Journal of Bangladesh Academy of Sciences, Vol. 38, No. 2, 189-195, 2014

JORDAN DERIVATIONS ON 2-TORSION FREE SEMIPRIME Γ -RINGS

M.M. RAHMAN^{*} AND A.C. PAUL¹

Department of Mathematics, Jagannath University, Dhaka-1100, Bangladesh

ABSTRACT

The objective of this paper was to study Jordan derivations on semiprime Γ -ring. Let M be a 2-torsion free semiprime Γ -ring satisfying the condition $a\alpha b\beta c = a\beta b\alpha c$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. The authors proved that every Jordan derivation of M is a derivation of M.

Key words: Derivation, Jordan derivation, Two torsion, Semiprime Γ -ring

INTRODUCTION

Let *M* and Γ be additive abelian groups. If there is a mapping $M \times \Gamma \times M \to M$ sending (x, α, y) into $x\alpha y$ such that the conditions

(i) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)y = x\alpha y + x\beta y$, $x\alpha(y + z) = x\alpha y + x\alpha z$ and (ii) $(x\alpha y)\beta z = x\alpha(y\beta z)$

are satisfied for all x, y, $z \in M$ and $\alpha, \beta \in \Gamma$, then M is called a Γ -ring.

This definition is due to Barnes (1966). A Γ -ring M is 2-torsion free if 2a = 0 implies a = 0, for all $a \in M$. M is called a semiprime Γ -ring if $a\Gamma M\Gamma a = 0$ (with $a \in M$) implies a = 0. M is called completely semiprime if $a\Gamma a = 0$ (with $a \in M$) implies a = 0. It was noted that every completely semiprime Γ -ring was a semiprime Γ -ring. The authors defined $[a, b]_a$ by aab - baa which is known as a commutator of a and b with respect to a. Let M be a Γ -ring. An additive mapping $d: M \to M$ is called a derivation if d (aab) = d(a)ab + aad(b) for all $a, b \in M$ and $a \in \Gamma$. $d: M \to M$ is called a Jordan derivation if d(aaa) = d(a)aa + aad(a) for all $a \in M$ and $a \in \Gamma$. Throughout the article, the authors used the condition $aab\beta c = a\beta bac$ for all $a, b, c \in M$ and $a, \beta \in \Gamma$ and this is denoted by (*).

The concepts of derivation and Jordan derivation of a Γ -ring were introduced by Sapanci and Nakajima (1997). For classical ring theory, Herstien (1966) proved that every Jordan derivation in a 2-torsion free prime ring is a derivation. Bresar (1988) proved this result in semiprime rings. Sapanci and Nakajima (1997) proved the same result for completely prime Γ -rings. Haetinger (2002) worked on higher derivations on prime rings and extended this result to Lie ideals in a prime ring.

^{*} Corresponding author : <mizanorrahman@gmail.com>.

¹ Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh.

In this article, it has been shown that every Jordan derivation of a 2-torsion free semiprime Γ -ring with the condition $aab\beta c = a\beta bac$ for all $a, b, c \in M$ and $a, \beta \in \Gamma$, is a derivation of M.

Some Consequences of Jordan Derivations on Semiprime Γ -rings

In this section, the authors developed some useful consequences regarding the Jordan derivations of a 2-torsion free semiprime Γ -ring which are needed for proving the main result.

Lemma 2.1: Let *M* be a Γ -ring and let *d* be a Jordan derivation of *M*. Then for all *a*, *b*, *c* \in *M* and $\alpha, \beta \in \Gamma$, the following statements hold:

- (i) d(aab + baa) = d(a)ab + d(b)aa + aad(b) + bad(a).
- (ii) $d(aab\beta a + a\beta baa) = d(a)ab\beta a + d(a)\beta baa + aad(b)\beta a$

 $+ a\beta d(b)\alpha a + a\alpha b\beta d(a) + a\beta b\alpha d(a).$

In particular, if M is 2-torsion free and M satisfies the condition (*), then

- (iii) $d(a\alpha b\beta a) = d(a)\alpha b\beta a + a\alpha d(b)\beta a + a\alpha b\beta d(a)$.
- (iv) $d(aab\beta c + cab\beta a) = d(a)ab\beta c + d(c)ab\beta a + aad(b)\beta c$
 - $+ cad(b)\beta a + aab\beta d(c) + cab\beta d(a).$

Definition 1: Let *d* be a Jordan derivation of a Γ -ring *M*. Then for all $a, b \in M$ and $\alpha \in \Gamma$, define $G_{\alpha}(a, b) = d(a\alpha b) - d(a)\alpha b - a\alpha d(b)$. Thus $G_{\alpha}(b, a) = d(b\alpha a) - d(b)\alpha a - b\alpha d(a)$.

Lemma 2.2: Let *d* be a Jordan derivation of a Γ -ring *M*. Then for all *a*, *b*, *c* \in *M* and α , $\beta \in \Gamma$, the following statements hold:

- (i) $G_a(a, b) + G_a(b, a) = 0;$
- (ii) $G_a(a + b, c) = G_a(a, c) + G_a(b, c);$
- (iii) $G_{a}(a, b + c) = G_{a}(a, b) + G_{a}(a, c);$
- (iv) $G_{\alpha+\beta}(a, b) = G_{\alpha}(a, b) + G_{\beta}(a, b)$.

Remark: *d* is a derivation of a Γ -ring *M* if and only if $G_{\alpha}(a, b) = 0$ for all $a, b \in M$ and $\alpha \in \Gamma$.

Lemma 2.3: Let *M* be a 2-torsion free Γ -ring satisfying the condition (*), and let *d* be a Jordan derivation of *M*. Then

(i) $G_{\alpha}(a, b)\beta m\gamma [a, b]_{\alpha} + [a, b]_{\alpha}\beta m\gamma G_{\alpha}(a, b) = 0$ for all $a, b, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$;

(ii) $G_a(a, b)\alpha m\alpha[a, b]_a + [a, b]\alpha \alpha m\alpha G_a(a, b) = 0$ for all $a, b, m \in M$ and $\alpha \in \Gamma$;

- (iii) $G_{\alpha}(a, b)\beta m\beta[a, b]_{\alpha} + [a, b]_{\alpha}\beta m\beta G_{\alpha}(a, b) = 0$ for all $a, b, m \in M$ and $\alpha, \beta \in \Gamma$.
- **Proof:** (i) For any *a*, *b*, $m \in M$ and α , β , $\gamma \in \Gamma$ by using Lemma 2.1 (iv)

 $W = d(a\alpha b\beta m \gamma b\alpha a + b\alpha a\beta m \gamma a\alpha b)$

 $= d((a\alpha b)\beta m\gamma(b\alpha a) + (b\alpha a)\beta m\gamma(a\alpha b))$

- $= d(a\alpha b)\beta m\gamma b\alpha a + a\alpha b\beta d(m)\gamma b\alpha a + a\alpha b\beta m\gamma d(b\alpha a)$
- $+ d(baa)\beta myaab + baa\beta d(m)yaab + baaamyd(aab).$

On the other hand by using Lemma 2.1 (iii)

 $W = d(a\alpha(b\beta m\gamma b)\alpha a + b\alpha(a\beta m\gamma a)\alpha b)$

 $= d(a\alpha(b\beta m\gamma b)\alpha a) + d(b\alpha(a\beta m\gamma a)\alpha b)$

- $= d(a)\alpha b\beta myb\alpha a + a\alpha d(b\beta myb)\alpha a + a\alpha b\beta myb\alpha d(a)$
- $+ d(b)\alpha a\beta mya\alpha b + b\alpha d(a\beta mya)\alpha b + b\alpha a\beta mya\alpha d(b)$
- $= d(a)\alpha b\beta myb\alpha a + a\alpha d(b)\beta myb\alpha a + a\alpha b\beta d(m)yb\alpha a + a\alpha b\beta myd(b)\alpha a$
- $+ aab\beta my bad(a) + d(b)aa\beta my aab + bad(a)\beta my aab + baa\beta d(m) yaab$

+ $b\alpha a\beta myd(a)\alpha b$ + $b\alpha a\beta mya\alpha d(b)$.

Equating two expressions for W and cancelling the like terms from both sides, one gets

 $d(a\alpha b)\beta m\gamma b\alpha a + a\alpha b\beta m\gamma d(b\alpha a) + d(b\alpha a)\beta m\gamma a\alpha b + b\alpha a\beta m\gamma d(a\alpha b)$

 $= d(a)\alpha b\beta myb\alpha a + a\alpha d(b)\beta myb\alpha a + a\alpha b\beta my d(b)\alpha a + a\alpha b\beta myb\alpha d(a)$

 $+d(b)aa\beta myaab+bad(a)\beta myaab+baa\beta myd(a)ab+baa\beta myaad(b).$

This gives, $d(aab)\beta mybaa - d(a)ab\beta mybaa - aad(b)\beta mybaa + d(baa)\beta myaab - d(b)aa\beta myaab - b\beta d(a)\beta myaab + aab\beta myd(baa) - aab\beta myd(b)aa - aab\beta mybad(a) + baaamyd(aab) - baa\beta myd(a)ab - baa\beta myaad(b)=0.$

This implies, (d(aab)-d(a)ab-aad(b))amybaa+(d(baa)-d(b)aa-bad(a))amyaab

+aabamy(d(baa)-d(b)aa-bad(a))+baaamy(d(aab)-d(a)ab-aad(b))=0.

Using Definition 1, $G_a(a, b)\beta m\gamma baa + G_a(b, a)\beta m\gamma aab + aab\beta m\gamma G_a(b, a) + baa\beta m\gamma G_a(a, b) = 0.$

This implies, $G_{\alpha}(a, b) \beta m \gamma [a, b]_{\alpha} + [a, b]_{\alpha} \beta m \gamma G_{\alpha}(a, b) = 0$ for all $a, b, m \in M, \alpha, \beta, \gamma \in \Gamma$.

By considering W = d(aabamabaa + baaamaaab) and $W = d(aab\beta m\beta baa + baa\beta m\beta aab)$ for (ii) and (iii), respectively and proceeding in the same way as in the proof of (i) by the similar arguments, one gets (ii) and (iii).

Lemma 2.4: Let *M* be a 2-torsion free semiprime Γ -ring and let *a*, *b*, $m \in M$.

If $a\alpha m\beta b + b\alpha m\beta a = 0$, for all $m \in M$, $\alpha, \beta \in \Gamma$, then $a\alpha m\beta b = 0 = b\alpha m\beta a$.

Proof: Let $x \in M$ and γ , $\delta \in \Gamma$ be any elements.

Using the relation $a\alpha m\beta b + b\alpha m\beta a = 0$ for all $m \in M$ and $\alpha, \beta \in \Gamma$ repeatedly

 $(a \alpha m \beta b) \gamma x \delta(a \alpha m \beta b) = -(b \alpha m \beta a) \gamma x \delta(a \alpha m \beta b)$ = -(b \alpha(m \beta a \gayx) \delta a) \alpha m \beta b = (a \alpha(m \beta a \gayx) \delta b) \alpha m \beta b = a \alpha m \beta (a \gayx \delta b) \alpha m \beta b = -a \alpha m \beta (b \gayx \delta a) \alpha m \beta b = -(a \alpha m \beta b) \gayx \delta (a \alpha m \beta b).

This implies, 2 ($(a\alpha m\beta b)\gamma x\delta(a\alpha m\beta b)$) = 0.

Since *M* is 2-torsion free, $(a\alpha m\beta b) \gamma x \delta (a\alpha m\beta b) = 0$. Therefore, $(a\alpha m\beta b) \Gamma M\Gamma (a\alpha m\beta b) = 0$.

By the semiprimeness of *M*, $a\alpha m\beta b = 0$. Similarly, it can be shown that $b\alpha m\beta a = 0$.

Corollary 2.1: Let *M* be a 2-torsion free semiprime Γ -ring satisfying the condition (*), and let *d* be a Jordan derivation of *M*. Then for all *a*, *b*, $m \in M$ and α , β , $\gamma \in \Gamma$:

(i) $G_{\alpha}(a, b)\beta m\gamma[a, b]_{\alpha} = 0;$ (ii) $[a, b]_{\alpha}\beta m\gamma G_{\alpha}(a, b) = 0;$

(iii) $G_{\alpha}(a, b)\alpha m\alpha[a, b]_{\alpha} = 0;$ (iv) $[a, b]_{\alpha} \alpha m\alpha G_{\alpha}(a, b) = 0;$

(v) $G_a(a, b)\beta m\beta[a, b]_a = 0;$ (vi) $[a, b]_a\beta m\beta G_a(a, b) = 0.$

Proof: Applying the result of Lemma 2.4 in that of Lemma 2.3, the authors obtained these results.

Lemma 2.5: Let *M* be a 2-torsion free semiprime Γ -ring satisfying the condition (*), and let *d* be a Jordan derivation of *M*. Then for all *a*, *b*, *x*, *y*, *m* \in *M* and *a*, *β*, $\gamma \in \Gamma$:

(i) $G_{\alpha}(a, b)\beta m\beta[x, y]_{\alpha} = 0$; (ii) $[x, y]_{\alpha}\beta m\beta G_{\alpha}(a, b) = 0$

(iii) $G_{\alpha}(a, b)\beta m\beta[x, y]_{\gamma} = 0$; (iv) $[x, y]_{\gamma}\beta m\beta G_{\alpha}(a, b) = 0$.

Proof: (i) If substitute a + x for a in the Corollary 2.1 (v), $G_a(a+x, b)\beta m\beta[a+x, b]_a = 0$ is obtained.

Thus $G_a(a, b)\beta m\beta[a, b]_a + G_a(a, b)\beta m\beta[x, b]_a + G_a(x, b)\beta m\beta[a, b]_a + G_a(x, b)\beta m\beta[x, b]_a = 0.$

By using Corollary 2.1 (v), $G_{\alpha}(a, b)\beta m\beta[x, b]_{\alpha} + G_{\alpha}(x, b)\beta m\beta[a, b]_{\alpha} = 0$ is obtained.

Thus, $(G_a(a, b)\beta m\beta[x, b]_a)\beta m\beta(G_a(a, b)\beta m\beta[x, b]_a) = -G_a(a, b)\beta m\beta[x, b]_a \beta m\beta G_a(x, b)\beta m\beta[a, b]_a = 0$ is obtained.

Hence, by the semiprimeness of *M*, $G_a(a, b)\beta m\beta[x, b]_a = 0$.

Similarly, by replacing b + y for b in this result $G_a(a, b)\beta m\beta[x, y]_a = 0$.

(ii) Proceeding in the same way as described above by the similar replacements successively in Corollary 2.1 (vi), $[x, y]_{\gamma}\beta m\beta G_{\alpha}(a, b) = 0$ for all $a, b, x, y, m \in M, \alpha, \beta \in \Gamma$ is obtained.

(iii) Replacing $\alpha + \gamma$ for α in (i), $G_{\alpha+\gamma}(a, b)\beta m\beta[x, y]_{\alpha+\gamma} = 0$.

This implies, $(G_{\alpha}(a, b) + G_{\gamma}(a, b)_{\alpha})\beta m\beta([x, y]_{\alpha} + [x, y]_{\gamma}) = 0.$

Therefore, $G_{\alpha}(a, b)\beta m\beta[x, y]_{\alpha}G_{\alpha}(a, b)\beta m\beta[x, y]_{\gamma}+G_{\gamma}(a, b)\beta m\beta[x, y]_{\alpha}+G_{\gamma}(a, b)\beta m\beta[x, y]_{\gamma}=0.$

Thus by using Corollary 2.1 (vi), $G_{\alpha}(a, b)\beta m\beta[x, y]_{\gamma} + G_{\gamma}(a, b)\beta m\beta[x, y]_{\alpha} = 0.$

Thus, $(G_{\alpha}(a, b)\beta m\beta[x, y]_{\gamma})\beta m\beta(G_{\alpha}(a, b)\alpha m\beta[x, y]_{\gamma}) = -G_{\alpha}(a, b)\beta m\beta[x, y]_{\gamma}\beta m\beta G_{\gamma}(a, b)\beta m\beta[x, y]_{\alpha} = 0$ is obtained.

Hence, by the semiprimeness of *M*, $G_{\alpha}(a, b)\beta m\beta[x, y]_{\gamma} = 0$.

(iv) As in the proof of (iii), the similar replacement in (ii) produces (iv).

Lemma 2.6: Every semiprime Γ -ring contains no nonzero nilpotent ideal.

Corollary 2.2: Semiprime Γ -ring has no nonzero nilpotent element.

Lemma 2.7: The center of a semiprime Γ -ring does not contain any nonzero nilpotent element.

Jordan Derivations on Semiprime Γ-rings

The authors proved main result as follows:

Theorem 3.1: Let *M* be a 2-torsion free semiprime Γ -ring satisfying the condition (*), and let *d* be a Jordan derivation of *M*. Then *d* is a derivation of *M*.

Proof: Let *d* be a Jordan derivation of a 2-torsion free semiprime Γ -ring *M*, and let *a*, *b*, *y*, *m* \in *M* and α , $\beta \in \Gamma$. Then by Lemma 2.5 (iii),

 $[G_a(a, b), y]_{\beta} \beta m \beta [G_a(a, b), y]_{\beta} = (G_a(a, b) \beta y - y \beta G_a(a, b)) \beta m \beta [G_a(a, b), y]_{\beta}$

 $= G_{\alpha}(a, b)\beta y\beta m\beta [G_{\alpha}(a, b), y]_{\beta} - y\beta G_{\alpha}(a, b)\beta m\beta [G_{\alpha}(a, b), y]_{\beta} = 0.$

Since $y\beta m \in M$ and $G_{\alpha}(a, b) \in M$ for all $a, b, y, m \in M$ and $\alpha, \beta \in \Gamma$.

By the semiprimeness of M, $[G_{\alpha}(a, b), y]_{\beta} = 0$, where $G_{\alpha}(a, b) \in M$ for all $a, b, y \in M$ and $\alpha, \beta \in \Gamma$. Therefore, $G_{\alpha}(a, b) \in Z(M)$, the center of M.

Now, let γ , $\delta \in \Gamma$. By Lemma 2 .5 (ii), $G_{\alpha}(a, b)[x, y]_{\alpha} \delta m \delta G_{\alpha}(a, b) \gamma[x, y]_{\alpha} = 0.$	
Since <i>M</i> is semiprime, so $G_{\alpha}(a, b)\gamma[x, y]_{\alpha} = 0$. (1)	
Also, by Lemma 2 .5 (i), $[x, y]_{\alpha} \gamma G_{\alpha}(a, b) \delta m \delta[x, y]_{\alpha} \gamma G_{\alpha}(a, b) = 0.$	
Hence by the semiprimeness of M , $[x, y]_{\alpha} \gamma G_{\alpha}(a, b) = 0.$ (2)	
Similarly, by Lemma 2 .5 (iv), $G_{\alpha}(a, b)\gamma[x, y]_{\beta}\delta m\delta G_{\alpha}(a, b)\gamma[x, y]_{\beta} = 0.$	
Since <i>M</i> is semiprime, it follows that $G_{\alpha}(a, b)\gamma[x, y]_{\beta} = 0.$ (3)	
Also, by Lemma 2.5 (iii), $[x, y]_{\beta} \gamma G_{\alpha}(a, b) \delta m \delta[x, y]_{\beta} \gamma G_{\alpha}(a, b) = 0.$	
Hence by the semiprimeness of M , $[x, y]_{\beta} \gamma G_{a}(a, b) = 0.$ (4)	
Thus, $2 G_{\alpha}(a, b)\gamma G_{\alpha}(a, b) = G_{\alpha}(a, b)\gamma (G_{\alpha}(a, b + G_{\alpha}(a, b)))$	
$=G_{a}(a, b) \gamma(G_{a}(a, b)-G_{a}(b, a))$	
$= G_{a}(a, b)\gamma(d(aab) - d(a)ab - aad(b) - d(baa) + d(b)aa + bad(a))$	
$= G_{a}(a, b)\gamma(d(aab-baa)+(bad(a)-d(a)ab)+(d(b)aa-aad(b)))$	
$= G_{a}(a, b)\gamma(d([a, b]_{a}) + [b, d(a)]_{a} + [d(b), a]_{a})$	
$= G_{\alpha}(a, b)\gamma d([a, b]_{\alpha}) - G_{\alpha}(a, b)\gamma [d(a), b]_{\alpha} - G_{\alpha}(a, b)\gamma [a, d(b)]_{\alpha}$	
Since $d(a)$, $d(b) \in M$ by using (1), $G_{\alpha}(a, b)\gamma[d(a), b]_{\alpha} = G_{\alpha}(a, b)\gamma[a, d(b)]_{\alpha} = 0.$	
Thus $2G_{\alpha}(a, b) \gamma G_{\alpha}(a, b) = G_{\alpha}(a, b) \gamma d([a, b]_{\alpha})$ (5)	
Adding (3) and (4), $G_{\alpha}(a, b) \gamma[x, y]_{\beta} + [x, y]_{\beta} \gamma G_{\alpha}(a, b) = 0$, is obtained.	
Then by Lemma 2 .1 (i) with the use of (3),	
$0 = d(G_{\alpha}(a, b) \gamma[x, y]_{\beta} + [x, y]_{\beta} \gamma G_{\alpha}(a, b))$	
$= d(G_{a}(a, b))\gamma[x, y]_{\beta} + d([x, y]_{\beta})\gamma G_{a}(a, b) + G_{a}(a, b)\gamma d([x, y]_{\beta}) + [x, y]_{\beta}\gamma d(G_{a}(a, b))$	
$= d(G_{\alpha}(a, b)) \gamma[x, y]_{\beta} + 2G_{\alpha}(a, b) \gamma d([x, y]_{\beta}) + [x, y]_{\beta} \gamma d(G_{\alpha}(a, b)).$	
Since $G_{\alpha}(a, b) \in Z(M)$ and therefore $d([x, y]_{\beta})G_{\alpha}(a, b) = G_{\alpha}(a, b)d([x, y]_{\beta})$.	
Hence, 2 $G_{\alpha}(a, b)\gamma d([x, y]_{\beta}) = -d(G_{\alpha}(a, b))\gamma[x, y]_{\beta} - [x, y]_{\beta}\gamma d(G_{\alpha}(a, b)).$ (6)	
Then from (5) and (6)	
$4G_a(a, b) \gamma G_a(a, b) = 2 G_a(a, b) \gamma d([a, b]_a) = -d(G_a(a, b)) \gamma [a, b]_a - [a, b]_a$	

 $4G_{\alpha}(a, b) \gamma G_{\alpha}(a, b) = 2 G_{\alpha}(a, b) \gamma d([a, b]_{\alpha}) = -d(G_{\alpha}(a, b)) \gamma [a, b]_{\alpha} - [a, b]_{\alpha} \gamma d(G_{\alpha}(a, b))$

So, $4G_{\alpha}(a, b)\gamma G_{\alpha}(a, b)\gamma G_{\alpha}(a, b) = -d(G_{\alpha}(a, b))\gamma[a, b]_{\alpha}\gamma G_{\alpha}(a, b) - [a, b]_{\alpha}\gamma d(G_{\alpha}(a, b))\gamma G_{\alpha}(a, b)$.

Here, by using (4) $d(G_{\alpha}(a, b)) \gamma[a, b]_{\alpha} \gamma G_{\alpha}(a, b) = 0$ and also, by Corollary 2.1 (vi), $[a, b]_{\alpha} \gamma d(G_{\alpha}(a, b)) \gamma G_{\alpha}(a, b) = 0$.

Since $d(G_{\alpha}(a, b)) \in M$ for all $a, b \in M$ and $\alpha \in \Gamma$. So, $4G_{\alpha}(a, b) \gamma G_{\alpha}(a, b) \gamma G_{\alpha}(a, b) = 0$.

Therefore, $4(G_a(a, b)\gamma)^2 G_a(a, b) = 0$. Since *M* is 2-torsion free, so $(G_a(a, b)\gamma)^2 G_a(a, b) = 0$. But, it follows that $G_a(a, b)$ is a nilpotent element of the Γ -ring *M*.

Since by Lemma 2.7, the center of a semiprime Γ -ring does not contain any nonzero nilpotent element, so $G_{\alpha}(a, b) = 0$ for all $a, b \in M$ and $\alpha \in \Gamma$. It means d is a derivation of M.

REFERENCES

Barnes, W. E. 1966. On the Γ-rings of Nobusawa. Pacific J. Math. 18: 411-422.

- Bresar, M. 1988. Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104(4):1003-1004.
- Haetinger, C. 2002. Higher derivations on Lie ideals, *Tenclencias em Matematica Aplicada e. computacional* 3(1): 141-145.
- Herstein, I. N. 1966. Topics in Ring Theory. The University of Chicago Press, Chicago.
- Sapanci, M. and A. Nakajima. 1997. Jordan Derivations on Completely Prime Γ-Rings. *Math. Japanica* **46**: 47-51.

(Received revised manuscript on 31 August, 2014)