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ABSTRACT 
The work represents and investigates the stationary solutions of the one-dimensional 

Non-linear Schrödinger Equation (NLSE), for attractive non-linearity, in the Bose-
Einstein condensates (BEC) under the box boundary condition and calculates the 
characteristics of internal modes of bright solitons (eigen modes of small perturbation of 
the condensate). 

INTRODUCTION 

Bose-Einstein condensate (BEC) was created for lithium [1-3] in case of attractive 
nonlinearity as predicted by the nonlinear Schrödinger equation (NLSE) for three 
dimensions [4, 5, and 6]. The condensate collapsed when the number of particles became 
large. However, in one or quasi-one-dimension, no collapse is predicted [7] and in one 
dimension the NLSE has a wide application in fiber optics [8] as well as in other fields 
[9-12]. 

In this paper we present stationary solutions to the one-dimensional NLSE for 
attractive nonlinearity under box boundary conditions. The Bose-Einstein Condensate 
(BEC) is said to be in the quasi-one-dimensional regime when its transverse dimensions 
are of the order of its healing length, and its longitudinal dimension is much longer than 
its transverse ones. In this case the 1-D limit of the 3-D NLSE is appropriate, rather than a 
true 1-D mean-field theory [13], as would be the case when the transverse dimension is 
the order of the atomic interaction length or the atomic size itself. Under these criteria the 
condensate is well out of the Thomas-Fermi limit; i.e., the kinetic energy in the transverse 
dimension is very high. It is this high kinetic-energy which prevents the condensate from 
collapsing. We have numerically illustrated the stability of the condensate in quasi-1-D 
case. 

BOSE-EINSTEIN CONDENSATION (BEC) 

Bose-Einstein condensation is based on the indistinguishability and wave nature of 
particles, both of which are at the heart of quantum mechanics. In a simplified picture, 
atoms in a gas may be regarded as quantum-mechanical wavepackets which have an 
extent of the order of a thermal de Broglie wavelength 2/12 )/2( TMkBdB hπλ = where T is 
the temperature and M the mass of the atom. 

dBλ  can be regarded as the position 
uncertainty associated with the thermal momentum distribution. The lower is the 
temperature, the longer is dBλ . When atoms are cooled to the point where dBλ  is 
comparable to the interatomic separation, the atomic wavepackets “overlap” and the 
indistinguishability of particles becomes important. At this temperature, bosons undergo a 
phase transition and form a Bose-Einstein condensate, a coherent cloud of atoms all 
occupying the same quantum mechanical state. The transition temperature and the peak 
atomic density n are related as 612.23 ≅dBn λ . 
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In a Bose condensed gas, the separation between atoms a (charectarized by the s-
wave scattering length) is equal to or smaller than the thermal de Broglie wavelength. The 
largest length scale is the confinement, either characterized by the size of the box 

potential or by the oscillator length ωMaHO /h=  which is the size of the ground state 

wavefunction in a harmonic oscillator potential with frequencyω . 

Atom-atom interactions are described by a mean field energy MnaU /4 2
int hπ= . In 

most experiments, intUTk B > , but the opposite case has also been realized [14,15]. In 
comparison, superfluid helium is a strongly interacting quantum liquid - the size of the 
atom, the healing length, the thermal de Broglie wavelength and the separation between 
atoms are all comparable, creating a complex rich situation. 

FORM OF NONLINEAR SCHRÖDINGER EQUATION (NLSE) IN BOSE-
EINSTEIN CONDENSATIONS (BEC) 

The interaction between N atoms of mass M, confined in an external potential V(r), 
is taken into account by including a term 2ψg  in the Schrödinger equation, proportional 

to the square of the wave function [16] 

( ) ( ) ( )tritrrVtrg
M t ,,)(,

2
22

2 r
h

rrrh ψψψ ∂=







++∇−

                                                            (1)                                               

where ( ) 2, trrψ  is the single particle density such that ( ) ( ) ,,, 2trNtr rr ψρ =  the 

coupling constant ,/4 2 MaNg hπ≡  [16,17] and a is the s-wave scattering length for 
binary collisions between atoms. The case of attractive interactions considered here 
corresponds to a < 0. 

( )rV r
is defined to be a three-dimensional rectangular box of length L and small 

transverse area At. In the transverse directions the wave function is required to vanish on 
the surface of the container; in the longitudinal direction we require either box or periodic 
boundary conditions.  

The characteristic length scale over which the condensate density attains its average value 
away from a sharp defect or from a perfectly confining wall is the healing ξ 
                                       ( ) 2/18 −≡ aρπξ                                                                      

where )/( tLAN≡ρ  is the mean particle density, L is the longitudinal length of the 
confining potential, and Ly  and  Lz  are the transverse lengths , ZYt LLA ≡  is the 
transverse area. 

The BEC is in the quasi-1D regime when Ly and LZ satisfy the following criteria:  

                                   ξ~, zy LL  and zy LL , << L . 

The former ensures that the condensate remains in the ground state in the two transverse 
dimensions, while the latter ensures that longitudinal excitations are much lower in 
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energy than possible transverse excitations. Under these conditions one may make an 
adiabatic separation of longitudinal and transverse variables,  

                       ( ) ( ) ( ) ( ) hr /2/1 ,,, ti
t ezyhxfALtr µψ −−=  

where ( )xf  and ( )zyh ,  are  dimensionless functions and the time dependence of a 
stationary state has been  assumed,  µ being the chemical potential. This reduces the 
three-dimensional NLSE (1) to, 
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Equation (2) may be projected on to the ground state of h(y,z) and integrated over the 
transverse dimensions y and z 
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where ),( zyhgs  is the ground state quantum mechanics particle in a box solution. 

Requiring  
zy

gs L
z

L
yhzyh ππ sinsin),( 0=

  is normalized to 1,where 20 =h ,  equation ( 3) 

becomes, 
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 Multiplying equation (4) by  
2

22
h
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where f is a dimensionless wave function describing excitations along L;  Lf 2  is the 
longitudinal part of the single particle density. µ

ξ
µ

2
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≡    is a dimensionless chemical 
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potential which is now the eigen value of the problem and   ( ) )~(2~~
2

2

xVMxV
h

ξ
≡  is the 

confining potential. 

Now combining the longitudinal length of the confining potential and healing length into 
a single dimensionless scaling parameter Lξλ = , equation (5) becomes, 
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Using the approximations for yL and zL , and dividing by integrating factor of 9/4, 

[ ] 0)~()~()~(~~~ 222 =−+∂−− xfxfxVx effeffeff λµ                                                         (7) 
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We can simply drop the ‘eff ‘   subscripts 

 [ ] )~(~)~()~(~)~(~ 222 xfxfxVxfx µλ =+−∂−                                                                  (8)                                               

For comparison with experimental result [18] the conversion factors from the 
dimensionless  µ~  to µ , in µ K  are given below. The general conversion µ =(8.34 ×  
10-15) µρ ~)/( Ma , where M is in atomic mass units, ρ  is in cm-3, and a is in nm. Using 
common experimental values [18] of ~ρ 1014, for 23Na,  a~2 .75, and for 87Rb, a~5.77, 
the conversion factors are 0.0723 and 0.0401 respectively. Since the dimensionless 
chemical potentials found will be of the order of 1 -10 this gives a sense of the energy 
scale of the solutions on the order of 0.1 to 1 µ K. In this paper two test scales of 

25/1,10/1 == λλ   will be used for illustrative purposes. 

As  ( ) 2~xf    is a single particle density, it is normalized to 1 rather than N. 

                                                                       ( )∫ =
1

0

2 1~~ xfxd                                          (9)                                                

The number of atoms N which is proportional to the coefficient to the nonlinear term in 
Eq (1), is then contained in the ratio of the healing length to the box length, λ ∞ N-1/2 the 
NLSE (8), subject to normalization (9) and box boundary conditions, is the equation 
which will be solved.                                                                                                                                        

BOX BOUNDARY CONDITION ON THE BEC AND GENERAL FROM OF THE 
STATIONARY SOLUTION 

We now consider the solution of Eq.(8) in regions of constant potential, which may 
be taken to beV(x) =0 without loss of generality. We note first that if ( )xf vanishes 

anywhere in an interval as for example at the edges of the box, then ( )xf may be taken 
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to be purely real throughout that interval. This is easily established by considering a 
Taylor series expansion of ( )xf  in the neighborhood of the point at which it vanishes. 
Thus we may remove the absolute value symbol in Eq. (8) and so recover an ordinary 
nonlinear equation for a real function. 

                                   0~32 =−+′′− fff µλ                                      (10) 

The most general solution of the equation given above is a Jacobian elliptic function [15]. 
For the attractive case; both the cn and dn functions offer solutions. However, the dn 
function has no real zeros, so the cn function provides all solutions which satisfy box 
boundary conditions [15].  

Considering the solution in constant potential, we may take ( ) 0x~V~ = . So we get from 
equation (8) 
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The boundary conditions are, 

                                         ( ) ( ) 010 == ff                                                                     (12)                                                

Now   most general form of the solution, 

( ) ( )mxkcnAxf δ+= ~~                                         (13) 

Where  10 ≤≤ m  is the parameter of Jacobian elliptic functions, δandk will be 
determined by the boundary conditions,while A and m will be determined by substitution 
of Eq. (13) into the NLSE and by normalization. 

The function ( )mxcn  is periodic in x, with period equal to 4K(m), where K(m) is an 
elliptic integral of the first kind. Since the quarter period of cn is the complete elliptic 
integral of the first kind, ( )mK , and since ( ) 10 =mcn , we find that ( )mjKk 2=  and 

( )mK−=δ  ,where  { }.,.......3,2,1∈j  j-1 gives the number of nodes in the cn function 

Now,  ( ) ( )( )mxmjKcnAxf δ+= ~2~  

Putting the value of  ( )xf ~  in equation (11) we get  
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Now equating the coefficient of equal powers of ( )mxmjKcn δ+~)(2  we find  

                       ( )[ ]222 22 mKjmA λ=                                                             (16)     

                     ( ) ( )[ ]22 212~, mKjmand −−= λµ                                                        (17)                       

Substituting Eq. (16) into Eq. (9) and noting that the integral over sn2 can be defined in 
multiples of the quarter period K(m), we obtain the normalization condition,                                                                      

                      ( ) ( ) ( ) ( ) ( )[ ] 1122 22 =−− mKmmEmKj λ     

                    ( )[ ]{ } jmKmmEmKor =−−
− 212 )(1)()(8, λ                            (18) 

If we carefully observe the Eq. (18), we see that the  left side of the equation is a 
continuous and decreasing function of  “m” but the  right side gives only certain allowed 
discrete  values ( j = 1,2,3,4,5 ……….  ) where E(m) is the complete elliptic integral of 
the second kind.  

Now,   As   ( ) ( ) )(),(2~~ mKmjKkandmxkcnAxf −==+= δδ  

So equation (13) becomes, 

( ) [ ] ( )mmKxmjKcnmjKmxf )(~)(2)(22~ −=∴ λ  

            = [ ] ( )( )mxjmKcnmjKm 1~2)()(22 −λ                                                (19) 

This leaves the chemical potential (17) and the wave function (19) determined up to the 
parameter m and the scaleλ . 

In Fig.1(a) graphical solution of Eq.(18) is shown. The plot demonstrates that the 
solutions are unique. These solutions are in one-to-one correspondence with those of the 
1D particle-in-a-box problem in linear quantum mechanics,  

 

 
  Fig. 1(a) : Graphical solution of equation (18)          Fig. 1(b) : Graphical solution of equaion (18)    

Fig. 1(a) Graphical solution of equation (18)In figure: 1(a) & (b): In this graphical 
solution of Eq.(18) λ   is the scale and j-1 with { },........3,2,1∈j  

{ },........6,4,2 with or ∈jj is the number of nodes respectively. The three curved 
lines are plots of Eq. 
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(18) solved for the number of nodes j, with  25,101 ==− ξλ L . The left-hand side of 
the plot is the m =0 linear limit, while the right-hand side exponentially approaches the 
m=1 bright soliton limit. Solutions are found where these lines intersect with the 
horizontal lines of j. Note the rapid convergence to m = 0 in the high-j limit, so that for 
large j the solutions are in the linear regime. 

From figure 1(a) we can determine the values of "m" for different values of "j" easily. But 
for ground states and lower excited states the values of "m" will be found by using figure 
1(b)          

BRIGHT SOLITON LIMIT AND FORM OF THE CHEMICAL  POTENTIAL 

One may add a peak without disturbing another peak, provided that adjacent peaks 
have opposite phases and that the overlap between them is exponentially small in the ratio 
of their separation to their healing length. In this limit we ought to recover a series of 
equally spaced sech solutions of alternating phase to within exponentially small factors. 
These solutions are also called bright solitons. The sech function is the −→1m  limit of 
the cn function in the solution (Eq. (13))  

Bright solitons solve the free NLSE. Thus we should find that the wave function and 
chemical potential no longer depend on the box length L. In this limit the solitons must 
have a different length scale than λ , which depends on L. The soliton width is 
proportional to the parameter 

aN
At

π
η

8
≡                                                                 (20) 

where, 
tA  is the transverse area of the box,η is usually set to 1 by renormalizing the 

wave function[8] 

We now consider the limit 0→λ , which corresponds to −→1m . Physically, this means 
that the peaks become highly separated and the interaction between them becomes expo-
nentially small. By using Taylor expansions in 1- m of the complete elliptic integrals, we 
find  that, 
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Putting back in the units we find 
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where )(Lδ  is an offset which depends on the box length. But as ∞→L  the offset 
becomes arbitrary, so that we can set it to zero. Note that we put back in the units of the 
wave function ( )xf ~  which we took out in making the separation of variables in the 
quasi-1D approximation. 
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As may be seen for the case in which j = 1 and using the Jacobian elliptic function for the 

case m = 1, we get               
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This is the wave function of the free 1D nonlinear Schrödinger equation. 
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Graph: 

1. Ground and Excited States for the Scaling Parameter λ-1=10: 

 

 
Fig. 2-4 (a) : Values of m for ground and different excited states (j=1,23....) with scaling parameter 
λ-1=10 
             (b) Plots of corresponding wave function and values of their chemical potentional µ. 
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1. Excited States for the Scaling Parameter λ-1=25: 

 

 
Fig. 5-7 (a) : Values of m for different excited states (j=1,23....) with scaling parameter λ-1=25 

             (b) Plots of corresponding wave function and values of their chemical potentional µ. 
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RESULT AND DISCUSSION 

Plots have been obtained for the different values of the nodes j and the values of m 
have been obtained from the graphs. Using Eq. (19) we also draw the graph which gives 
somes peaks that are analogous to the particle-in-a box problem in linear quantum 
mechanics. These peaks can be characterized as the bright soliton trains. Bose-Einstein 
Condensate with negative scattering length is only stable due to the finite size and the 
zero-point energy associated with it. In addition to describing the properties and physical 
meaning of stationary states in detail, we have made experimental prediction specific to 
the BEC. We predict that in quasi-one-dimension, i.e. for transverse dimension on the 
order of  ξ  , a slow enough accretion of particles will gives the attractive condensates. If 
it can be shown that the NLSE models the attractive BEC in the quasi-one-dimension, 
then there is a lot of rich phenomena in fiber optics which could have a direct analogue in 
the BEC. So far we know this technique has been used first time to find out soliton from 
BEC.    
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