega (T^*))$ is $\alpha - T_0(i)$ space. Suppose x and y are two distinct elements in X. Since (X, T^*) is T_0 , there is $U \in T^*$ such that $x \in U$, $y \notin U$. By the definition of lsc, we have $1_U \in \omega(T^*)$ and $1_U(x) = 1$, $1_U(y) = 0$. Hence we have $(X, \omega (T^*))$ is $\alpha - T_0(i)$ space. Also we have $(X, \omega (T^*))$ is $\alpha - T_0(i)$ space. Further, it is easy to show that $(2) \Rightarrow (4)$, $(3) \Rightarrow (4)$ and $(4) \Rightarrow (5)$. We therefore prove that $(4) \Rightarrow (1)$.

Suppose $(X, \omega (T^*))$ be a $T_0(iv)$ space. We have to prove that (X, T^*) is T_0 – space. Let $x, y \in X$ with $x \neq y$. Since $(X, \omega(T^*))$ is $T_0(iv)$, there is $u \in \omega(T^*)$ such that u(x) < u(y) or u(x) > u(y). Suppose u(x) < u(y). Then for $r \in I_1$, such that u(x) < r < u(y). We observe that $x \notin u^{-1}(r, 1]$, $y \in u^{-1}(r, 1]$, and by definition of lsc, $u^{-1}(r, 1] \in T^*$. Hence (X, T^*) is T_0 – space.

Thus it is seen that $\alpha - T_0(p)$ is a good extension of its topological counter part (p = i, ii, iii, iv).

Theorem: Let (X, t^*) be a supra fuzzy topological space, $\alpha \in I_1$ and $I_{\alpha}(t^*) = \{u^{-1}(\alpha, 1) : u \in t^*\}$, then

- (a) (X, t^*) is an α -T₀(i) implies $(X, I_{\alpha}(t^*))$ is T₀.
- (b) (X, t^*) is an α -T₀(ii) implies $(X, I_{\alpha}(t^*))$ is T₀.
- (c) (X, t^*) is an α -T₀(iii) if and only if $(X, I_{\alpha}(t^*))$ is T₀.

Proof: (a) Let (X, t^*) be a supra fuzzy topological space and (X, t^*) be α - T_0 (i). Suppose x and y be any two distinct elements in X. Then, for $\alpha \in I_1$, there exists $u \in t^*$ such that u(x) = 1, $u(y) \le \alpha$. Since $u^{-1}(\alpha, 1] \in I_{\alpha}(t^*)$, $y \notin u^{-1}(\alpha, 1]$ and $x \in u^{-1}(\alpha, 1]$, we have that $(X, I_{\alpha}(t^*))$ is T_0 – space. Similarly, (b) can be proved.

(c) Suppose that (X, t^*) is $\alpha - T_0$ (iii). Let $x, y \in X$ with $x \neq y$, then for $\alpha \in I_1$, there exists $u \in t^*$ such that $0 \le u(x) \le \alpha < u(y) \le 1$. Since $u^{-1}(\alpha, 1] \in I_{\alpha}(t^*)$, $x \notin u^{-1}(\alpha, 1]$ and $y \in u^{-1}(\alpha, 1]$, so these implies $(X, I_{\alpha}(t^*))$ is T_0 – space.

Conversely, suppose that $(X, I_{\alpha}(t^{*}))$ be T_{0} – space. Let $x, y \in X$ with $x \neq y$, then there exists $u^{-1}(\alpha, 1] \in I_{\alpha}(t^{*})$ such that $x \in u^{-1}(\alpha, 1]$ and $y \notin u^{-1}(\alpha, 1]$, where $u \in t^{*}$. Thus, we have $u(x) > \alpha$, $u(y) \le \alpha$, i.e., $0 \le u(y) \le \alpha < u(x) \le 1$, and hence by definition, (X, t^{*}) is α - $T_{0}(iii)$ space.

Example: Let $X = \{x, y\}$ and $u \in I^X$ be defined by u(x) = 0.7, u(y) = 0. Suppose the supra fuzzy topology t^* on X generated by $\{0, u, 1, Constants\}$. Then by definition, for $\alpha = 0.5$, (X, t^*) is not α -T₀(i) and (X, t^*) is not α - T₀(ii). Now I_{α}(t^*) = $\{X, \phi, \{x\}\}$. Then we see that I_{α}(t^*) is a supra topology on X and (X, I_{α}(t^*)) is a T₀ -space. This completes the proof.

Theorem: Let (X, t^*) be a supra fuzzy topological space, $A \subseteq X$, and $t^*_A = \{ u / A : u \in t^* \}$, then

- (a) (X, t^*) is α T₀ (i) implies (A, t_A) is α T₀ (i).
- (b) (X, t^*) is α T₀ (ii) implies (A, t^*_A) is α T₀ (ii).
- (c) (X, t^*) is α T₀ (iii) implies (A, t^*_A) is α T₀ (iii).
- (d) (X, t^*) is T_0 (iv) implies (A, t^*_A) is T_0 (iv).

Proof: (c) Suppose that (X, t^*) is $\alpha - T_0$ (iii). Let $x, y \in A$ with $x \neq y$, so that $x, y \in X$, as $A \subseteq X$. Then, for $\alpha \in I_1$, there exists $u \in t^*$ such that $0 \le u(x) \le \alpha < u(y) \le 1$. For $A \subseteq X$, we have $u / A \in t^*_A$ and $0 \le (u/A)(x) \le \alpha < (u/A)(y) \le 1$ as $x, y \in A$. Hence, by definition, (A, t^*_A) is $\alpha - T_0$ (iii).

Similarly, we can prove (a), (b) and (d).

Theorem: Suppose that (X_i, t^*_i) , $i \in \Lambda$ be supra fuzzy topological spaces and $X = \prod_{i \in \Lambda} X_i$ and t^* be the product supra fuzzy topology on X, then

- (a) $\forall i \in \Lambda$, (X_i, t_i^*) is $\alpha T_0(i)$ if and only if (X, t_i^*) is $\alpha T_0(i)$.
- (b) $\forall i \in \Lambda$, (X_i, t_i^*) is $\alpha T_0(ii)$ if and only if (X, t^*) is $\alpha T_0(ii)$.
- (c) $\forall i \in \Lambda$, (X_i, t_i^*) is $\alpha T_0(iii)$ if and only if (X, t^*) is $\alpha T_0(iii)$.
- (d) $\forall i \in \Lambda$, (X_i, t_i^*) is $_0(iv)$ if and only if (X, t^*) is $T_0(iv)$.

Proof: (a) Suppose that $\forall i \in \Lambda$, (X_i, t_i^*) is $\alpha - T_0(i)$. Let $x, y \in X$ with $x \neq y$, then $x_i \neq y_i$, for some $i \in \Lambda$. Then for $\alpha \in I_1$, there exists $u_i \in t_i^*$, $i \in \Lambda$ such that $u_i(x_i) = 1$ and $u_i(y_i) \leq \alpha$. But we have $\pi_i(x) = x_i$, and $\pi_i(y) = y_i$. Thus $u_i(\pi_i(x)) = 1$ and $u_i(\pi_i(y)) \leq \alpha$, i.e., $(u_i \circ \pi_i)(x) = 1$ and $(u_i \circ \pi_i)(y) \leq \alpha$. It follows that there exists $(u_i \circ \pi_i) \in t^*$ such that $(u_i \circ \pi_i)(y) \leq \alpha$. Hence by definition, (X, t^*) is $\alpha - T_0(i)$.

Conversely, suppose that (X, t^*) is $\alpha - T_0(i)$ space. We have to show that (X_i, t^*_i) , $i \in \Lambda$ is $\alpha - T_0(i)$. Let a_i be a fixed element in X_i and $Ai = \{x \in X = \prod_{i \in \Lambda} X_i : x_j = a_j \text{ for some } i \neq j\}$. Thus A_i is a subset of X and hence (A_i, t^*_{Ai}) is also a subspace of (X, t^*) . Since (X, t^*) is $\alpha - T_0(i)$, (A_i, t^*_{Ai}) is also $\alpha - T_0(i)$. Now we have A_i is homeomorphic image of X_i . Thus, we have (X_i, t^*_i) , $i \in \Lambda$ is $\alpha - T_0(i)$.

Similarly, (b), (c) and (d) can be proved.

Theorem: Let (X, t^*) and (Y, s^*) be two supra fuzzy topological spaces and $f: X \rightarrow Y$ be a one-one, onto and open map, then

- (a) (X, t^*) is $\alpha T_0(i)$ implies (Y, s^*) is $\alpha T_0(i)$.
- (b) (X, t^*) is $\alpha T_0(ii)$ implies (Y, s^*) is $\alpha T_0(ii)$.
- (c) (X, t^*) is α -T₀(iii) implies (Y, s^*) is α -T₀(iii).
- (d) (X, t^*) is $T_0(iv)$ implies (Y, s^*) is $T_0(iv)$.

Proof: (b) Suppose (X, t^*) be $\alpha - T_0$ (ii). Then for $y_1, y_2 \in Y$ with $y_1 \neq y_2$, there exist $x_1, x_2 \in X$ with $f(x_1) = y_1$, $f(x_2) = y_2$, since f is onto, and thus $x_1 \neq x_2$ as f is one-one. Again, since (X, t^*) is $\alpha - T_0$ (ii), for $\alpha \in I_1$, there exists $u \in t^*$ such that u(x) = 0, $u(y) > \alpha$.

Now, $f(u)(y_1) = \{ Sup u(x_1) : f(x_1) = y_1 \}$

= 0, otherwise.

$$f(u) (y_2) = \{ Sup u(x_2) : f(x_2) = y_2 \}$$

 $> \alpha$, otherwise.

Since f is open, f (u) \in s^{*} as u \in t^{*}. We observe that there exists f (u) \in s^{*} such that f (u) (y₁) = 0, f(u) (y₂) > α . Hence by definition, (Y, s^{*}) is α - T₀(ii).

Similarly, (a), (c) and (d) can be proved.

Theorem: Let (X, t^*) and (Y, s^*) be two supra fuzzy topological spaces and f: $X \rightarrow Y$ be continuous and one-one map, then

- (a) (Y, s^*) is α $T_0(i)$ implies (X, t^*) is α $T_0(i)$.
- (b) (Y, s^*) is α $T_0(ii)$ implies (X, t^*) is α $T_0(ii)$.
- (c) (Y, s^*) is α $T_0(iii)$ implies (X, t^*) is α $T_0(iii)$.
- (d) (Y, s^*) is $T_0(iv)$ implies (X, t^*) is $T_0(iv)$.

Proof: (c) Suppose (Y, s^*) be $\alpha - T_0(iii)$. Then, for $x_1, x_2 \in X$ with $x_1 \neq x_2$, we have, $f(x_1) \neq f(x_2)$ in Y, since f is one-one. Also, since (Y, s^*) is $\alpha - T_0(iii)$, for $\alpha \in I_1$, there exists $u \in s^*$ such that $0 \le u(f(x_1)) \le \alpha < u(f(x_2)) \le 1$. This implies that $0 \le f^{-1}(u)(x_1) \le \alpha < f^{-1}(u)(x_2) \le 1$, since $u \in s^*$ and f is continuous, then $f^{-1}(u) \in t^*$. Thus, there is an $f^{-1}(u) \in t^*$ such that $0 \le f^{-1}(u)(x_1) \le \alpha < f^{-1}(u)(x_2) \le 1$. Hence, by definition, (X, t^*) is $\alpha - T_0(iii)$.

Similarly, (a), (b) and (d) can be proved.

REFERENCES

- Abd EL-Monsef, M.E. and A. E. Ramadan. 1987. On fuzzy supra topological spaces. *Indian J. Pure and Appl. Math.* **18**(4), 322-329.
- Ali, D. M. 1987. A note on T₀ and R₀ fuzzy topological spaces. *Proc. Math. Soc. B.H.U.* **3**: 165-167.
- Ali, D. M. 1993. Some Remarks on α-T₀, α-T₁, α-T₂ fuzzy topological spaces, *The Journal of fuzzy mathematics, Los Angeles* 1(2): 311-321.
- Azad, K. K. 1981. On Fuzzy semi- continuity, Fuzzy almost continuity and Fuzzy weakly continuity. J. Math. Anal. Appl. 82(1): 14-32.
- Chang, C. L. 1968. Fuzzy topological spaces. J. Math. Anal Appl. 24: 182-192.
- Lowen, R. 1976. Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl. 56: 621-633.
- Mashhour, A.S., Allam, A.A., Mahmoud, F.S. and Khedr, F.H. 1983: On supra topological spaces. *Indian J. Pure and Appl. Math.* **14**(4): 502-510.
- Ming, Pu. Pao. and Ming. Liu Ying. 1980. Fuzzy topology II. Product and Quotient Spaces. J. Math. Anal. Appl. 77: 20-37.
- Wong, C. K. 1974. Fuzzy topology: Product and Quotient Theorem. J. Math. Anal. Appl. 45: 512-521.
- Zadeh, L. A. 1965. Fuzzy sets. Information and Control 8: 338-353.

(Received revised manuscript on 23 February, 2012)