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   The endomorphism semigroup for a class of commutative semigroups, called special 
semigroups, will be studied their structures will be determined in some important cases. 
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1. INTRODUCTION 
   Majumdar and Mallick(3) introduced the concept of special abelian groups. They 
studied these groups and classified them in most cases. Generalising  this idea to 
semigroups, Hossain and Majumdar(2) defined special semigroups and proved some of 
their properties including the fact that many classes of special semigroups are closed 
under direct sums. It has been observed that there are three semigroups: 

(i)  Z+, the additive semigroup of all positive integers,  

(ii) Q+, the additive semigroup of all positive rational numbers, and  

(iii) N(2), the additive semigroup of all positive rational numbers which have 
denominators of the form 2r, r being a non-negative integer, form the building blocks for 
many classes of special abelian semigroups including free commutative semigroups and 
divisible commutative semigroups, where the direct sum is used to connect the building 
blocks together.  

In this paper, we shall consider the endomorphism semigroups. Here, all special 
semigroups will be written additively, and by the endomorphism semigroup of a special 
semigroup S we will mean the additive commutative semigroup Hom (S,S). We use the 
terminology and notations of (1,3,4). 

2. We now recall some definitions and results for convenience. An additive commutative 
semigroup S is said to be special if S has a subset X such that non-identity (i.e., non-zero) 
element s of S has unique expression ∑

∈

=
Xx

ii
i

xns , where ni = 0 or 1, only finitely many 

ni, s being equal to 1; X is called a set of special generators. 
A semigroup S is called an inverse semigroup(1,4) if for each element a ∈ S, there exists 
an element b ∈ S such that aba = a, bab = b. b is uniquely determined by a. b is usually 
written a-1 and called the inverse of a. It is clear that if a belongs to a set X of special 
generators, then a-1 ∉ X. 
It was shown in(2) that Z+, Q+, N(2) are special semigroups. If {Aa} is a family of 
subsemigroups of an additive semigroup S, the sum ∑a aA is the subsemigroup of S 

consisting of all fintite sums 
ri aa aa  ........ ++ , where 

ii aa Aa ∈ and are all distinct. Let 

∑
≠

=
β

β
a

aAÂ . If none of the Aa’ s is a monoid and Φ=∩ βAAa
ˆ , for each ( )β≠αβ , 
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then ∑a aA  is called the direct sum of the Aa’s. The direct sum is then written as 

∑ ⊕
a

aA . Now ∑ ⊕
a

aA  is called a free commutative semigroup if each Aa is isomorphic to 

Z+. The following theorem was established in(2):  

Theorem 1: ∑ ⊕
a

aA  is special if and only if each Aa is special. 

We use this result to prove the following: 
 
Theorem 2 : A free semigroup S is special. 
Proof : It is obvious from the definition of direct sum that ∑ ∈

⊕=
Xx xSS where Sx is 

the infinite cyclic semigroup generated by x, i.e., Sx = {x, 2x, 3x,........, nx,....}. Clearly, 
each += ZSx

~ , the additive semigroup of all positive integers. It thus follows from the 
theorem 1 that S is special. 
An additive commutative semigroup S will be called divisible if, for each s ∈ S and for 
each positive integer n, there exists an element s′ ∈ S such that s = ns′. Obviously Q+ is a 
divisible semigroup whereas Z+ and N(2) are not divisible. 
Also, it is clear that if {Sa} is a family of divisible semigroups, then ∑ ⊕

a
aS  is divisible. 

It therefore follows that: 

Theorem 3 : A commutative semigroup S is divisible and special if ∑ ⊕=
a

aAS , where 

{ } +=−= QAandsS a
~ 0 , for each a. 

Theorem 4 : If S be an additive commutative semigroup and ( ),0−= SS then S is special 

if ∑ ∑ ∑ ⊕⊕⊕ ⊕⊕=
a

a CBAS
β γ

γβ , where each += ZAa
~ , each += QB ~

β , and each 

( )2~ NC =γ . 
Proof: This is a consequence of theorem 1, theorem 2, and theorem 6(2) 

3. Endomorphisms of Special Semigroups 

As a consequence of Theorem 4 we see that for determination of the structure of the 
endomorphism semigroup End S = Hom (S,S) of a special semigroup ∑⊕

= aSS we need 
to 
(i) determine End Sα, where Sα is any of Z+, Q+ and N(2), 

(ii) express End 






∑ ⊕
a

aS in terms of End Sα 

with an effective method of gluing them together so that the required structure can be 
read off from the structures of End Sa’S.  
We first solve the problem (i) by proving the following theorem: 

Theorem 5 
( ) ++ = ZZEndi ~   

( ) ++ = QQEndii ~     



 56 

 56 

( ) ( )( ) ( )2~  N2NEndiii = . 
 
Proof: (i) If ϕ is an endomorphism of Z+, let ϕ (1) = n. Then ϕ (r) = rn, for all r∈ Z+. 
Thus, ϕf → ϕ (1) is an isomorphism of End Z+ onto Z+. 

(ii) As in (i) it can be proved that every endomorphism as well as every automorphism of 
Q+ too is given by the map rxxr →:ˆ , for a fixed .+∈Qr rr ˆ→ gives an isomorphism 
Q+ → End Q+. Thus, End .~ ++ = QQ  

(iii) Since each element of N(2) is a rational number of the form ( ),0
2

≥
′

rm  it follows 

from (iii) that a map ϕ : N(2) → N(2) is an endomorphism if and only if ϕ (x) = x. ϕ(1), 
for each x∈ N(2). Also ϕ(1) may be any element of N(2). Hence ϕϕ → f (1)gives an 
isomorphism of End N(2) onto N(2). 

We shall now try to solve the problem (ii) with the restriction that the set of α’s is finite 
i.e., S a finite direct sum ( ).S........S

nαα ⊕⊕
1

 
We also have the following theorem: 
Theorem 6: ( ) ( )∑ αααα ⊕=⊕⊕=

j,i
.S,SHom~S........SEnd~)S(End

jin1
  

(Here Hom ( )
ji aa SS , , if non-empty, denotes the commutative semigroup of all 

homomorphisms of 
ji aa SSf →: when such homomorphisms exist, and the sum is over 

all such semigroups.)  

Proof: The theorem follows by induction from the isomorphism  

( ) ( ) ( )CBHomCAHomCBAHom ,,,: ⊕→⊕φ  and  

( ) ( ) ( )C,A HomB,A HomCB,A Hom: ⊕→⊕ϕ  given by ( ) ( )BA tftff  , =φ  and 
( ) ( )ggg cB ππϕ ,= , where CBA ,, are the obvious monoids into which A, B, C maybe 

imbedded, and CBBA tt ππ ,,,  are the injections and the projections. Clearly, φ is well 
defined and ϕ yields isomorphisms 

( ) ( ) ( )C,BHomC,AHomC,BAHom:    ⊕→⊕φ  and 

( ) ( ) ( )C,AHomB,AHomCB,AHom:    ⊕→⊕φ . 

Hence, by induction, ( ) ( )∑∑
=β =α

β⊕=⊕⊕⊕⊕
n m

anm B,AHom~B........B,A........A
1 1

11 . The 

problem (ii) has thus been solved.  

The determination of End (S) will therefore be completed from the following results. 

Theorem 7: Hom ( ) +++ = QQZ ~, . 
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Proof. Let t: Z+ → Q+ be the inclusion map. +++ →∈ QZ
n
tletZn :, be the map 

( )
n
mm

n
t

= . Then 
n
t  is a homomorphism. Also nt: Z+ → Q+ given by (nt)(m) = mn is a 

homomorphism. Thus, ( )+++ ⊆






 ∈ QZHomZnmt

n
m ,,  : . 

Next, let ( )++∈ QZHomf ,  and let ( )
n
mxf ==1 , say, where m, n ∈ Z+. Then, 

.t
n
mf =  

Hence ( ) ++++ =






 ∈= Q~Zn,m  :t

n
mQ,Z Hom .  

Theorem 8 : ( )( ) ( )2~2, NNZHom =+ . 

Proof: Let ( ) 0,  ,
2

1 ≥∈== + rZaaxf r
so that ( ) r

annf
2

= . Thus ( )1ff →φ  is a 

homomorphism. Also, ( ) ( ) ( ) ( ) fgnnfngfg =⇒∀=⇒=   ,11 so that φ is 1-1. 

Now, ( ) rr

afrZrZaa
2

,0,,,
2

=≥∈∈∀ + φ  where ( ) r

annf
2

= . Clearly, 

( )( )2, NZHomf +∈ . Then ( ) ( ) r

aff
2

1 ==φ i.e., φ is onto. Therefore φ is an 

isomorphism. 

Theorem 9 : ( ) Φ=++ ZQHom , .  

Proof : If ( ) ( ) ( ) +++++ ∈=∈Φ≠ Zmf Let   .Z,Q Homf let  ,Z,QHom 1 . Then, for each 

n
m

n
fZn =






∈ + 1, , since ( ) m

n
 .nf =






φ=

11 . Hence for each Z
n
mZn ∈∈ + ,  which is absurd. 

Hence the theorem.  

Theorem 10: ( )( ) Φ=+ ~  ,2 ZNHom . 

Proof: If ( )( ) Φ≠+ZNHom ,2 , let ( )( )+∈ ZNHomf ,2  and let ( ) mf =1 . 

Then,
rr

mf
22

1
=






 , for each r ≥ 0. This means, +∈ Zm

r2
, for each r ≥ 0 which is absurd, 

Hence the result.  

Theorem 11: ( )( ) ++ ≅ QQNHom ,2 .  
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Proof: Let ( )( )+QNHom ,2:ϕ  and ( ) .0,,,1 >∈= nZnm
n
mϕ Let ( ),2Nx ∈  then 

r

ax
2

= , for some .0, , ≥∈∈ + rZrZa  Since ϕ is a homomorphism, 

( )
n
mx

n
max r ..

2
==ϕ by arguments used earlier. Clearly, ( )1ϕϕ →  is an isomorphism. 

The proof is thus complete.  

Theorem 12: ( )( ) Φ=+ 2, NQHom  

Proof: If ( )( ) Φ≠+ NNQHom , , let ( )( ).2, NQHomf +∈  Then ( ) r

af
2

1 =  for some 

0Ζ,r,Za ≥∈∈ +  and so, 
( ) ( ).2

21212
1 N

n
a

n
f r ∉

+
=








+
In particular, 

( ).2
2.33

1 Naf r ∉=





 Hence ( )( ) .2, Φ=+ NQHom  
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