JORDAN DERIVATIONS ON 2-TORSION FREE SEMIPRIME Γ-RINGS

M.M. RAHMAN ${ }^{*}$ AND A.C. PAUL ${ }^{1}$
Department of Mathematics, Jagannath University, Dhaka-1100, Bangladesh

ABSTRACT
The objective of this paper was to study Jordan derivations on semiprime Γ-ring. Let M be a 2-torsion free semiprime Γ-ring satisfying the condition $a \alpha b \beta c=a \beta b \alpha c$ for all $a, b, c \in M$ and α, β $\in \Gamma$. The authors proved that every Jordan derivation of M is a derivation of M.

Key words: Derivation, Jordan derivation, Two torsion, Semiprime Γ-ring

INTRODUCTION

Let M and Γ be additive abelian groups. If there is a mapping $M \times \Gamma \times M \rightarrow M$ sending (x, α, y) into $x \alpha y$ such that the conditions
(i) $(x+y) \alpha z=x \alpha z+y \alpha z, \quad x(\alpha+\beta) \mathrm{y}=x \alpha y+x \beta y, x \alpha(y+z)=x \alpha y+x \alpha z$ and
(ii) $(x \alpha y) \beta z=x \alpha(y \beta z)$
are satisfied for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, then M is called a Γ-ring.
This definition is due to Barnes (1966). A Γ-ring M is 2-torsion free if $2 a=0$ implies $a=0$, for all $a \in M . M$ is called a semiprime Γ-ring if $a \Gamma M \Gamma a=0$ (with $a \in M$) implies $a=0 . M$ is called completely semiprime if $a \Gamma a=0$ (with $a \in M$) implies $a=0$. It was noted that every completely semiprime Γ-ring was a semiprime Γ-ring. The authors defined $[a, b]_{\alpha}$ by $a \alpha b-b \alpha a$ which is known as a commutator of a and b with respect to α. Let M be a Γ-ring. An additive mapping $d: M \rightarrow M$ is called a derivation if d (a人b) $=d(a) \alpha b+\operatorname{a\alpha d}(b)$ for all $a, b \in M$ and $\alpha \in \Gamma . d: M \rightarrow M$ is called a Jordan derivation if $d(a \alpha a)=d(a) \alpha a+\operatorname{a\alpha d}(a)$ for all $a \in M$ and $\alpha \in \Gamma$. Throughout the article, the authors used the condition $a \alpha b \beta c=a \beta b \alpha c$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ and this is denoted by (*).

The concepts of derivation and Jordan derivation of a Γ-ring were introduced by Sapanci and Nakajima (1997). For classical ring theory, Herstien (1966) proved that every Jordan derivation in a 2-torsion free prime ring is a derivation. Bresar (1988) proved this result in semiprime rings. Sapanci and Nakajima (1997) proved the same result for completely prime Γ-rings. Haetinger (2002) worked on higher derivations on prime rings and extended this result to Lie ideals in a prime ring.

[^0]In this article, it has been shown that every Jordan derivation of a 2-torsion free semiprime Γ-ring with the condition $a \alpha b \beta c=a \beta b \alpha c$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, is a derivation of M.

Some Consequences of Jordan Derivations on Semiprime Γ-rings

In this section, the authors developed some useful consequences regarding the Jordan derivations of a 2 -torsion free semiprime Γ-ring which are needed for proving the main result.

Lemma 2.1: Let M be a Γ-ring and let d be a Jordan derivation of M. Then for all a, $b, c \in M$ and $\alpha, \beta \in \Gamma$, the following statements hold:
(i) $d(a \alpha b+b \alpha a)=d(a) \alpha b+d(b) \alpha a+a \alpha d(b)+b \alpha d(a)$.
(ii) $d(a \alpha b \beta a+a \beta b \alpha a)=d(a) \alpha b \beta a+d(a) \beta b \alpha a+a \alpha d(b) \beta a$
$+a \beta d(b) \alpha a+\operatorname{a\alpha b} \beta d(a)+a \beta b \alpha d(a)$.
In particular, if M is 2 -torsion free and M satisfies the condition $(*)$, then
(iii) $d(a \alpha b \beta a)=d(a) \alpha b \beta a+a \alpha d(b) \beta a+a \alpha b \beta d(a)$.
(iv) $d(a \alpha b \beta c+c \alpha b \beta a)=d(a) \alpha b \beta c+d(c) \alpha b \beta a+a \alpha d(b) \beta c$ $+\operatorname{c\alpha d}(b) \beta a+a \alpha b \beta d(c)+c \alpha b \beta d(a)$.

Definition 1: Let d be a Jordan derivation of a Γ-ring M. Then for all $a, b \in M$ and α $\in \Gamma$, define $G_{a}(a, b)=d(a \alpha b)-d(a) \alpha b-a \alpha d(b)$. Thus $G_{a}(b, a)=d(b \alpha a)-d(b) \alpha a-$ $b \alpha d(a)$.

Lemma 2.2: Let d be a Jordan derivation of a Γ-ring M. Then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, the following statements hold:
(i) $\quad G_{a}(a, b)+G_{a}(b, a)=0$;
(ii) $G_{\alpha}(a+b, c)=G_{\alpha}(a, c)+G_{a}(b, c)$;
(iii) $G_{a}(a, b+c)=G_{a}(a, b)+G_{a}(a, c)$;
(iv) $G_{\alpha+\beta}(a, b)=G_{a}(a, b)+G_{\beta}(a, b)$.

Remark: d is a derivation of a Γ-ring M if and only if $G_{a}(a, b)=0$ for all $a, b \in M$ and $\alpha \in \Gamma$.

Lemma 2.3: Let M be a 2 -torsion free Γ-ring satisfying the condition (*), and let d be a Jordan derivation of M. Then
(i) $G_{a}(a, b) \beta m \gamma[a, b]_{\alpha}+[a, b]_{\alpha} \beta m \gamma G_{a}(a, b)=0$ for all $a, b, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$;
(ii) $G_{a}(a, b) \alpha m \alpha[a, b]_{\alpha}+[a, b] \alpha \alpha m \alpha G_{a}(a, b)=0$ for all $a, b, m \in M$ and $\alpha \in \Gamma$;
(iii) $G_{a}(a, b) \beta m \beta[a, b]_{\alpha}+[a, b]_{\alpha} \beta m \beta G_{a}(a, b)=0$ for all $a, b, m \in M$ and $\alpha, \beta \in \Gamma$.

Proof: (i) For any $a, b, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$ by using Lemma 2.1 (iv)

$$
\begin{aligned}
W & =d(a \alpha b \beta m \gamma b \alpha a+b \alpha a \beta m \gamma a \alpha b) \\
& =d((a \alpha b) \beta m \gamma(b \alpha a)+(b \alpha a) \beta m \gamma(a \alpha b)) \\
& =d(a \alpha b) \beta m \gamma b \alpha a+a \alpha b \beta d(m) \gamma b \alpha a+a \alpha b \beta m \gamma d(b \alpha a) \\
& +d(b \alpha a) \beta m \gamma a \alpha b+b \alpha a \beta d(m) \gamma a \alpha b+b \alpha a \alpha m \gamma d(a \alpha b) .
\end{aligned}
$$

On the other hand by using Lemma 2.1 (iii)

$$
\begin{aligned}
W & =d(a \alpha(b \beta m \gamma b) \alpha a+b \alpha(a \beta m \gamma a) \alpha b) \\
& =d(a \alpha(b \beta m \gamma b) \alpha a)+d(b \alpha(a \beta m \gamma a) \alpha b) \\
& =d(a) \alpha b \beta m \gamma b \alpha a+a \alpha d(b \beta m \gamma b) \alpha a+a \alpha b \beta m \gamma b \alpha d(a) \\
& +d(b) \alpha a \beta m \gamma a \alpha b+b \alpha d(a \beta m \gamma a) \alpha b+b \alpha a \beta m \gamma a \alpha d(b) \\
& =d(a) \alpha b \beta m \gamma b \alpha a+a \alpha d(b) \beta m \gamma b \alpha a+a \alpha b \beta d(m) \gamma b \alpha a+a \alpha b \beta m \gamma d(b) \alpha a \\
& +a \alpha b \beta m \gamma b \alpha d(a)+d(b) \alpha a \beta m \gamma a \alpha b+b \alpha d(a) \beta m \gamma a \alpha b+b \alpha a \beta d(m) \gamma a \alpha b \\
& +b \alpha a \beta m \gamma d(a) \alpha b+b \alpha a \beta m \gamma a \alpha d(b) .
\end{aligned}
$$

Equating two expressions for W and cancelling the like terms from both sides, one gets
$d(a \alpha b) \beta m \gamma b \alpha a+a \alpha b \beta m \gamma d(b \alpha a)+d(b \alpha a) \beta m \gamma a \alpha b+b \alpha a \beta m \gamma d(a \alpha b)$
$=d(a) \alpha b \beta m \gamma b \alpha a+a \alpha d(b) \beta m \gamma b \alpha a+a \alpha b \beta m \gamma d(b) \alpha a+a \alpha b \beta m \gamma b \alpha d(a)$
$+d(b) \alpha a \beta m \gamma a \alpha b+b \alpha d(a) \beta m \gamma a \alpha b+b \alpha a \beta m \gamma d(a) \alpha b+b \alpha a \beta m \gamma a \alpha d(b)$.
This gives, $d(a \alpha b) \beta m \gamma b \alpha a-d(a) \alpha b \beta m \gamma b \alpha a-a \alpha d(b) \beta m \gamma b \alpha a+d(b \alpha a) \beta m \gamma a \alpha b$

$$
\begin{aligned}
& -d(b) \alpha a \beta m \gamma a \alpha b-b \beta d(a) \beta m \gamma a \alpha b+a \alpha b \beta m \gamma d(b \alpha a)-a \alpha b \beta m \gamma d(b) \alpha a \\
& -a \alpha b \beta m \gamma b \alpha d(a)+b \alpha a \alpha m \gamma d(a \alpha b)-b \alpha a \beta m \gamma d(a) \alpha b-b \alpha a \beta m \gamma a \alpha d(b)=0 .
\end{aligned}
$$

This implies, $(d(a \alpha b)-d(a) \alpha b-a \alpha d(b)) \alpha m \gamma b \alpha a+(d(b \alpha a)-d(b) \alpha a-b \alpha d(a)) \alpha m \gamma a \alpha b$

$$
+a \alpha b \alpha m \gamma(d(b \alpha a)-d(b) \alpha a-b \alpha d(a))+b \alpha a \alpha m \gamma(d(a \alpha b)-d(a) \alpha b-a \alpha d(b))=0 .
$$

Using Definition 1, $G_{\alpha}(a, b) \beta m \gamma b \alpha a+G_{a}(b, a) \beta m \gamma a \alpha b+a \alpha b \beta m \gamma G_{\alpha}(b, a)+$ $b \alpha a \beta m \gamma G_{\alpha}(a, b)=0$.

This implies, $G_{\alpha}(a, b) \beta m \gamma[a, b]_{\alpha}+[a, b]_{\alpha} \beta m \gamma G_{\alpha}(a, b)=0$ for all $a, b, m \in M, \alpha, \beta$, $\gamma \in \Gamma$.

By considering $W=d(a \alpha b \alpha m \alpha b \alpha a+b \alpha a \alpha m \alpha a \alpha b)$ and $\quad W=d(a \alpha b \beta m \beta b \alpha a+$ $b \alpha a \beta m \beta a \alpha b$) for (ii) and (iii), respectively and proceeding in the same way as in the proof of (i) by the similar arguments, one gets (ii) and (iii).

Lemma 2.4: Let M be a 2-torsion free semiprime Γ-ring and let $a, b, m \in M$.
If $a \alpha m \beta b+b \alpha m \beta a=0$, for all $m \in M, \alpha, \beta \in \Gamma$, then $a \alpha m \beta b=0=b \alpha m \beta a$.
Proof : Let $x \in M$ and $\gamma, \delta \in \Gamma$ be any elements.
Using the relation $a \alpha m \beta b+b \alpha m \beta a=0$ for all $m \in M$ and $\alpha, \beta \in \Gamma$ repeatedly

$$
\begin{aligned}
(a \alpha m \beta b) \gamma x \delta(a \alpha m \beta b) & =-(b \alpha m \beta a) \gamma x \delta(a \alpha m \beta b) \\
& =-(b \alpha(m \beta a \gamma x) \delta a) \alpha m \beta b=(a \alpha(m \beta a \gamma x) \delta b) \alpha m \beta b \\
& =a \alpha m \beta(a \gamma x \delta b) \alpha m \beta b=-a \alpha m \beta(b \gamma x \delta a) \alpha m \beta b \\
& =-(a \alpha m \beta b) \gamma x \delta(a \alpha m \beta b) .
\end{aligned}
$$

This implies, $2((a \alpha m \beta b) \gamma x \delta(a \alpha m \beta b))=0$.
Since M is 2-torsion free, $(a \alpha m \beta b) \gamma x \delta(a \alpha m \beta b)=0$. Therefore, $(a \alpha m \beta b) \Gamma М Г$ $(a \alpha m \beta b)=0$.

By the semiprimeness of $M, a \alpha m \beta b=0$. Similarly, it can be shown that $b \alpha m \beta a=0$.
Corollary 2.1: Let M be a 2-torsion free semiprime Γ-ring satisfying the condition ${ }^{(*)}$, and let d be a Jordan derivation of M. Then for all $a, b, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$:
(i) $\quad G_{\alpha}(a, b) \beta m \gamma[a, b]_{\alpha}=0 ; \quad$ (ii) $\quad[a, b]_{\alpha} \beta m \gamma G_{a}(a, b)=0 ;$
(iii) $G_{\alpha}(a, b) \alpha m \alpha[a, b]_{\alpha}=0 ; \quad$ (iv) $\quad[a, b]_{\alpha} \alpha m \alpha G_{\alpha}(a, b)=0$;
(v) $\quad G_{a}(a, b) \beta m \beta[a, b]_{\alpha}=0 ; \quad$ (vi) $\quad[a, b]_{\alpha} \beta m \beta G_{a}(a, b)=0$.

Proof: Applying the result of Lemma 2.4 in that of Lemma 2.3, the authors obtained these results.

Lemma 2.5: Let M be a 2-torsion free semiprime Γ-ring satisfying the condition $\left(^{*}\right)$, and let d be a Jordan derivation of M. Then for all $a, b, x, y, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$:
(i) $\quad G_{a}(a, b) \beta m \beta[x, y]_{\alpha}=0$; (ii) $[x, y]_{\alpha} \beta m \beta G_{\alpha}(a, b)=0$
(iii) $\quad G_{\alpha}(a, b) \beta m \beta[x, y]_{\gamma}=0$; (iv) $[x, y]_{\gamma} \beta m \beta G_{a}(a, b)=0$.

Proof: (i) If substitute $a+x$ for a in the Corollary 2.1 (v), $G_{a}(a+x, b) \beta m \beta[a+x$, $b]_{\alpha}=0$ is obtained.

Thus $G_{a}(a, b) \beta m \beta[a, b]_{\alpha}+G_{a}(a, b) \beta m \beta[x, b]_{\alpha}+G_{\alpha}(x, b) \beta m \beta[a, b]_{\alpha}+G_{a}(x, b) \beta m \beta[x$, $b]_{\alpha}=0$.

By using Corollary $2.1(\mathrm{v}), G_{a}(a, b) \beta m \beta[x, b]_{\alpha}+G_{\alpha}(x, b) \beta m \beta[a, b]_{\alpha}=0$ is obtained.

Thus, $\left(G_{a}(a, b) \beta m \beta[x, b]_{\alpha}\right) \beta m \beta\left(G_{a}(a, b) \beta m \beta[x, b]_{\alpha}\right)=-G_{a}(a, b) \beta m \beta[x, b]_{\alpha} \beta m \beta G_{a}(x$, b) $\beta m \beta[a, b]_{\alpha}=0$ is obtained.

Hence, by the semiprimeness of $M, \quad G_{a}(a, b) \beta m \beta[x, b]_{\alpha}=0$.
Similarly, by replacing $b+y$ for b in this result $\quad G_{\alpha}(a, b) \beta m \beta[x, y]_{\alpha}=0$.
(ii) Proceeding in the same way as described above by the similar replacements successively in Corollary 2.1 (vi), $\quad[x, y]_{\gamma} \beta m \beta G_{a}(a, b)=0$ for all $a, b, x, y, m \in M, \alpha, \beta \in \Gamma$ is obtained.
(iii) Replacing $\alpha+\gamma$ for α in (i), $\quad G_{\alpha+\gamma}(a, b) \beta m \beta[x, y]_{\alpha+\gamma}=0$.

This implies, $\left(G_{a}(a, b)+G_{\gamma}(a, b)_{\alpha}\right) \beta m \beta\left([x, y]_{\alpha}+[x, y]_{\gamma}\right)=0$.
Therefore, $G_{\alpha}(a, b) \beta m \beta[x, y]_{\alpha} G_{\alpha}(a, b) \beta m \beta[x, y]_{\gamma}+G_{\gamma}(a, b) \beta m \beta[x, y]_{\alpha}+G_{\gamma}(a, b) \beta m \beta[x$, $y]_{y}=0$.

Thus by using Corollary 2.1 (vi), $\quad G_{\alpha}(a, b) \beta m \beta[x, y]_{\gamma}+G_{\gamma}(a, b) \beta m \beta[x, y]_{\alpha}=0$.
Thus, $\left(G_{a}(a, b) \beta m \beta[x, y]_{\gamma}\right) \beta m \beta\left(G_{a}(a, b) \alpha m \beta[x, y]_{\gamma}\right)=-G_{a}(a, b) \beta m \beta[x, y]_{\gamma} \beta m \beta G_{\gamma}$ (a, b) $\beta m \beta[x, y]_{\alpha}=0$ is obtained.

Hence, by the semiprimeness of $M, G_{\alpha}(a, b) \beta m \beta[x, y]_{\gamma}=0$.
(iv) As in the proof of (iii), the similar replacement in (ii) produces (iv).

Lemma 2 .6: Every semiprime Γ-ring contains no nonzero nilpotent ideal.
Corollary 2.2: Semiprime Γ-ring has no nonzero nilpotent element.
Lemma 2.7: The center of a semiprime Γ-ring does not contain any nonzero nilpotent element.

Jordan Derivations on Semiprime Γ-rings

The authors proved main result as follows:
Theorem 3.1: Let M be a 2 -torsion free semiprime Γ-ring satisfying the condition ${ }^{(*)}$, and let d be a Jordan derivation of M. Then d is a derivation of M.

Proof: Let d be a Jordan derivation of a 2-torsion free semiprime Γ-ring M, and let $a, b, y, m \in M$ and $\alpha, \beta \in \Gamma$. Then by Lemma 2.5 (iii),
$\left[G_{a}(a, b), y\right]_{\beta} \beta m \beta\left[G_{a}(a, b), y\right]_{\beta}=\left(G_{\alpha}(a, b) \beta y-y \beta G_{\alpha}(a, b)\right) \beta m \beta\left[G_{\alpha}(a, b), y\right]_{\beta}$
$=G_{a}(a, b) \beta y \beta m \beta\left[G_{a}(a, b), y\right]_{\beta}-y \beta G_{a}(a, b) \beta m \beta\left[G_{a}(a, b), y\right]_{\beta}=0$.
Since $y \beta m \in M$ and $G_{a}(a, b) \in M$ for all $a, b, y, m \in M$ and $\alpha, \beta \in \Gamma$.

By the semiprimeness of $M,\left[G_{a}(a, b), y\right]_{\beta}=0$, where $G_{a}(a, b) \in M$ for all $a, b, y \in$ M and $\alpha, \beta \in \Gamma$. Therefore, $G_{a}(a, b) \in Z(M)$, the center of M.

Now, let $\gamma, \delta \in \Gamma$. By Lemma 2.5 (ii), $\quad G_{a}(a, b)[x, y]_{\alpha} \delta m \delta G_{a}(a, b) \gamma[x, y]_{\alpha}=0$.
Since M is semiprime, so $G_{\alpha}(a, b) \gamma[x, y]_{\alpha}=0$.
Also, by Lemma 2.5 (i), $\quad[x, y]_{\alpha} \gamma G_{a}(a, b) \delta m \delta[x, y]_{\alpha} \gamma G_{a}(a, b)=0$.
Hence by the semiprimeness of $M, \quad[x, y]_{\alpha} \gamma G_{a}(a, b)=0$.
Similarly, by Lemma 2.5 (iv), $G_{a}(a, b) \gamma[x, y]_{\beta} \delta m \delta G_{a}(a, b) \gamma[x, y]_{\beta}=0$.
Since M is semiprime, it follows that $G_{a}(a, b) \gamma[x, y]_{\beta}=0$.
Also, by Lemma 2.5 (iii), $\quad[x, y]_{\beta} \gamma G_{\alpha}(a, b) \delta m \delta[x, y]_{\beta} \gamma G_{\alpha}(a, b)=0$.
Hence by the semiprimeness of $M, \quad[x, y]_{\beta} \gamma G_{\alpha}(a, b)=0$.
Thus, $2 G_{\alpha}(a, b) \gamma G_{a}(a, b)=G_{a}(a, b) \gamma\left(G_{a}\left(a, b+G_{\alpha}(a, b)\right)\right.$

$$
\begin{aligned}
& =G_{\alpha}(a, b) \gamma\left(G_{\alpha}(a, b)-G_{\alpha}(b, a)\right) \\
& =G_{\alpha}(a, b) \gamma(d(a \alpha b)-d(a) \alpha b-a \alpha d(b)-d(b \alpha a)+d(b) \alpha a+b \alpha d(a)) \\
& =G_{\alpha}(a, b) \gamma(d(a \alpha b-b \alpha a)+(b \alpha d(a)-d(a) \alpha b)+(d(b) \alpha a-a \alpha d(b))) \\
& =G_{a}(a, b) \gamma\left(d\left([a, b]_{\alpha}\right)+[b, d(a)]_{\alpha}+[d(b), a]_{\alpha}\right) \\
& =G_{a}(a, b) \gamma d\left([a, b]_{\alpha}\right)-G_{a}(a, b) \gamma[d(a), b]_{\alpha}-G_{a}(a, b) \gamma[a, d(b)]_{\alpha .} .
\end{aligned}
$$

Since $d(a), d(b) \in M$ by using (1), $\quad G_{\alpha}(a, b) \gamma[d(a), b]_{\alpha}=G_{\alpha}(a, b) \gamma[a, d(b)]_{\alpha}=0$.
Thus $2 G_{a}(a, b) \gamma G_{a}(a, b)=G_{a}(a, b) \gamma d\left([a, b]_{a}\right)$
Adding (3) and (4), $\quad G_{a}(a, b) \gamma[x, y]_{\beta}+[x, y]_{\beta} \gamma G_{a}(a, b)=0$, is obtained.
Then by Lemma 2.1 (i) with the use of (3),

$$
\begin{aligned}
0 & =d\left(G_{\alpha}(a, b) \gamma[x, y]_{\beta}+[x, y]_{\beta} \gamma G_{\alpha}(a, b)\right) \\
& =d\left(G_{\alpha}(a, b)\right) \gamma[x, y]_{\beta}+d\left([x, y]_{\beta}\right) \gamma G_{a}(a, b)+G_{a}(a, b) \gamma d\left([x, y]_{\beta}\right)+[x, y]_{\beta} \gamma d\left(G_{a}(a, b)\right) \\
& =d\left(G_{a}(a, b)\right) \gamma[x, y]_{\beta}+2 G_{a}(a, b) \gamma d\left([x, y]_{\beta}\right)+[x, y]_{\beta} \gamma d\left(G_{a}(a, b)\right) .
\end{aligned}
$$

Since $G_{a}(a, b) \in Z(M)$ and therefore $d\left([x, y]_{\beta}\right) G_{a}(a, b)=G_{a}(a, b) d\left([x, y]_{\beta}\right)$.
Hence, $2 G_{a}(a, b) \gamma d\left([x, y]_{\beta}\right)=-d\left(G_{a}(a, b)\right) \gamma[x, y]_{\beta}-[x, y]_{\beta} \gamma d\left(G_{a}(a, b)\right)$.
Then from (5) and (6)
$4 G_{a}(a, b) \gamma G_{\alpha}(a, b)=2 G_{\alpha}(a, b) \gamma d\left([a, b]_{\alpha}\right)=-d\left(G_{\alpha}(a, b)\right) \gamma[a, b]_{\alpha}-[a, b]_{\alpha}$ $\gamma d\left(G_{a}(a, b)\right)$

So, $\quad 4 G_{a}(a, b) \gamma G_{a}(a, b) \gamma G_{a}(a, b)=-d\left(G_{a}(a, b)\right) \gamma[a, b]_{\alpha} \gamma G_{a}(a, b)-[a, b]_{\alpha} \gamma d\left(G_{a}(a\right.$, b)) $\gamma G_{a}(a, b)$.

Here, by using (4) $d\left(G_{\alpha}(a, b)\right) \gamma[a, b]_{\alpha} \gamma G_{a}(a, b)=0$ and also, by Corollary 2.1 (vi), $[a, b]_{\alpha} \gamma d\left(G_{a}(a, b)\right) \gamma G_{\alpha}(a, b)=0$.

Since $d\left(G_{\alpha}(a, b)\right) \in M$ for all $a, b \in M$ and $\alpha \in \Gamma$. So, $4 G_{\alpha}(a, b) \gamma G_{\alpha}(a, b) \gamma G_{\alpha}(a$, b) $=0$.

Therefore, $4\left(G_{\alpha}(a, b) \gamma\right)^{2} G_{\alpha}(a, b)=0$. Since M is 2-torsion free, so $\left(G_{a}(a, b) \gamma\right)^{2} G_{\alpha}(a$, $b)=0$. But, it follows that $G_{a}(a, b)$ is a nilpotent element of the Γ-ring M.

Since by Lemma 2.7, the center of a semiprime Γ-ring does not contain any nonzero nilpotent element, so $G_{a}(a, b)=0$ for all $a, b \in M$ and $\alpha \in \Gamma$. It means d is a derivation of M.

REFERENCES

Barnes, W. E. 1966. On the Г-rings of Nobusawa. Pacific J. Math. 18: 411- 422.
Bresar, M. 1988. Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104(4):10031004.

Haetinger, C. 2002. Higher derivations on Lie ideals, Tenclencias em Matematica Aplicada e. computacional 3(1): 141-145.
Herstein, I. N. 1966. Topics in Ring Theory. The University of Chicago Press, Chicago.
Sapanci, M. and A. Nakajima. 1997. Jordan Derivations on Completely Prime Г-Rings. Math. Japanica 46: 47-51.

[^0]: * Corresponding author : mizanorrahman@gmail.com.
 ${ }^{1}$ Department of Mathematics, University of Rajshahi, Rajshahi-6205, B angladesh.

